ALICE Heavy Flavor Measurements

Zaida Conesa del Valle (IPN Orsay, CNRS-IN2P3, Université Paris-Sud) Heavy Ion Meeting - 24th of October 2013

- * This will not be:
 - An exhaustive review
 - About analysis details

- * This will not be:
 - An exhaustive review
 - About analysis details
- * This will be about:
 - (short) Introduction
 - (biased) Highlights
 - PPb and PbPb data (+ 2 pp slides)

- * This will not be:
 - An exhaustive review
 - About analysis details
- * This will be about:
 - (short) Introduction
 - (biased) Highlights
 - PPb and PbPb data (+ 2 pp slides)
- * The keywords:
 - Charm, beauty
 - Electrons, muons, D^0 , D^+ , D^{*+} , D_s^+ mesons (+ non-prompt J/ψ as extra)
 - Nuclear modification factor
 - Azimuthal anisotropy
 - Models

Z. Conesa del Valle

Introduction

HEAVY QUARKS AS QGP PROBES

- Production in nucleon-nucleon collisions
 - Production time tp ~ 0.05 0.15 fm/c
 - Tool to test pQCD calculations
- * Nuclear medium influence: p-A collisions
 - Shadowing (PDF modifications in nuclei) and Gluon saturation
 - Tool to study high density small-x gluons
- * Effects in a QGP: A-B collisions
 - Energy loss in the QGP (high pt)
 - Thermalisation in the QGP (low pt)
 - Probe of the QCD medium

[Dokshitzer and Kharzeev, PLB 519 (2001) 199. Armesto, Salgado, Wiedemann, PRD 69 (2004) 114003. Djordjevic, Gyulassy, Horowitz, Wicks, NPA 783 (2007) 493...]

Z. Conesa del Valle

EXPERIMENTALLY, HOW ?

... THE MEASUREMENTS

* In proton-proton collisions...

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	v	v	v			
B-decay electrons	v		v			
HF muons	v		v			
D ⁰ , D ⁺ , D ^{*+}		v	v	v	✓	 ✓
D _s +			v	v	✓	 ✓
B→J/ψ			v	v	✓	 ✓
B hadrons				v	✓	 ✓
B jets				?	✓	

* In heavy-ion collisions...

	PHENIX	STAR	ALICE	ATLAS	CMS	LHCb
HF electrons	v	v	v			
B-decay electrons						
HF muons	~		 ✓ 	v	 ✓ 	
D ⁰ , D ⁺ , D ^{*+}		v	 ✓ 			
D_{s}^{+}			 ✓ 			
B→J/ψ					v	
B hadrons						
B jets					 Image: A set of the set of the	

Proton-proton Results $\sqrt{s} = 2.76$ TeV and $\sqrt{s} = 7$ TeV

Production in hard partonic collisions

• Production time $\tau_p \sim 1/m_Q \sim 0.05 - 0.15$ fm/c

 \Rightarrow Tool to test pQCD calculations

CHARM & BEAUTY CROSS SECTIONS

- Their cross section evolution with $\int s$ is well described by pQCD.
- ~560 μb × 950 collisions / 42mb ~ 13 cc pairs in 0-10% AuAu at 200 GeV
- → ~5 mb × 1500 collisions / 65mb ~ 115 cc pairs in 0-10% PbPb at 2.76 TeV

CHARM(ONIA) MULTIPLICITY DEPENDENCE

- Charged particle multiplicity in high-multiplicity pp collisions at 7 TeV is larger than the multiplicity in the peripheral CuCu collisions at 200 GeV
- * Similar increase of prompt-D and J/ψ production vs multiplicity
- * No clear p_T dependence on the prompt-D relative yields vs multiplicity
- * Hints for multi-parton interactions at a hard scale in pp collisions

[ALICE Coll, Phys.Lett.B712 (2012) 165-175]

[B.Alveretal (PHOBOS Coll.), Phys.Rev.C83,024913(2011).]

Z. Conesa del Valle

p-Pb Results $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Effects in a nuclear medium: A-B collisions

- Shadowing
 - Impact parameter dependence of nPDFs?
- Saturation

\Rightarrow Tool to probe high density small-x gluons

 $\Rightarrow \Rightarrow d-Au, p-Pb$ $\Rightarrow dN/dp_T, R_{AB}$ $\Rightarrow look at the variation with b$ $\Rightarrow dN/dp_T, R_{AB}$

PROMPT D^o, D⁺, D^{*+} MESONS

R_{pPb} compatible with unity in the whole p_T range

Z. Conesa del Valle

20

p₁ (GeV/c)

25

15

10

5

0.8 0.6 0.4 0.2

11

PROMPT D^o, D⁺, D^{*+}, D_s⁺ Mesons

- \blacksquare R_{pPb} compatible with unity in the whole p_T range
- ➡ First measurement of prompt D_s⁺ in p-Pb collisions
- → D_{s^+} pattern similar to that of the D^0 , D^+ , D^{*+}

R_{PPB} VS P_T COMPARED TO MODELS

- Good agreement with MNR calculations with EPS09 shadowing
- Also well described by CGC predictions
- Nuclear effects expected to be small for high pt in PbPb collisions

Z. Conesa del Valle

Pb-Pb Results $\sqrt{\text{snn}} = 2.76 \text{ TeV}$

Effects in a QGP: A-B collisions

- Thermalisation in the QGP (low p_T)
 - Medium transport properties -
- Energy loss in the QGP (high p_T)
 - Medium density and size _
 - Color charge (Casimir factor) : $\Delta E_{u,d,s} < \Delta E_{q}$ -
 - Parton mass (dead cone effect) : $\Delta E_b < \Delta E_c < \dots \Rightarrow$ compare c and b production - \Rightarrow Probe of the QCD medium

 $\Rightarrow \Rightarrow Au-Au, Pb-Pb$

- \Rightarrow dN/dpt, R_{AA}, v₂
- \Rightarrow dN/dp_T, R_{AA}, v₂
- \Rightarrow compare to light hadrons

D^{0} , D^{+} , D^{*+} D_{s}^{+} mesons, 0-7.5%

- → Suppression by up to a factor of 5 at $p_T \sim 10$ GeV/c in 0-7.5%
- First measurement of prompt D_{s}^{+} in heavy ion collisions
- → D_{s^+} suppression similar to that of the D^0 , D^+ , D^{*+}

Expectation: relative enhancement of the strange/non-strange D mesons at intermediate p_T - charm in-medium hadronization ?

[I. Kuznetsova, J. Rafelski, Eur.Phys.J.C51:113-133 (2007)] [M. He, et al, arXiv:1204.4442] [A. Andronic, et al, arXiv:0708.1488v3]

D MESONS IN PPB AND PBPB

- The suppression at moderate to high-p_T can not be explained by shadowing/saturation alone.
- The suppression is a final state effect

Similar HF decay e (|y| < 0.6) and μ (2.5<y<4.0) R_{AA} in 0-10%

Similar HF decay e (|y|<0.6) and µ (2.5<y<4.0) R_{AA} in 0-10%

ALI-DER-36850

- Similar HF decay e (|y|<0.6) and μ (2.5<y<4.0) R_{AA} in 0-10%
- they are also comparable with D mesons R_{AA} (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ($p_T^e \sim 0.5 p_T^B$ at high p_T)
- D R_{AA} shows a similar trend as charged particles and π^{\pm} in 0-10%

- Similar HF decay e (|y|<0.6) and µ (2.5<y<4.0) R_{AA} in 0-10%
- → they are also comparable with D mesons R_{AA} (|y|<0.5) in 0-7.5% considering the semileptonic decay kinematics ($p_T^e \sim 0.5 p_T^B$ at high p_T)
- ⇒ D R_{AA} shows a similar trend as charged particles and π^{\pm} in 0-10%

→ Different suppression pattern than charged particles at low p_T ?

while at high pt the suppression is similar

$R_{AA} VS P_T$

- Models predict reasonably well both charged particles and D mesons RAA
- * AdS/CFT drag coefficients underestimate the charm R_{AA} and have limited predictive power for the light flavor R_{AA} .

CHARM RAA VS NPART AT LOW PT

Different suppression pattern in the 2-3 and 3-5 GeV/c pT intervals

Systematic uncertainties:

- correlated in centrality classes: normalization, pp reference cross section
- uncorrelated: dominated by data systematics (i.e. cut variation efficiencies) and B feed-down $(R_{AA}^{feed-down}/R_{AA}^{Prompt} might depend on N_{part})$.

Z. Conesa del Valle

CHARM RAA VS NPART AT HIGH PT

D⁰, D⁺, D^{*+} suppression increases in more central collisions in the 5-8 and 8-16 GeV/c p_T ranges

Systematic uncertainties:

- correlated in centrality classes: normalization, pp reference cross section
- uncorrelated: dominated by data systematics (i.e. cut variation efficiencies) and B feed-down $(R_{AA}^{feed-down}/R_{AA}^{Prompt} might depend on N_{part})$.

Z. Conesa del Valle

Comparison D and Non-Prompt J/ ψ

Indication of smaller suppression of beauty than charm in the most central collisions

 P_T interval chosen to have similar $\langle p_T \rangle$ for D and B mesons. D meson $\langle p_T \rangle \sim 10.5$ GeV/c (interval 8-16 GeV/c) EvtGen simulations indicate that $\langle p_T(B) \rangle$ from non-prompt J/ ψ is of 11.5 GeV/c (range 6.5-30 GeV/c)

Comparison D and Non-Prompt J/ ψ

BAMPS - collisional energy loss in an expanding medium

It tends to predict larger suppression for both D mesons and non-prompt J/ψ .

WHDG - collisional + radiative energy loss in anisotropic medium

Good agreement with both measurements.

Vitev – radiative + dissociation

Relative good description, but underestimates non-prompt J/ψ for peripheral classes.

[BAMPS: J. Phys. G 38 (2011) 124152; Phys. Lett. B 717 (2012) 430] [WHDG: J. Phys. G 38 (2011) 124114] [Vitev: R. Sharma, I. Vitev and B. W. Zhang, Phys. Rev. C80 (2009) 054902; Y. He, I. Vitev and B. -W. Zhang, Phys. Lett. B 713 (2012) 224]

Z. Conesa del Valle

HF LEPTON V2

Heavy flavor electron $v_2 > 0$ at low p_T (>3 σ effect in 2< p_T <3 GeV/c)

Heavy flavor muon $v_2>0$ at low p_T (>3 σ effect in 3< $p_T<5$ GeV/c)

R₂ : event plane resolution

D MESON V₂ IN 30-50% PBPB COLLISIONS

Z. Conesa del Valle

ALI-PUB-48703

HEAVY FLAVOR ELECTRON RAA & V2

ALI-PREL-35153

The simultaneous description of HFe RAA and v2 is challenging

[BAMPS: J. Phys. G 38 (2011) 124152; Phys. Lett. B 717 (2012) 430]
[POWLANG: Eur. Phys. J C 71 (2011)1666]
[M. He, R. J. Fries and R. Rapp, Phys. Rev. C86 014903; Phys. Rev. Lett.110.112301]

HEAVY FLAVOR MUON RAA & V2

The simultaneous description of HFm R_{AA} and v₂ is challenging

[BAMPS: J. Phys. G 38 (2011) 124152; Phys. Lett. B 717 (2012) 430]
[POWLANG: Eur. Phys. J C 71 (2011)1666]
[M. He, R. J. Fries and R. Rapp, Phys. Rev. C86 014903; Phys. Rev. Lett.110.112301]

D MESON RAA & V2

LI-PREL-35484

The simultaneous description of D mesons R_{AA} and v_2 is challenging

[BAMPS: J. Phys. G 38 (2011) 124152; Phys. Lett. B 717 (2012) 430]
[POWLANG: Eur. Phys. J C 71 (2011)1666]
[M. He, R. J. Fries and R. Rapp, Phys. Rev. C86 014903; Phys. Rev. Lett.110.112301]
[UrQMD: arXiv:1211.6912, J. Phys. Conf. Ser. 426, 012032 (2013)]
[TAMU: Phys. Rev. C 86 (2012) 014903]
[WHDG: J. Phys. G 38 (2011) 124114]
[Aichelin et al., Phys. Rev. C 79 (2009) 044906, J. Phys. G 37 (2010) 094019]

Z. Conesa del Valle

SUMMARY

- * Heavy flavor production is suppressed in the most central collisions
 - Light particles have a similar p_T and centrality trend than charm R_{AA}
 - Non-prompt J/ψ seem less suppressed than D's in central events
- * This suppression can not be explained by only CNM for $p_T>4$ GeV/c
- \star Azimuthal anisotropy of HFe, HFm and charmed mesons is observed
 - $v_2>0$ for $p_T \sim 3$ GeV/c at LHC, hint of collective motion of charm quarks at low p_T
- * HQ energy loss models reproduce reasonably well heavy flavor R_{AA} measurements. Challenging simultaneous description of R_{AA} and v₂.

Z. Conesa del Valle

Backup

D MESON RAA AT RHIC AND LHC

AuAu 200 GeV

PbPb 2.76 TeV

HFE RAA AT RHIC AND LHC

- Similar magnitude of heavy flavor electron suppression at Js_{NN}=200GeV (PHENIX, RHIC) and Js_{NN}=2.76TeV (ALICE, LHC)
- * Caveat: c/b contribution to the HF electron spectra may differ at RHIC and LHC

HEAVY FLAVOR ELECTRON V2 VS ENERGY

- * Non-photonic / HF electron v₂:
 - At 39 and 62 GeV consistent with zero within uncertainties
 - At 200 GeV, v₂>0 for p_T > 3 GeV/c
 - At 2.76 TeV, v₂>0 at low p_T (>3σ effect in 2<p_T<3 GeV/c)</p>

Z. Conesa del Valle

V₂ CENTRALITY DEPENDENCE

 \rightarrow Hint of centrality dependence of heavy flavor v₂ at LHC

Z. Conesa del Valle