• Site web CNRS
  • Site web Institut Polytechnique de Paris
  • Site web École polytechnique

La physique de l’infiniment grand l’infiniment petit

Imene Zemzemi soutient sa thèse

14 décembre 2020

le mercredi 16 décembre à 15h30, amphi Becquerel, "Calcul haute-performance et simulation numérique pour l’accélération d’électrons par sillage laser avec des profils laser réalistes"

Le développement des lasers ultra-courts à de hautes intensités a permis l’émergence de nouveaux domaines de recherche en relation avec l’interaction laser-plasma. En particulier, les lasers petawatt femtoseconde ont ouvert la voie vers la possibilité de concevoir une nouvelle génération d’accélérateurs de particules. La modélisation numérique a largement contribué à l’essor de ce domaine d’accélération des électrons par sillage laser.

Dans ce contexte, les codes Particle-In-Cell sont les plus répandus dans la communauté. Ils permettent une description fiable de l’interaction laser plasma et surtout de l’accélération par sillage laser. Cependant, une modélisation précise de la physique en jeu nécessite de recourir à des simulations 3D particulièrement coûteuses. Une manière pour accélérer efficacement ce type de simulations est l’utilisation de modèles réduits qui, tout en assurant un gain en temps de calcul très important, garantissent une modélisation fiable du problème. Parmi ces modèles, la décomposition des champs en modes de Fourier dans la direction azimutale est particulièrement adaptée à l’accélération laser plasma.

Dans le cadre de ma thèse, j’ai implémenté ce modèle dans le code open-source Smilei, dans un premier temps, avec un schéma différences finies (FDTD) pour discrétiser les équations de Maxwell. Néanmoins, ce type de solveur peut induire un effet de Cherenkov numérique qui corrompt les résultats de la simulation. Pour mitiger cet artéfact, j’ai également implémenté une version pseudo-spectrale du solveur de Maxwell qui présente de nombreux avantages en termes de précision numérique.

Cette méthode est ensuite mise en oeuvre pour étudier l’impact de profils de lasers réalistes sur la qualité du faisceau d’électrons en exploitant des mesures réalisées sur le laser Apollon. Sa capacité à modéliser correctement les processus physiques présents est analysée en déterminant le nombre de modes nécessaires et en comparant les résultats avec ceux issus des simulations 3D en géométrie Cartésienne. Cette étude montre qu’inclure les défauts du laser mène à des différences dans les résultats et que ces derniers dégradent la performance des accélérateurs- laser plasma notamment en termes de quantité de charge injectée. Ces simulations, instructives pour les futures expériences d’accélération d’électrons par le laser Apollon, mettent en avant la nécessité d’inclure les mesures expérimentales dans la simulation et particulièrement celle du front de phase, pour aboutir à des résultats précis.