

38th INTERNATIONAL CONFERENCE ON HIGH ENERGY PHYSICS

> AUGUST 3 - 10, 2016 CHICAGO

Searches for double Higgs production or decay using the CMS detector

Giacomo Ortona¹, for the CMS collaboration

¹Laboratoire Leprince-Ringuet, CNRS

- I. Introduction
- 2. Double Higgs searches in CMS:
 - A. bbyy
 - B. bbbb
 - C. bbWW
 - D. $bb\tau\tau$
- 3. Results and Conclusions

Motivations: Resonant searches

MSSM/2HDM: Additional Higgs doublet \rightarrow CP-even scalar H.

• We can probe the low m_A /low tan β region where BR(H \rightarrow h(125)h(125)) is sizeable.

Singlet model: Additional Higgs singlet with an extra scalar H.

• Sizeable BR beyond $2 \times m_{top}$, non negligible width at high m_H.

Warped Extra Dimensions:

spin-2 (KK-graviton) and spin-0 (radion) resonances.

• Different phenomenology if SM particles are allowed (bulk RS) or not (RSI model) in the extra dimensional bulk

Motivations: Non-resonant searches

 $\sigma^{SM}_{hh}(13\text{TeV}) = 33.45\text{fb}^{+4.3\%}_{-6.0\%}(\text{scale unc.}) \pm 3.1\%(\text{PDF}+\alpha_{S} \text{ unc})^{[1]}$

The non-resonant double Higgs production allows to directly probe the Higgs trilinear coupling (λ_{hhh}). Even if in Run2 we not have full sensitivity to "measure" SM λ_{hhh}

 \rightarrow The BSM physics can be modelled in EFT adding dim-6 operators^[2] to the SM Lagrangian, and the physics can be described with 5 parameters: λ_{hhh} , y_t, c₂, c_g, c_g

- Non SM top Yukawa and λ_{hhh} couplings
- New diagrams and couplings in the game

[1] LHCHXSWG Yellow Report 4 [2] Phys. Rev. D91 (2015), no. 11, 115008

CMS searches

- 4 different searches presented today:
 - bbbb, bbWW, bbau au, bb $\gamma\gamma$
- At least one h \rightarrow bb to have large enough BR
- Rare processes, low σ , complex environment
- Resonant and non-resonant searches performed in Run1 and Run2
 Run1:
 - bbbb Resonant: PLB 749 (2015) 560, arXiv:1602:08762
 - bb $\tau\tau$ Resonant: PLB 755 (2016) 217, PAS-EXO-15-008 Non-resonant PAS-HIG-15-013
 - bby γ Resonant and Non-resonant: <code>arxiv:1603.06896</code>
- Run2:
 - bbbb Resonant: PAS-HIG-16-002, PAS-B2G-16-008
 - - bbWW Resonant PAS-HIG-16-011, Non-resonant: PAS-HIG-16-024

I will focus on the results at $\sqrt{s} = I3TeV$

Giacomo Ortona

5

Searches: how and where

- 3 Datasets used for this presentation:
- Run I, $\sqrt{s}=8$ TeV, $\mathscr{L}=17.9-19.7$ fb⁻¹
- Run2, 2015, \sqrt{s} =13 TeV, \mathscr{L} =2.3-2.7 fb⁻¹
- Run2, 2016, \sqrt{s} =13 TeV, \mathscr{L} =12.9 fb⁻¹
- B-tagging algorithm to identify b-jets from jet constituents
- CSVv2: Based on displaced tracks+secondary vertexes MVA^[1]
- At high $m_H \rightarrow boosted regime \rightarrow merged jets$
- Reconstruction using substructure information for jets, b-tag
- bbbb, bbau au channels
- Trade-off between BR and contamination, complementarity among channels
- bbbb: highest BR, high QCD/tt contamination
- bbWW: high BR, large irreducible $t\overline{t}$ background
- $bb\tau\tau$: relatively low background and BR
- bbγγ: high purity, very low BR

[1]JINST 8(2013) P04013

0.6 fb⁻¹, √s=13 TeV,

hh \rightarrow bb $\gamma\gamma$: run1 results

hh→bbbb

b-tagging at trigger level, \geq 4 b-jets offline

Low Mass Region (m_H<400) and High Mass Region (400<m_H<1200) studied separately

Background shape estimation from data in LMR, HMR-

2 analysis strategies:

double b-tagger: BDT from jet properties + background estimation from multiple sidebands
subjet b-tag: background fit + 3 categories based on number of b-tagged sub-jets

ICHEP2016 - Chicago - 05/08/2016

Giacomo Ortona

hh→bbbb: results

No evidence for the presence of new resonances so far over large mass range Sensitive to Radion (below 2TeV) and Graviton production (below 800GeV) Boosted analysis:

- double b-tagger: at low/high mass
- sub-jets b-tagging: for 1200<mH<2000 GeV

hh→bbWW

- Search for $hh \rightarrow bbWW \rightarrow bb2l2\nu$.
- 2 isolated OS leptons + 2 b-jets in the final state
- 2015 dataset at $\sqrt{s=13}$ TeV
- Final BR for $bb2l2\nu$ final state: 1.22%
- Main backgrounds: $t\overline{t}$, DY, single top
- 2 BDT discriminants (h masses, angles, transverse mass) to separate signal from background at low (m_H <450) and high mass (m_H >450). Optimised for m_H =400 and m_H =650. I single BDT trained for non-resonant searches.
- Resonant: cut&count experiment in 4 categories: (m_{bb}-peak,m_{bb}-sidebands) x (low BDT, high BDT)
- Non resonant: 2D fit in [m(bb), BDT score] to extract the limits

Giacomo Ortona

hh→bbWW: results

11

CMS Preliminary

2.30 fb⁻¹ (13 TeV)

Spin-2 RSI KK-graviton excluded below 600 GeV

Non-resonant analysis sensitive to $O(400 \times SM)$

ICHEP2016 - Chicago - 05/08/2016

Giacomo Ortona

hh→bbττ

CMS

- Intermediate BR, fully reconstructed final state
- $|\tau_{H}+|$ isolated leptons (e, μ, τ_{H})+2 b-jets in the final state
- 3 final states: $e\tau_H$, $\mu\tau_H$, $\tau_H\tau_H$
- Main bkgs: tt (from MC), QCD multijet (from data in control regions)

Resonant search:

Limit extraction on kinematic fit of the 4-body invariant mass; 3 categories: I bjet, 2bjet, boosted b-jets category

Non-resonant analysis:

- kinematic BDT discriminant to reduce tt, only angular information
- visible mass as final variable

Only results on 2016 data shown. Results with 2015 data: CMS-PAS-HIG-012 CMS-PAS-HIG-013

Giacomo Ortona

hh \rightarrow bb $\tau\tau$: results

Giacomo Ortona

Non resonant limits starts to make dents in part of the 5D EFT model phase space No significant excess observed in the resonant analysis

13

Summary of Run1 results

CCMS pouge unit index

- Several analysis performed at CMS
- Coverage ranges from $2 \times m_h$ to few TeVs
- hMSSM: Effective MSSM model with $m_h = m_{H0}^{[1]}$
- $H \rightarrow hh$ searches are providing an important coverage of the low m_A /low tan β region

14

Summary of Run2 results

$hh \rightarrow bbWW \rightarrow bb2l2\nu$: 2015 data

(2.3/fb) at $\sqrt{s}=13$ TeV

 2 mass regions, optimised for mH=400 and mH=650

hh \rightarrow bbbb: 2015 data (2.3/fb) at $\sqrt{s}=13 \text{ TeV}$

 Boosted regime not shown $hh \rightarrow bb\tau\tau$: 2016 data (12.9/fb) at $\sqrt{s}=13 \text{ TeV}$

Non-resonant production exclusion

- Several competing analyses in different final states under study in CMS, providing excellent coverage in different decay modes.
- Non resonant double Higgs production is the main way to measure Higgs self-coupling.
 - At the moment, we can probe O(10-100xSM). Much larger luminosity is needed to reach SM sensitivity, but we are starting to probe BSM and to constraint exotic BSM
- Resonant searches can already provide important constrain on BSM physics (MSSM, WED, heavy scalars).
 - KK-graviton excluded below 800 GeV, Λ_R = 1 TeV Radion below 2 TeV
- Further improvement awaited with end-of-the-year luminosity and the combination of the results among all channels

Exciting prospects for double Higgs searches

BACKUP

gg→hh parametrization

The relevant lagrangian terms of gg \rightarrow HH production in D=6 EFT

$$\mathcal{L}_{hh} = -\frac{m_h^2}{2v} \left(1 - \frac{3}{2}c_H + c_6\right) h^3 + \frac{\alpha_s c_g}{4\pi} \left(\frac{h}{v} + \frac{h^2}{2v^2}\right) G^a_{\mu\nu} G^{\mu\nu}_a$$
$$- \left[\frac{m_t}{v} \left(1 - \frac{c_H}{2} + c_t\right) \bar{t}_L t_R h + \text{h.c.}\right] - \left[\frac{m_t}{v^2} \left(\frac{3c_t}{2} - \frac{c_H}{2}\right) \bar{t}_L t_R h^2 + \text{h.c.}\right]$$
arXiv:1410.3471

An EFT implementation for hh

The double Higgs production cross $R_{hh} \equiv \frac{\sigma_{hh}}{\sigma_{hh}^{SM}}$ section can be written as a function of the 5 EFT parameters: λ_{hhh} , y_t , c_2 , c_{2g} , c_g

 $= A_1 \kappa_t^4 + A_2 c_2^2 + (A_3 \kappa_t^2 + A_4 c_g^2) \kappa_\lambda^2 + A_5 c_{2g}^2 + (A_6 c_2 + A_7 \kappa_t \kappa_\lambda) \kappa_t^2$

 $\begin{aligned} &+(A_8\kappa_t\kappa_\lambda+A_9c_g\kappa_\lambda)c_2+A_{10}c_2c_{2g}+(A_{11}c_g\kappa_\lambda+A_{12}c_{2g})\kappa_t^2\\ &+(A_{13}\kappa_\lambda c_g+A_{14}c_{2g})\kappa_t\kappa_\lambda+A_{15}c_gc_{2g}\kappa_\lambda\,. \end{aligned}$

JHEP 04 (2016) 126

Each point of the phase space can be mapped by means of its cross-section and representative shape

2D (M_{HH},cos ϑ^*) signal shapes from different points in the 5D EFT phase space are clustered together.

12 clusters are identified according to we there kinematical properties

Inside each cluster, a representative shape is identified, as the one with the minimum distance (in the test statistics) from all other shapes in the cluster

hh→bbγγ

- Lowest BR of all channels considered, but excellent resolution on $m\gamma\gamma$
- Selection: $p_T^{\gamma I}/m_{\gamma \gamma} < I/3$, $p_T^{\gamma 2}/m_{\gamma \gamma} < I/4$ + mass cuts
- Two categories: I b-jet (low purity category), ≥ 2 b-tagged jets (high purity)
- Different signal regions at low and high mass
- m_H<400 GeV: b-jet regression + 2D signal fit extraction based on $(m_{ii}, m_{\gamma\gamma})$ 19.7 fb⁻¹ (8 TeV Ge CMS $pp \rightarrow X \rightarrow HH \rightarrow \gamma\gamma bb$ 12 • 400<m_H<1100 GeV: GeV Medium-purity 35 CMS Events / 20 🔶 Data 🛛 — Background model kinematic fit of the 10 68% CL 95% CL 30 4-body invariant mass Events 20 Non-resonant analysis: 15 10 2 b-tag cat. X 2 cat. myy • $m_{\gamma\gamma} < 350 \&\& |\cos \vartheta^{CS}| < 0.65$ 400 500 600 700 800 900 1000 1100 120 m^{kin}_{yyii} (GeV) 0 60 • mγγ >350 && |cosϑ^{CS}|<0.9

hh→bbγγ

- Lowest BR of all channels considered, but excellent resolution on $m\gamma\gamma$
- Selection: $p_T^{\gamma I}/m_{\gamma \gamma} < I/3$, $p_T^{\gamma 2}/m_{\gamma \gamma} < I/4$ + mass cuts
- Two categories: Ib-jet (low purity category), ≥ 2 btagged jets (high purity)
- Different signal regions at low and high mass
- m_H <400 GeV: b-jet regression + 2D signal fit extraction based on (m_{jj} , $m_{\gamma\gamma}$)
- 400<m_H<1100 GeV: kinematic fit of the 4-body invariant mass

Non-resonant analysis:

2 b-tag cat. X 2 cat. $m\gamma\gamma$ • $m\gamma\gamma < 350 \&\& |\cos\vartheta^{CS}| < 0.65$ • $m\gamma\gamma > 350 \&\& |\cos\vartheta^{CS}| < 0.9$

Signal hypothesis	Select	# categories	Fit
(1) $m_X \le 400 \text{GeV}$	$m_{\gamma\gamma m jj}^{ m kin}$	2 (b tags)	$m_{\gamma\gamma}, m_{jj}$
(2) $m_X \ge 400 \text{GeV}$	$m_{\gamma\gamma}, m_{\rm jj}$	2 (b tags)	$m^{ m kin}_{\gamma\gamma m jj}$
(3) Nonresonant	$\left \cos\theta_{\mathrm{HH}}^{\mathrm{CS}}\right $	4 (b tags, $m_{\gamma\gamma jj}^{\rm kin}$)	$m_{\gamma\gamma}, m_{jj}$

Photons		Jets		
Variable	Range	Variable	Range	
$p_{\mathrm{T}}^{\gamma 1}/m_{\gamma \gamma}$	>1/3	$p_{\rm T}^{\rm j}$ (GeV)	>25	
$p_{\mathrm{T}}^{\gamma 2}/m_{\gamma \gamma}$	>1/4			
$ \eta_{\gamma} $	<2.5	$ \eta_{\mathrm{j}} $	<2.4	
$m_{\gamma\gamma}$ (GeV)	[100, 180]	m _{jj} (GeV)	[60, 180]	
		b-tagged jets	>0	

