Highlights from 50_{th} Rencontres de Moriond

RES DE MORIO

Giacomo Ortona LLR-École Polytechnique

since 1966

#1: sky, snow and scenery

Exceptional physical landscape

Perfect environment for discovery and science!

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

#2: 20th March solar eclipse

Physicists always excited by rare natural phenomena

#2: 20th March solar eclipse

State-of-the art technology to observe it

30 keV/c⁴ 10-13 #3: Plenty of ε, 4 5 6 7 8 910 m_A [keV/c²] S1 [PE] **Syle** V

Giacomo Ortona

Disclaimers

- A wise person said: "Never do the summary talk at a conference where you can sky"
- The conference ended on saturday
 - These are my feelings and the results that most impressed me, without any deep afterthought
 - It doesn't pretend to be fully complete
 - All inaccuracies are my own
 - Much more experiment then theory
- The program was rich and interesting
 - Don't be upset if your favourite result is not here!

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

$$\mathsf{PMSN} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{bmatrix} \begin{bmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{bmatrix} \begin{bmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\beta/2} \end{bmatrix}$$
[only if Majorana]

Results from *v* **experiments**

CMS

- Borexino (Solar ν)
 - $pp-\nu$ rate = $144\pm13\pm10$ cdp/100t
 - $\Phi_{pp} = 6.6 \pm 0.7 \times 10^{10} \text{ cm}^{-2} \text{s}^{-1} (10\sigma)$
 - $Ve \rightarrow Ve$ survival rate ~64%
- Daya-Bay (Reactor experiment)
 - $\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$
 - $|\Delta m_{ee}^2| = 2.44 -0.11^{+0.10} 10^{-3} (eV^2)$
 - $10^{-3} \text{eV}^2 < \Delta m_{41}^2 < 0.1 \text{eV}^2$
- SuperKamiokande (Long Baseline)
 - $\tau_{p \to e\pi} > 1.4 \times 10^{34}$ years (90% CL)
- EXO200 ν-less β decay
 - No events $T_{1/2} 0 \nu \beta \beta > 1.1 \times 10^{25} \text{yr}$

8

Results from *v* experiments Boreat Boreat tracted) Solar Ling Ao 12 Daya <u>Bay</u> Events/day (bkg. 10 0.94 $\Phi_{PP} = \frac{1}{2} \frac{1$ Far site data Weighted near site data (best fit) Ve 0.88 - e supvival - r 12 1.4 Weighted near site data (no oscillation) Weighted Baseline [km] Daya-Bay (Reactor experiment) ar / Near(weighted) 1.05 • $\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$ WorldBest! 0.95 0.9

0.85

Δm²_{ee}| [10⁻³eV²] ?

1.5^L

Daya Bay: 621 days

0.05

Prompt Energy [MeV]

0.1

 $\sin^2 2\theta_{13}$

99.1% U.L 95.5% C.L.

68.3% C.L.

Best fit

0.15

5 10 15

 $\Delta \chi^2$

- $|\Delta m_{ee}^2| = 2.44 0.11^{+0.10} | 0^{-3} (eV^2)$
- $10^{-3} \text{eV}^2 < \Delta m_{41}^2 < 0.1 \text{eV}^2$
- SuperKamiokande (Long Baseline)
 - $T_{p \to e\pi} > 1.4 \times 10^{34}$ years (90% CL)
- EXO200 v-less β decay
 - No events $T_{1/2} 0 \nu \beta \beta > 1.1 \times 10^{25} \text{yr}$

Results from *v* **experiments**

- Borexino (Solar ν)
 - $pp-\nu$ rate = $|44\pm|3\pm|0 \ cdp/|00t$
 - $\Phi_{pp} = 6.6 \pm 0.7 \times 10^{10} \text{ cm}^{-2} \text{s}^{-1} (10 \sigma)$
 - ve→ve survival rate ~64%
- Daya-Bay (Reactor experiment)
 - $\sin^2 2\theta_{13} = 0.084^{+0.005}_{-0.005}$
 - $|\Delta m_{ee}^2| = 2.44 0.11^{+0.10} | 0^{-3} (eV^2)$
 - $10^{-3} \text{eV}^2 < \Delta m_{41}^2 < 0.1 \text{eV}^2$
- SuperKamiokande (Long Baseline)
 - $\tau_{p \to e\pi} > 1.4 \times 10^{34}$ years (90%)
- EXO200 ν-less β decay
 - No events $T_{1/2} 0 \nu \beta \beta > 1.1 \times 10^{25} \text{yr}$

8

Results from *v* **experiments**

Giacomo Ortona

T2K

VHE ν in IceCube (I)

- Low energy part of the spectrum shows very good understanding of atmospheric v bkg
 37 HE candidates
- 5.7σ evidence for astrophysical v origin

VHE ν in IceCube (II)

$v_{\mu} + N \rightarrow \mu^{-} + X$

 v_{μ} (NC), v_{e} , v_{τ}

- Within uncertainties, data consistent with 1:1:1
 flavour composition naïve expectation
 - But no agreement on what to expect
- No evidence for clustering

- Event topology give information on V flavour
- 9 tracks, 28 showers
 - $N_{tracks} \approx expected N_{bkg}$
 - Proposed an interpretation which leaves room for increased V x-section

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

Double Chooz

- Located at Chc No oscillation + best-fit bac Data 10³ 1.2 Best fit No oscillation $\sin^2 2\theta_{13} = 0.090 \text{ at } \Delta m^2 = 0.00244$ Measure θ_{13} via Accidentals Reactor flux uncertainty um-9 + Helium-Total systematic uncertainty Fast neutrons + s 1.1 Data / Predicted 0.25 MeV Best fit: $sin^2 2\theta_{13} = 0.090$ at ∧m² = 0.00244 eV² 8.3t Gd-doped DC-III (n-Gd) **8**t 1.0 Livetime: 467.90 days undoped liquid 10 DC-III (n-Gd) 0.8 Livetime: 467.90 days Detectors at ne
 - Far: 1115/998m, Near: 465/351m from reactors

8

10

Visible Energy (MeV)

12 14

16 18 20

- Reactors systematics errors >90% suppressed
- Near detector completed! Taking data since december
- After ~468 days of data (with far detector only):
 - $\sin^2 2\theta_{13} = 0.090^{+0.032} 0.029$

4

Visible Energy (MeV)

5

Reactor anti-*v* anomaly (I)

LLR Seminar - LLR - 23/03/2015

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

Indirect searches for DM

s of DM annihilation into SM particles

rge DM densities are expected

- Main results from HESS
 - 4x12m telescopes, 1x28m telescope
- No evidences so far even using updated DM models (flat in galactic core) Dwarf galaxies
 Inner galactic halo

halo

Giacomo Ortona

Collider searches for DN

- Tipical signature: Large MET
- No evidence in any channel so far
- "We can find DM in the range 100GeVx10^{±40} by 2012 or later" (putting dir/ ind/coll searches together)

- They can mislead to miss the MET signal
 - assumed growth of $\sigma \sim E^2/\Lambda^4 \ln$ models where $1/\Lambda^2 \approx g^2/M^2$, such growth stops at the mediator mass
- What we really would see at the LHC is the heavy mediator mass

Breaking the v floor

- WIMP and low-mass DM searches are quickly reaching the v floor limit
- There's still hope that we can go through
 - I. Reducing syst. unc. on fluxes
 - 2. Target complementarity
 - 3. Directional detection (cygnus vs sun)
 - Annual modulation (wimp: june, V: january) 4.

Giacomo Ortona

WIMP-nucleon cross

LLR Seminar - LLR - 23/03/2015

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

Higgs signal strengths (by decay)

- Comparable results between ATLAS/CMS
- Right on top of the Standard Model

Higgs signal strengths (by production)

- Again consisten with SM
 - 2σ fluctuations are not unexpected
- Experiments can play in many way to check particular combination of ratios (e.g.VBF)...
- But the take-home message is that so far SM holds beautifully

Higgs Kinematics

Production kinematics

Higgs width

- ATLAS is combining with WW as well
- At 95% CL: $\Gamma_{\rm H}/\Gamma_{\rm SM}$ < 4 (CMS) < 5.5 (ATLAS)

Higgs searches

- Rare/Exo
 - $H \rightarrow \mu \mu \sigma / \sigma_{SM} < 7 @ 95\% CL (Both)$
 - H→τµ: First direct limit (CMS) BR<0.75% (LFV channel)
- HH searches
 - In preparation for Run2, not possible in Run I
- All searches gave negative results so far

Giacomo Ortona

100

600

2015

800

10⁻¹

Giacomo Ortona

Higgs at the LHC: where we stand

- The sheer amount of results delivered by the LHC in the Higgs sector is astounding
 - Impossible to cover all of them even in dedicated talks
- The precision of the results is much higher than was foreseen before run l
 - Already with this amount of data, we are a factor ~2 from theoretical uncertainties
 - Now our theory colleagues will need a huge effort to reduce them
- So far measurements are in very good agreement with SM predictions
- Composite H searches have turned out empty so far
 - Theoreticians are keen to find H composite of fermions for naturalness BUT
 - How to get Yukawas from fermions? Drop L_{eff}?

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- **Top**
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

Overview

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

Global EWK fit

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

BSM Long-lived particles

- All "easy" or "fast" analyses already completed by Moriond2013
- Now looking in every corner we can with as much "ingenuity" as
 possible
- Search for Long-lived BSM particles is based on anomalous displaced vertex
- Or search for stable massive particle (de/dx)

Giacomo Ortona

(S)top-pair searches

- Stop-pair with small top-stop Δm ("compressed SUSY
- Very similar to tt events!
- Possible helps:
 - Increase in cross-section
 - Modified spin correlations

p

- Jet substructure analysis mandatory
- Set limits on Z' production

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

Top mass

- CMS claims the most precise single LHC measurement using lepton+jet
 - mt=172.0±0.2(stat)±0.8(syst)GeV
 - Very careful JES calibration
 - cross-check with b energy scale comparing events with Z+jet and Z+bjet

- But Tevatron combination is still slightly better
 - mt=174.34±0.37(stat)
 ±0.52(syst)GeV
- We should be more interested in Yt than m_t

Giacomo Ortona

Single top production

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- **T**op
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

CKM: y angle

- Dire $\Box = Belle: (68^{+17}_{-14})^{\circ}$
 - Belle: (68^{+16}_{-14}) - BaBacbY7799716, Belle 68+15-14
 - LHCb: $\left(73^{+9}_{-10}
 ight)^\circ$

Giacomo Ortona

•

• Still a long way to go before matching indirect measurement

CKM: IVubl

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- Тор
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

From K to Pseudo-Observables

- The k-factors (coupling deviations) framework only affects yields. Not suited for the study of deviations of SM which affect shapes
- Since the run2 LHC program is full of searches for such deviations (SUSY, composite scalar, top partners) a new framework is needed
- Wilson coefficients are an obvious choice, but too much deeply rooted in theory, difficult to find a clear relation with observables
- Proposed solution: Pseudo-Observables, which will depend on the EFT and the experimental signatures of a given process.
 - This means experimentalists and theorists MUST work closely together to define the appropriate PO
- PO might be form factors, or parameters of DATA-MC discrepancies fits

LHC plans

- 2015 plans:
- 6.5TeV, 25ns, 40<β*<80cm
- Energy issues:
 - Lower quench margins, tolerance to beam loss, intensity set-up beams, Hardware closer to maximum (beam dumps, power converters...)
- Bunch spacing issues:
 - Electron-cloud, UFOs, more long range collisions, larger crossing angles, higher β*, beam current

- Ramp the current until single magnet quenches - "training quench"
- Repeat as necessary
- No magnet quenched more than once

Outline

- Neutrinos
- Dark matter
- Scalar sector
- Standard Model
- BSM
- **Top**
- Heavy Flavours
- Miscellanea
- Prize winners: Higgs mass and LHCb $B \rightarrow K^* \mu \mu$

Silver medal: CMS+ATLAS Higgs mass

CMS

Precise mass determination possible in 2 channels:

- 4I and YY
- All other channels have V or hadrons in final state

Comparable results among the 2 experiments

Lot of work to properly assess/correlate/quantify all the systematics in the 2 experiments in order to combine properly the likelihoods.

Silver medal: CMS+ATLAS Higgs mass

- mH=125.09±0.21(stat)±0.11(syst) GeV
- 0.19% precision! Among the most precise parameters of the EWK fit
- Systematics dominated by energy/momentum scale corrections (dominated by the available statistics)
- Tensions mostly within experiments, no indications of channel dependencies

 $\overline{K}^{*0} \rightarrow K^{-}\pi^{+}$

Z

*****π**+**

• Significant signal observed in all q² bins

- P'5 is a combination of the fitted angular distributions for which hadronic form factors uncertainties should be small
- Discrepancy SM/Data in $4 < q^2 < 8$ bins is about 3.7σ

- J. Matias and D. Straub ran (independently) a global fit of the SM and compared it with LHCb data, adding Wilson coefficients for NP in the fit
 - $\chi^2_{SM} = 116.9/88 \ (p=2.14\%)$
 - χ^2_{SM} =125.8/91 (p=0.92%) when including b→se⁺e⁻
- BSM with NP in C^{NP_9} preferred wrt SM by 3.7 σ , 4.3 σ when including b \rightarrow se⁺e⁻
- C^{NP}₉ is linked to LFUV theories
- QCD effects (charm loops) can mimic this. If it is NP than it should be q² independent

Conclusions

- An extremely rich physics program has been presented at Moriond this year
 - Great results on several topics: neutrinos, flavour physics, theory, standard model...
 - Unfortunately I couldn't put in everything, but I hope you enjoyed this presentation
- High expectations for LHC run2 and for HL-LHC
- Two especially impressive results:
 - from CMS/ATLAS the final h mass combination
 - from LHCb a 4.3 σ SM incompatibility in B \rightarrow K^{*} $\mu\mu$

Comments

- SM looks as solid as ever (despite LHCb efforts)
- Some roads left:
 - 3 TeV SUSY, Z', flavour violation are still well in the game
- The experiments are delivering impressive results, but the theory seems to have difficulties to keep the pace
 - IMHO, we are headed again for an experiment driven period
 - Suggestions that adimensional gravity with g_{gravity} reaching a plateau before 10¹¹GeV might solve naturalness
 - Higgs fluctuation during inflation might give baryogenesys
 - Vacuum metastability does not depends on M_t/M_H alone
- EFT are the latest development, but might not be the best way out
 - Not clear how you can get at the same time FV and Yukawa couplings

BACKUP

ν (and DM) detectors common $n_{p,n} f(z_n)^2(\varepsilon_f) [P_{sur}(E,L_{GMS})]^2(\varepsilon_f)$

- Deep underground
- Active/Passive shielding around active volume
- Fiducial volume to select fully contained events
- extremely high radio radiopurity
- Coincidence from more than I detection technique for signal
 - Ionization, Cherenkov light, phonons, scintillation light...

IceCube

Inverse Beta Decay (IBD): $\overline{v}_e + p \rightarrow e^+ + n$ $+H \rightarrow D e^+ \gamma p \rightarrow e^+ + n$ $+Gd \rightarrow Gd^* \rightarrow Gd + \gamma + Gd \rightarrow Gd^* \rightarrow Gd + \gamma's 8 MeV 30 \ \mu s$

Uncertainties on expected flux

- These are really difficult calculations
 - Impossible to decide which one is better on theoretical grounds alone
 - Quoted syst. are underestimated by ~2. This can cover the anomaly
- Need for new experiments (such as PROSPECT, SOLID, NUCIFER, STEREO)
 - Until new data, claims for V_s on this basis should be rejected

IMS

Planck

BSM status

BSM status

Extra dimensions

Gauge bosons

5

DM

ĽQ

Excited

Other

*Only a selection of the available mass limits on new states or phenomena is shown.

Giacomo Ortona

60

LLR Seminar - LLR - 23/03/2015

Multi-Boson scattering

Issue: NLO EWK corrections are (in most cases) not available

Their effect is larger at high pt, exactly where data are most sensitive for anomalous couplings effects

Giacomo Ortona

62

LLR Seminar - LLR - 23/03/2015

Coeff.	best fit	1σ	2σ	$\sqrt{\chi^2_{\rm b.f.}-\chi^2_{\rm SM}}$	p[%]
$C_7^{\sf NP}$	-0.04	[-0.07, -0.02]	[-0.10, 0.01]	1.52	1.1
C_7'	0.00	[-0.05, 0.06]	[-0.11, 0.11]	0.05	0.8
$C_9^{\sf NP}$	-1.12	[-1.34, -0.88]	[-1.55, -0.63]	4.33	10.6
C_9'	-0.04	[-0.26, 0.18]	[-0.49, 0.40]	0.18	0.8
C_{10}^{NP}	0.65	[0.40, 0.91]	[0.17, 1.19]	2.75	2.5
C_{10}^{\prime}	-0.01	[-0.19, 0.16]	[-0.36, 0.33]	0.09	0.8
$C_9^{ m NP}=C_{10}^{ m NP}$	-0.20	[-0.41, 0.05]	[-0.60, 0.33]	0.82	0.8
$C_9^{ m NP}=-C_{10}^{ m NP}$	-0.57	[-0.73, -0.41]	[-0.90, -0.27]	3.88	6.8
$C_9^\prime = C_{10}^\prime$	-0.08	[-0.33, 0.17]	[-0.58, 0.41]	0.32	0.8
$C_{9}' = -C_{10}'$	-0.00	[-0.11, 0.10]	[-0.22, 0.20]	0.03	0.8

 $\chi^2_{\rm SM} =$ 125.8 for 91 measurements (p = 0.92 %)

• Most of the discrepancy in C^{NP}_{9} , linked to LFV!

Top asymmetries

- Lot of interest for top asymmetries, since preliminary Tevatron results showed deviations from the SM
- Impossible to study top asymmetries at the LHC
- Tevatron leads in this study
- Full Tevatron dataset agrees with (N)NLO predictions

Results from Borexino

Giacomo Ortona

LLR Seminar - LLR - 23/03/2015

IMS

Vacuum Stability

Precision measurements of M_t (and M_H) cannot discriminate between stability, metastability or criticality ... The knowledge of M_t and M_H alone is **not sufficient** to decide of the EW vacuum stability condition. We need informations on NEW PHYSICS in order to asses this question ...

Giacomo Ortona

v θ measurement

1. $\nu_{\mu} \rightarrow \nu_{e}$ appearance in accelerator beam (T2K, NO ν A)

$$P_{\nu\mu\to\nu_{e}} \approx \sin^{2}\theta_{23} \sin^{2} 2\theta_{13} \frac{\sin^{2}[(1-x)\Delta_{31}]}{(1-x)^{2}} \\ + \alpha^{2} \cos^{2}\theta_{23} \sin^{2} 2\theta_{12} \frac{\sin^{2}(x\Delta_{31})}{x^{2}} \\ + \alpha \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \frac{\sin^{2}(x\Delta_{31})}{x^{2}} \frac{\sin^{2}[(1-x)\Delta_{31}]}{(1-x)^{2}} \\ \times (\cos \Delta_{31} \cos \delta_{CP} - \sin \Delta_{31} \sin \delta_{CP})$$

Giacomo Ortona

IMS