Study of the SM Higgs boson in the ZZ channel at CMS

Giacomo Ortona for the CMS collaboration

INFN & University of Torino

ICNFP 2013 (Crete) - 04 September 2013

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013 Study of the SM Higgs boson in the ZZ channel at CMS

Outline

1 Motivations

2 Event selection and categorization

- Searches
- Spin-parity
- 4 2/2q, $2/2\nu$ channels and high-mass searches

2 / 19

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

2013-09-04

Motivations

Motivations

- SM Higgs is expected to have non negligible ZZ coupling.
- Several final states combinations are available:
 - $H \rightarrow ZZ \rightarrow 4/$, includes $2/2\tau$ at high mass
 - $H \rightarrow ZZ \rightarrow 2/2q$
 - $H \rightarrow ZZ \rightarrow 2I2\nu$
- 2/2q and 2/2v: large BR/low purity. Well suited for high mass Higgs searches.
 - 4/ final state has low BR, but very clean signature and excellent resolution, golden channel for Higgs analysis. It allows high precision mass measurement and spin/parity study from the angular distribution of decay products.

Motivations

$H \rightarrow ZZ \rightarrow 4I$: The golden channel

- Very clean signal: search for a narrow peak in the 4/ invariant mass spectra
- Locally flat and small background
 - Reducible: Z+jets; Z+tt; WZ
 - Irreducible: ZZ*
- Sensitivity with current statistics $(5.1+19.8 fb^{-1})$: 110 < m_H < 1000 GeV
- Small number of expected events, high efficiency required!
 - 2.8 ev/fb^{-1} expected at 125GeV
- high S/B ($\sim 2)$
- Event properties from lepton angular distribution and masses
- Events are categorized based on jet

Mecomultiplicity

Kinematics

- Two pairs of OS/SF leptons. Z_1 closest to the Z mass, Z_2 the remaining with highest p_t
- $p_T^\mu > 5 {
 m GeV/c}, \ p_T^e > 7 {
 m GeV/c}$
- $40 < m_{Z_1} < 120 {
 m GeV}$ $12 < m_{Z_2} < 120 {
 m GeV}$
- One lepton with $p_t > 20 \text{ GeV/c}$, another with $p_t > 10 \text{ GeV/c}$.

• $m_{4l} > 100$ GeV, any $m_{l^+l^-} > 4$ GeV Overall efficiency: 31%, 42%, 59% (4e,2e2 μ ,4 μ)

Event selection and categorization

Background and Systematic uncertainties

Reducible

- Zbb, Ztt, Z+jets, WZ+jets
- Estimated in Z₁+X and Z₁ + *I*_{rec} control regions involving 1/2 fake leptons
- "fake rate" = tight/loose estimated using loose selection on leptons
- $\bullet\,$ syst + stat uncertainties $\sim 50\%$

Irreducible

- Calculated from MC, including $q\bar{q}$ annihilation (POWHEG) and gluon fusion (GG2ZZ)
- Phenomenological model for the shape for $qq \rightarrow ZZ (gg \rightarrow ZZ)$

Mass distribution

• Z peak at about 91 GeV/c nicely reproduced by the MC

- A clear excess is visible in the 4/ invariant mass spectra at ~ 126 GeV/c, indicating the presence of a new particle
 - $121.5 < m_{4/} < 130.5$: Expected (H126): 18.6 ev; Z+X bkg: 2.0 ev;

ZZ bkg: 7.4; Observed 25

MELA

5 angles and 2 masses fully describe the H \rightarrow ZZ \rightarrow 4/ decay Matrix Element Likelyhood Analysis: build a discriminant (KD) based on signal/bkg probabilities for SM and for the alternative hypotheses

- Use angles and masses to discriminate
 - between signal/background hypothesis
 - between spin/parity hypothesis

$$\mathcal{K} D = rac{P_{0^+}^{ ext{kin}}}{P_{0^+}^{ ext{kin}} + P_{ ext{bkg}}^{ ext{kin}}} = \left(1 + rac{P_{ ext{bkg}}^{ ext{kin}}(m_1, m_2, \Omega | m_{4l})}{P_{0^+}^{ ext{kin}}(m_1, m_2, \Omega | m_{4l})}
ight)^{-1}$$

2013-09-04

8 / 19

KD vs mass

Distribution of the KD discriminant for background and signal as a function of the 4l mass, overlapped to the observed data (black points). A clustering of the events at high KD values is visible in the Higgs peak region

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Event categorization

To increase sensitivity to VVH and ffH couplings $(\mu_V - \mu_F)$ events are splitted in two exclusive categories:

- Untagged: less than 2 jets
- Dijet: At least 2 jets with $p_t > 30 \text{ GeV/c}$

ICNFP 2013 (Crete) - 04 September 2013

Results Searches

Local p-value

0/1 Jets: $P(m_{4l}, KD, p_T) = P(p_T/m_{4l}|m_{4l}) \times P(K_D|m_{4l}) \times Pm_{4l}$ Dijet: $P(m_{4l}, KD, p_T) = P(V_D | m_{4l}) \times P(K_D | m_{4l}) \times Pm_{4l}$

Results Searches

σ/σ_{SM}

Results are nicely compatible with SM expectations

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Nevenr

Results Searches

Mass measurement

- Mass measurement is performed with a 3D fit using
 - *m*_{4/}, per-event mass error, KD
- $\bullet\,$ Scale and resolution calibrated and validated using $Z/J/\Psi \to {\it II}$ and $Z \to 4{\it I}$ event
 - 0.1-0.3% uncertainty on the 4l mass scale
 - 20% uncertainty on the 4I mass resolution

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013 Study of the SM Higgs boson in the ZZ channel at CMS

IND

Spin-parity: models

- KDs used to discriminate between different spin-parity hyp.
- Based on 2D PDF from for pairs of kinematic discriminants (D_{bkg}, D_{JP})
- 6 models tested so far: $D_{0^-}, D_{0^+_h}, D_{1^-}, D_{1^+}, D_{2^+_m}^{ggh}, D_{2^+_m}^{qq}$

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

2013-09-04

14 / 19

Spin-parity: characterization

J^P model	J^P production	expect (μ =1)	obs. 0 ⁺	obs. J ^P	CLs
0-	gg ightarrow X	2.6σ (2.8 σ)	0.5 σ	3.3 σ	0.16%
0_{h}^{+}	gg ightarrow X	$1.7\sigma (1.8\sigma)$	0.0σ	1.7σ	8.1%
2 ⁺ _m	gg ightarrow X	$1.8\sigma (1.9\sigma)$	0.8σ	2.7σ	1.5%
2 ⁺ _m	$qar{q} o X$	$1.7\sigma (1.9\sigma)$	1.8σ	4.0σ	<0.1%
1-	$qar{q} o X$	2.8 σ (3.1 σ)	1.4σ	$>$ 4.0 σ	<0.1%
1+	$qar{q} o X$	2.3 σ (2.6 σ)	1.7σ	$>$ 4.0 σ	<0.1%

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Study of the SM Higgs boson in the ZZ channel at CMS

2/2q

- 2 leptons + 2 jets
- Powerful channel for the search of heavy Higgs
- Events classified from the probability of the jets to come from q
- Angles to discriminate signal from bkg

2013-09-04

16 / 19

$2l2\nu$

- 2 leptons + missing energy
- Sensitive to Higgs $m_H > 200$ GeV (6× larger BR than 4I)
- Optimised separately for VBF/gluon-fusion production
- BSM reinterpretation of the results (→backup)

ICNFP 2013 (Crete) - 04 September 2013

Limits on SM Higgs boson

- Obs (exp) exclusion ranges:
- $ZZ \rightarrow 4I + ZZ \rightarrow 2I2\tau$: 130 - 827(113.5 - 778)
- $ZZ \rightarrow 2/2\nu$: 248 - 930(254 - 898)
- ZZ → 2/2q: 290 - 600(266 - 600)
- combined: 200 - 1000(200 - 950)

The combination of all ZZ channels completed the search for SM-like Higgs in the 200-1000 GeV region

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Conclusions

- The $H \rightarrow ZZ \rightarrow 4I$ analysis at CMS has been presented
- The new resonance discovered at 126 GeV is clearly visible and the $H \rightarrow ZZ \rightarrow 4I$ decay channel allows to study the properties of the resonance (mass, spin, parity) with high precision.
- $\bullet\,$ The discovered Higgs boson is compatible within uncertainties with a SM Higgs with mass $\sim 126 GeV$
 - $m_H = 125.8 \pm 0.5(stat.) \pm 0.2(syst.) \text{ GeV}$

•
$$\mu = \sigma / \sigma_{\rm SM} = 0.91^{+0.30}_{-0.24}$$

- Alternative spin-parity hypotheses are disfavoured by the data
- High mass searches, performed jointly with other final states channels show no evidence of other SM-like resonances up to 1 TeV

Supported by Università Degli Studi di Torino/Compagnia di San Paolo, grant ORTO11TPXK

BACKUP

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Study of the SM Higgs boson in the ZZ channel at CMS

2013-09-04 19 / 19

Summary and conclusions

2/2*ν*: BSM

ICNFP 2013 (Crete) - 04 September 2013

2013-09-04 19 / 19

Summary and conclusions

Limits on SM Higgs boson (4I)

- 2D limit on SM Higgs
- Observed exclusion: 130-827
- Expected exclusion: 113.5-778

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

Signal model

- Low mass region ($m_H < 400 \text{GeV}$):
 - double Crystall Ball⊗Breit-Wigner
 - 6 parameters of DCB obtained from MC fit for each available m_H
 - Interpolation of the parameters for intermediate m_H values
 - Systematics: 0.4%; 20%; 5% (mean, σ, tail)
- High mass region:
 - Modified Breit-Wigner with free $\Gamma \otimes DCB$
 - $\bullet\,$ Narrow width approx. breaks down $\rightarrow\,$ Complex Pole Scheme
 - Higgs samples reweighted to match CPS lineshape predictions (computed by Higgs CS working group)
 - Corrections introduced to account for $H \rightarrow ZZ$ and $gg \rightarrow ZZ$ interference effects
 - Interference constructive below the peak, destructive above
 - Small effect on total CS
 - Bias on invariant mass distribution
 - Interference at LO, signal at NNLO. Alternative lineshapes to set uncertainties due to missing orders
 - 5% systematic uncertainty from high mass corrections

Spin-parity statistical analysis

•
$$D_{J^P} = \frac{P_{SM}}{c' \times P_{SM} + P_{J^P}} = \left[1 + \frac{c' \times P_{J^P}^{ang}}{P_{SM}^{ang}}\right]^{-1}$$

• $D_{bkg} = \frac{P_{SM}}{c \times P_{SM} + P_{bkg}} = \left[1 + \frac{c \times P_{bkg}^{ang} \times P_{bkg}^{mass}}{P_{SM}^{ang} \times P_{sig}^{mass}}\right]^{-1}$

- c, c' tuned to adjust relative normalization of probabilities
- Event yields corrected in each channel for lepton interference and scaled to account detector effects $N_{\text{norm}}^{J^{P}}(k) = N_{\text{exp}}^{J^{P}}(k) \frac{\sum N_{\text{exp}}^{SN}(i)}{\sum N_{\text{exp}}^{J^{P}}(i)}$
- Build 2D templates (D_{J^P}, D_{bkg}) and likelihood L for 0⁺ and J^P
- Toys to generate the distribution of $q = -2 \ln \frac{L_{J^P}}{L_{n+1}}$ for 0⁺ and J^P

ICNFP 2013 (Crete) - 04 September 2013

Significance

G. Ortona INFN & University of Torino ICNFP 2013 (Crete) - 04 September 2013

f_{a3} parameter

Higgs decay amplitude: $A(H \rightarrow ZZ) = v^{-1} \epsilon_1^* \epsilon_2^* \left(a_1 g_{\mu\nu} m_Z^2 + a_2 q_\mu q_\nu + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^\alpha q_2^\beta \right) = A_1 + A_2 + A_3$ 0^+ dominated by A_1 , 0^- by A_3 $\sqrt{s} = 7$ TeV. L = 5.1 fb⁻¹: $\sqrt{s} = 8$ TeV. L = 19.6 fb⁻¹ CMS Preliminary ⊐. 45 • Fraction of CP-odd 40 2.5 contributions: 35 $f_{a3} = |A_3|^2 / (|A_1|^2 + |A_3|^2)$ 2 30 Interference is negligible 25 • The shape of D_{0-} 1.5 discriminant depends on the 20 value of f_{a3} . We can use it 15 to measure f_{a3} 10 0.5 • We could set a limit on CP violating contributions to 0 02 04 06 08 HZZ coupling f_{a3} $f_{a3} = 0.00^{+0.23}_{-0.00}$

Study of the SM Higgs boson in the ZZ channel at CMS

ICNFP 2013 (Crete) - 04 September 2013

2013-09-04 19 / 19