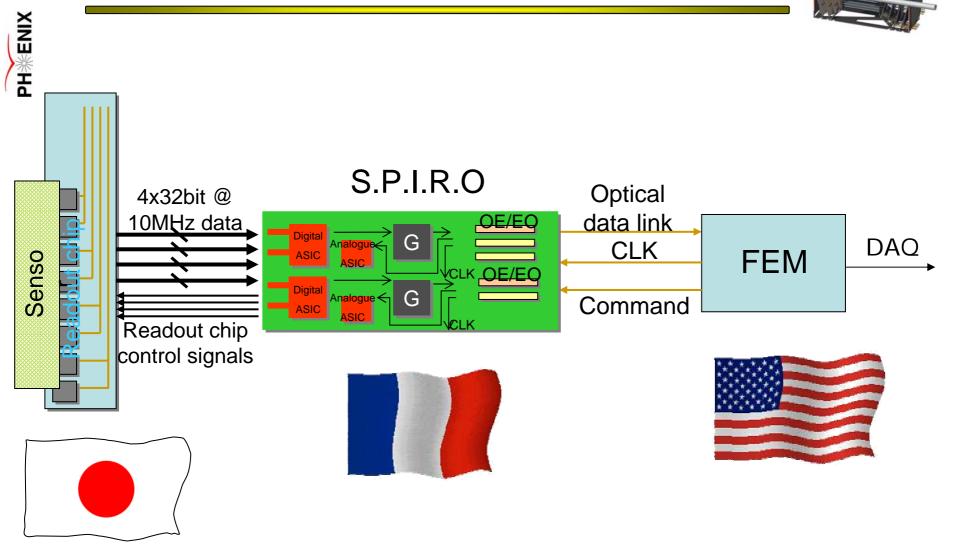


Projet S.P. R.O

Franck GASTALDI

Journées RHIC France - 28 juin 2005

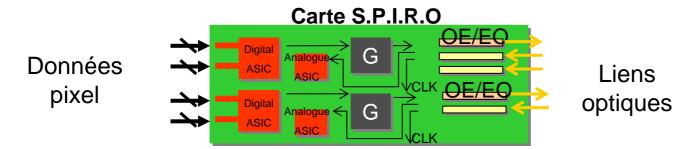

Plan

- Caractéristiques de la carte S.P.I.R.O
- Conception du prototype I
- Banc de tests
- Conception du prototype II
- État d'avancement
- Calendrier
- État des contributions extérieures au LLR :
 - ☐ La mécanique,
 - Les pixels,
 - Le bus pixel,
 - Les FEM

Chaîne électronique

PH*ENIX LM

Caractéristiques de la carte S.P.I.R.O (1/3)



- S.P.I.R.O signifie Silicon Pixel Interface Read-Out
- S.P.I.R.O est situé proche des échelles et éloigné des FEMs.
- Nous devons produire 100 cartes (60 + 40 spares)
- Principales fonctions
 - Recevoir les données des échelles de pixels
 - Lecture d'une ½ échelle soit 8x (256x32) = 65536 voies/carte
 - Organiser les données au format PHENIX
 - Transmettre les données via fibres optiques
- Caractéristiques électriques
 - 4x32 bits @10MHz (données)
 - 2 liens optiques @ 1.6Gbits/s
 - 2 liens commandes optiques
 - 1 lien optique horloge (40 MHz)

Caractéristiques de la carte S.P.I.R.O (2/3)

- Composants principaux
 - ASIC numérique
 - ☐ Envoie les commandes vers les ASICs de lecture des pixels
 - ☐ Reçoit les données de ces mêmes ASICs
 - ☐ Met en forme les données pour les transmettre via liens optiques
 - Composant GOL (Gigabit Optical Link)
 - ☐ Transmet les données à 1.6 Gbit/s
 - ASIC analogique
 - ☐ Fournit les tensions de référence vers les ASICs de lecture des pixels
 - Modules optique
 - ☐ Diode laser (VCSEL) pour l'émission
 - □ Diode PIN pour recevoir les commandes et l'horloge issues des FEMs

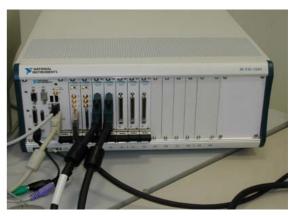
Caractéristiques de la carte S.P.I.R.O (3/3)

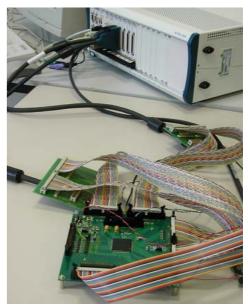
- Les défis de S.P.I.R.O.
 - ■La carte doit être la plus petite possible
 - ☐ Taille optimale: 10x15 cm doit tendre vers 10x10 cm
 - ☐ Haute fiabilité car une carte gère 64536 canaux et maintenance difficile (Shut-Down pour maintenance)
 - ☐ Faible bruit
- Production de 6 cartes du type prototype I
 - □3 Japon, 1 USA, 2 LLR

Conception du prototype - I

- □ Le Prototype I avec ASIC numérique d'ALICE
 - ☐ Cet ASIC ne remplit pas le cahier des charges de PHENIX
 - Champs dans le format de données
 - Signaux de contrôle par rapport au protocole envisagé (Ethernet)
- Programmation d'un FPGA répondant aux fonctionnalités manquantes :
 - Champs avec calcul de parité et compteur de trigger
 - ☐ Envoi des signaux de contrôle du GOL pour un codage 8b/10b
- Concevoir un PCB le plus proche possible de la version finale

Banc de tests (1/2)




- Objectifs :
 - Concevoir un banc de tests pour l'ensemble des prototypes et la production
 - ☐ Tests de qualifications des liens optiques (taux d'erreur, jitter)
- Moyens:
 - Un générateur de signaux simulant les données pixel et de commandes
 - Un système pour l'acquisition
 - Un système pour les liens optiques

Banc de tests (2/2)

- Solutions
 - Pour le générateur de signaux
 Nous utiliserons une solution commerciale
 PXI de National Instruments
 - □ Pour le lien optique Nous utiliserons une carte d'évaluation contenant un FPGA avec transceiver optique
- État actuel
 - Le châssis PXI est au LLR depuis mai
 - Les premiers tests ont été effectués sur l'ASIC numérique version I
 - Les premières commandes ont été décodées

Conception du prototype - II

Avant production finale

- Conception de la carte avec l'ASIC version II
 - Calcul de la parité
 - Compteur de trigger
 - Signaux de contrôle du GOL
- Pas de FPGA sur cette carte
- Conception du PCB avec ses dimensions finales

Plan B :

En cas de problèmes majeurs de fonctionnement, nous envisagerons une solution « tout FPGA »

Où en sommes-nous?

- Banc de tests présent au LLR
- Les composants de la carte sont en saisie librairie pour la schématique
- Un premier pré-positionnement est en cours, les dimensions finales pourraient d'ores et déjà être atteintes
- Le FPGA a été sélectionné
- Le code VHDL est en développement
- L'ASIC version I est sous tests

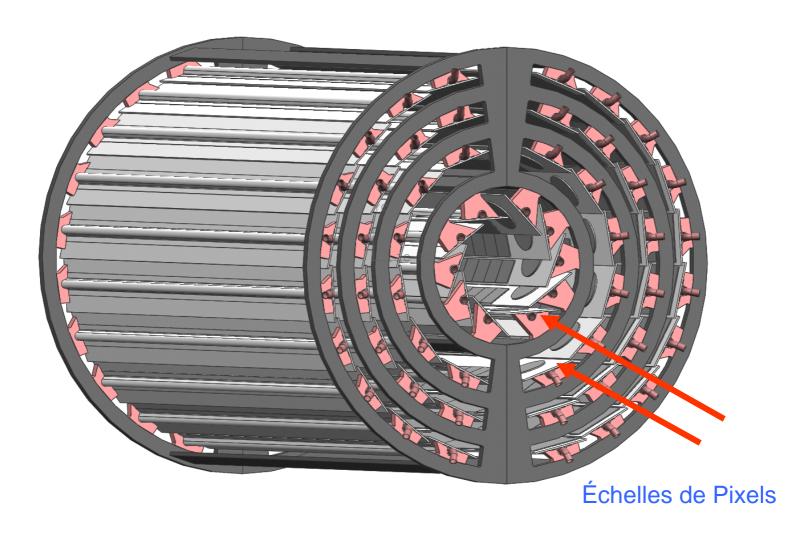
Que reste-t-il à faire ?

Prochains mois ou en cours

- Prototype I
 - ☐ Finir la schématique de la carte
 - Simuler le FPGA
 - Démarrer la conception de la carte
 - Sélectionner les composants optiques et le type de connecteur
- Banc de tests
 - Continuer la mise en œuvre du banc de tests
 - Informatique de pilotage
 - Développement du contenu du FPGA pour qualification du lien optique
- Choix du sous-traitant pour la fabrication et le câblage du prototype I (6 cartes à fabriquer)
- Réception des composants fournis par le Japon via le CERN

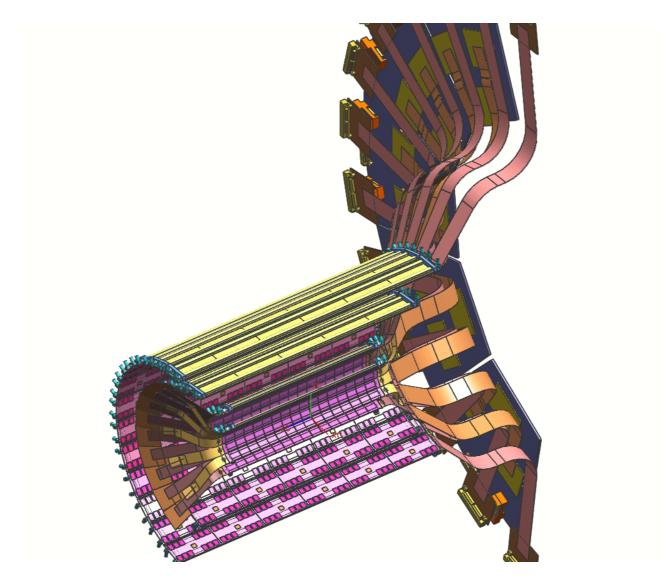
Calendrier

Fév. – Juil. 2005	Conception du prototype I
JuilSept. 2005	Production de 6 cartes
Sept. 2005	Premier test de S.P.I.R.O
Oct. 2005	Tests en cosmiques avec 3 échelles (3 S.P.I.R.O au Japon) Tests FEM (1 S.P.I.R.O , USA)
Nov. 2005	Conception du prototype II avec l'ASIC version II
Début 2006	Test en faisceau au KEK
Jan. 2006	Production des cartes version II
Fev. 2006	Premier test de S.P.I.R.O version II
~ Mi 2006	Début de la production des 100 cartes

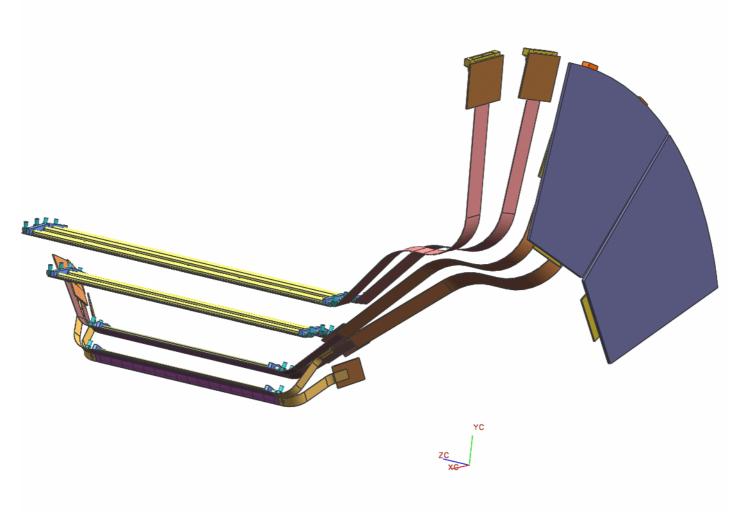

État d'avancement dans la collaboration

- □ La mécanique
- Les pixels
- Le bus pixel
- Le FEM

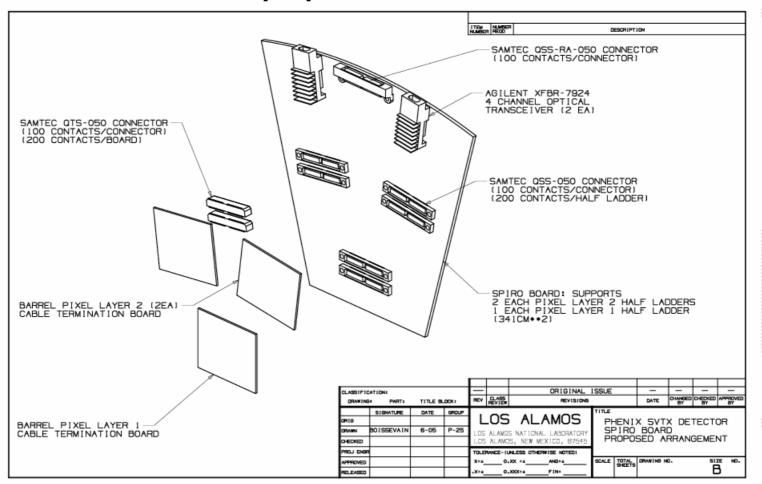
La mécanique (Los Alamos)



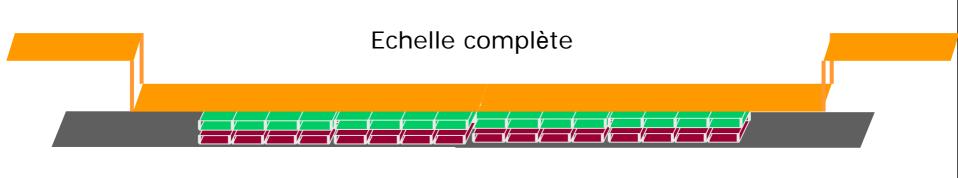
La chaîne de lecture



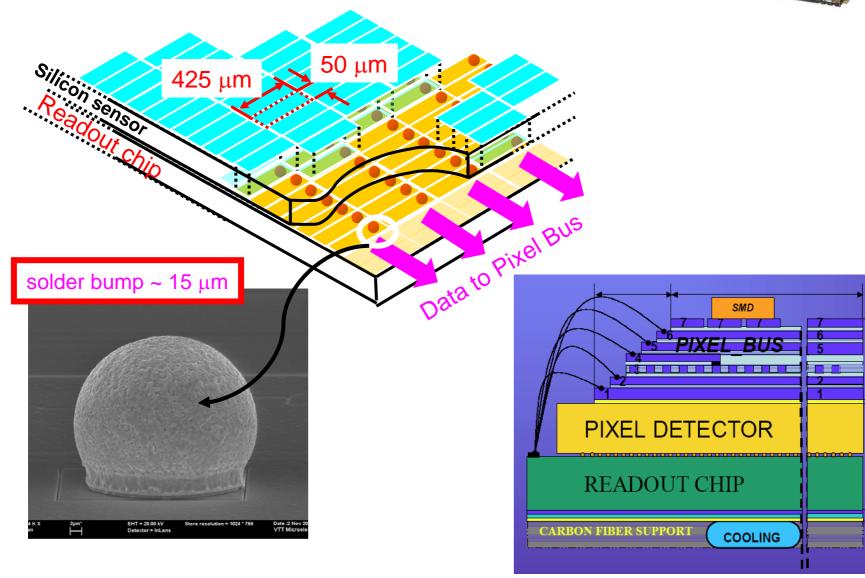
Échelle – bus – support S.P.I.R.O



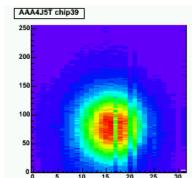
Support et emplacement des cartes S.P.I.R.O

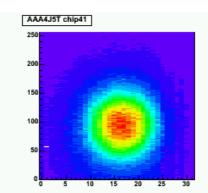

Ceci est une proposition de Los Alamos

LES PIXELS (RIKEN)

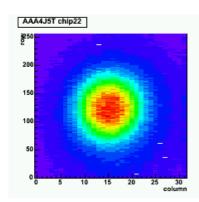


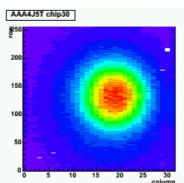
- Fin mars, 2 échelles ont été livrées au CERN
 - testées et fonctionnelles
- Fin juin, 8 seront disponibles
- Fin 2005, 12 seront disponibles
- Le planning 2006 sera évoqué en septembre 2005

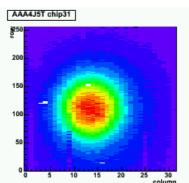

Aperçu du collage et du bump bonding

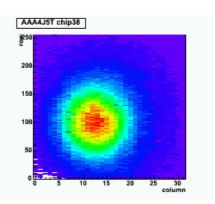


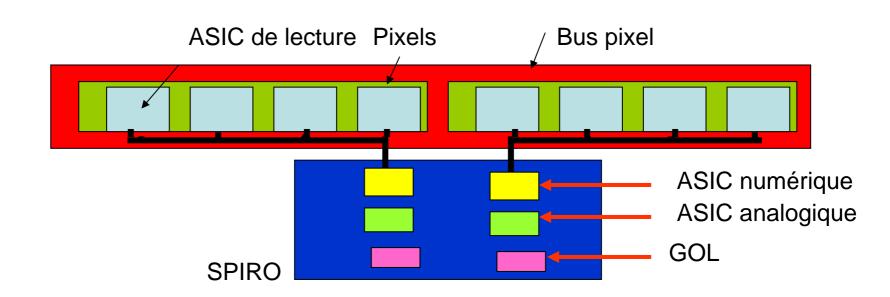

Tests de 2 échelles avec une source à RIKEN





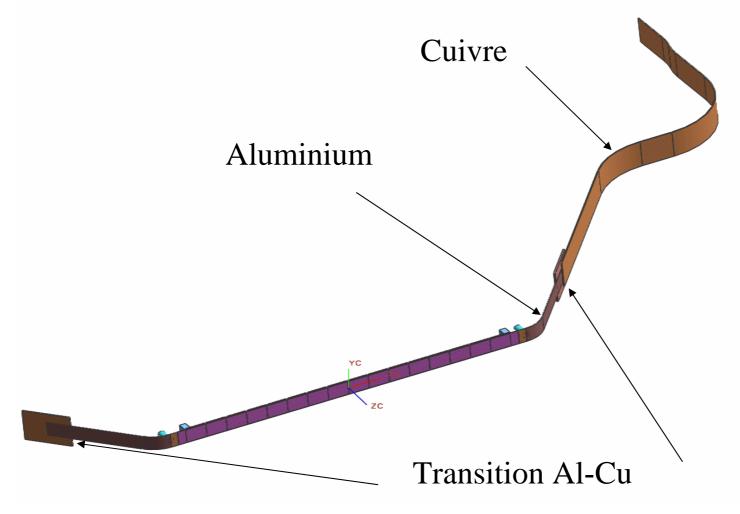






Journées RHIC France Franck GASTALDI

Conception du bus pixel (RIKEN)


- Largeur du bus 15mm
- Longueur 10cm (pixel) + 15cm(extension)
- Bus Cu fabriqué ce mois-ci
- Bus Al fabriqué par la suite
- ☐ HT (<100V) est isolée des autres lignes

Ensemble bus pixel connecté sur une échelle

FEM (Front End Module) (StonyBrook)

Présentation de Harry Thermann au BNL June vertex meeting

- Code du FPGA en développement pour réception 1.6Gb/s
- Extraction du trigger par "Fast Or"
- Interface avec S.P.I.R.O
- Planning:

Conception PCB début Jun. 22, 2005

Fabrication Sep. 12, 2005

Tests Oct. 5, 2005

Interface avec SPIRO Oct. 17, 2005

- Cahier des charges
 - ☐ Fiabilité maximum pour une taille minimum
 - Campagne de tests importante
- Délais à respecter pour le prototype I
 - Valider le fonctionnement de la carte
 - Permettre le test préliminaire du FEM des Américains
 - ☐ Permettre le test des échelles et du bus pixel des Japonais
- Très bonne collaboration triangulaire : Japon, France, USA