

Thermal dilepton production: current status and near and far time perspectives

Heavy Ion Meeting, 17 September 2020

DLOGIE ENTWICKLUNG

Outline

• Thermal radiation and dileptons

OGIE ENTWICKLUNG

- (Low-mass) dilepton sources and physics objectives
- Experimental results (with focus on recent results from ALICE at the LHC)
- Upgrades and future heavy-ion experiments (at the LHC)

Heavy-ion collisions and dileptons

Ultra-relativistic Heavy-Ion Collisions: test QCD at high temperatures/densities

- Phase transitions / Quark-Gluon Plasma (QGP)
- Deconfinement
- (Partial) restoration of chiral symmetry

Heavy-ion collisions and dileptons

Measure photons or dileptons (e^+e^- or $\mu^+\mu^-$ pairs)

- Couple to EM current throughout the full collision history
- Very low interaction with QCD medium (**no strong interaction**)

Heavy-ion collisions and dileptons

Measure photons or dileptons (e^+e^- or $\mu^+\mu^-$ pairs)

- Couple to EM current throughout the full collision history
- Very low interaction with QCD medium (**no strong interaction**)
- Virtual photons: invariant mass, no blue-shift of rapidly expanding system
- **Sensitive to** thermal radiation, vector meson spectral shape, production of heavy flavour (charm and beauty) hadrons, beyond SM particles with J^{PC}=1⁻⁻ (e.g. dark photons)

Heavy Ion Meeting, 17 Sep 2020

Dilepton sources - light flavour

• Dominating **low mass region** $m_{ee} < 1.1 \text{ GeV/}c^2$

 $\pi^0 = \gamma^{\gamma} \gamma^{e^+} e^-$

- Populated with light neutral mesons (π⁰, η, η', ρ, ω and φ)
 - Decaying via Dalitz, or two body decays
- Connection to QCD chiral symmetry restoration expected at temperatures reached in UrHICs
 - In-medium modification of vector mesons: "ρ broadening" (see later slides)

For dimuons only $m > 0.2 \text{ GeV/c}^2$ accessible

Dilepton sources - heavy flavour

- In pp collisions: measurement of σ_{cc.bb}
 - Complementary to hadron measurements
 - Strongly increasing contribution with $\sqrt{s_{_{
 m NN}}}$
- In p-Pb collisions: cold nuclear matter effects
 - Nuclear PDFs
- Other "hard" sources (not discussed here): Prompt, Drell-Yan, and pre-equilibrium virtual photons

Heavy Ion Meeting, 17 Sep 2020

ALICE

Thermal dilepton emission rate:

Dilepton sources - thermal

• **Vacuum**: EM spectral function well known from the e^+e^- annihilation cross section into hadrons / $\mu^+\mu^-$

$$R = -\frac{12\pi}{s} \mathrm{Im}\Pi_{\mathrm{EM}}$$

- Medium:
 - Below 1.5 GeV/ c^2 : modification of vector meson spectral function
 - \rightarrow signals (approach to) deconfinement and the **restoration of chiral symmetry?**
 - Above 1.5 GeV/ c^2 : extraction of temperature (and space-time evolution of thermal source)

Temperature evolution

• System evolution in the QCD phase diagram

Temperature evolution

- Temperature-differential dielectron emission:
 - Dilepton mass sensitive to system temperature (evolution)
- Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)

Chiral symmetry of QCD Lagrangian:

• Ground state breaks symmetry spontaneously

Spontenous broken symmetry	
Heisenberg magnet	QCD
L rotational invariant	L chiral invariant
g.s. breaks symmetry: Magnetization	g.s. breaks symmetry: chiral condensate
Restoration for T > T _C	Restoration for high temperatures or densities

S. Leupold, Physics@FAIR, 2011

Heavy Ion Meeting, 17 Sep 2020

Chiral symmetry of QCD Lagrangian:

- Ground state breaks symmetry spontaneously
- Parity partners not degenerate

V. Koch, Int.J.Mod.Phys. E6 (1997) 203-250

Spontenous broken symmetry	
Heisenberg magnet	QCD
L rotational invariant	L chiral invariant
g.s. breaks symmetry: Magnetization	g.s. breaks symmetry: chiral condensate
Restoration for T > T _C	Restoration for high temperatures or densities

Based on M. Lutz et al., Nucl. Phys. A 542 (1992) 521-558

S. Leupold, Physics@FAIR, 2011

Heavy Ion Meeting, 17 Sep 2020

 \rightarrow measurable in-medium modification of vector (and axial-vector) spectral function?

Michael Weber (SMI)

- ρ-meson melting/broadening
- Merging of vector and axial-vector spectral functions
- "Direct connection between dileptons and chiral restoration"

Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)

P.M. Hohler, R. Rapp, Phys.Lett.B731 (2014) 103-109

Summary: dileptons as thermometer and chronometer

R. Rapp, H. van Hees, Phys.Lett. B 753, 586 (2016)

- Low-mass thermal radiation ("excess spectra") in $m_{ac} = 0.3-0.7 \text{ GeV}/c^2$
- Inverse slope parameter (1.5-2.5 GeV/c²)

~ fireball lifetime ~ initial temperature

Dilepton sources - photoproduction

- EM field surrounding the fast moving nuclei can be treated as a **quasi-real photon flux**
- high cross section for **photon-photon interactions** (and photon-nucleus)

Dilepton sources - photoproduction

- EM field surrounding the fast moving nuclei can be treated as a **quasi-real photon flux**
- high cross section for **photon-photon interactions** (and photon-nucleus)
 - Dileptons with low pair transverse momentum
 - Different scaling with collision energy and centrality w.r.t. hadronic and thermal production

Experimental approach and challenges

Example: dielectrons

- Identify electrons/positrons
 - Minimize hadron contamination
- Pair electrons and positrons in one event
 - Major contribution from **photon conversion** in detector material

Major contribution from photon conversion in detector material

Minimize hadron contamination

Pair electrons and positrons in one event

- Subtract combinatorial background B
 - S = ULS B = R*LS

Identify electrons/positrons

 \circ S/B ~ 10⁻³ in central Pb-Pb collisions

Example: dielectrons

0

Experimental approach and challenges

Identify electrons/positrons Minimize hadron contamination

- Pair electrons and positrons in one event
 - Major contribution from photon conversion in detector material
- Subtract combinatorial background B
 - S = ULS B = R*LS
 - \circ S/B ~ 10⁻³ in central Pb-Pb collisions
- Subtract "known" long-lived light- and heavy-flavour sources ("cocktail")
 - Systematic uncertainties

Example: dielectrons

Experimental approach and challenges

Example at LHC - ALICE

Light and heavy flavour - ALICE pp

• Proper reference: Data well described by "cocktail" of known hadronic sources within uncertainties

ALICE

ALICE, arXiv:2005.11995 [nucl-ex]

Light and heavy flavour - ALICE pp

- **Proper reference:** Data well described by "cocktail" of known hadronic sources within uncertainties
- **Heavy flavour cross section:** extracted with 2D fit (m_{ee}, p_{Tee})
 - Compatible with hadron measurements 0
 - Model dependence: sensitivity to production mechanisms 0

ALICE, arXiv:2005.11995 [nucl-ex]

Light and heavy flavour - ALICE p-Pb

- **Proper reference:** Data well described by "cocktail" of known hadronic sources within uncertainties
 - Scaling of heavy-flavour sources with A or number of binary collisions N_{coll}

Light and heavy flavour - ALICE p-Pb

- **Proper reference:** Data well described by "cocktail" of known hadronic sources within uncertainties
 - Scaling of heavy-flavour sources with A or number of binary collisions N_{coll}

Light and heavy flavour - ALICE p-Pb

- **Proper reference:** Data well described by "cocktail" of known hadronic sources within uncertainties
- Current precision doesn't allow for conclusions on potential **cold nuclear matter effects** (EPS09 nPDF) or **thermal radiation** (Rapp)

Thermal dilepton production

• Most precise heavy-ion dilepton results so far

NA60, Eur.Phys.J.C 61 (2009) 711-720 ALICE

- Most precise heavy-ion dilepton results so far
- Consistent with an **in-medium p spectral function** that, driven by the coupling to baryons, melts and approaches the one from qq annihilation in the vicinity of the phase transition

<u>NA60, Eur.Phys.J.C 61 (2009) 711-720</u> ALICE

• Fit to m_{T} spectra of excess yield (acceptance corrected) in different mass regions

NA60, Eur.Phys.J.C 61 (2009) 711-720 ALICE

- Fit to m_{T} spectra of excess yield (acceptance corrected) in different mass regions
- No increase of the exponential inverse slope with mass
 - \rightarrow Insensitive to the expansion of the medium
 - \rightarrow true measure of the average temperature ($T_{\rm eff}$ = 205 ± 12 MeV)

Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)

Thermal dilepton production - RHIC

STAR, Phys.Lett.B 750 (2015) 64-71

• Excess in the low mass region

ALICE

Thermal dilepton production - RHIC

• Excess in the low mass region in the full RHIC beam energy range (19.6 - 200 GeV)

Thermal dilepton production - RHIC

- Excess in the low mass region in the full RHIC beam energy range (19.6 200 GeV)
- Compatible with ρ broadening + QGP thermal radiation
Thermal dilepton production - SIS

HADES, Nature Phys. 15 (2019), 1040-1045 ALICE

• Excess in the low mass region also in the AGS/SIS energy range (~2 GeV)

Thermal dilepton production - SIS

HADES, Nature Phys. 15 (2019), 1040-1045

- Excess in the low mass region also in the AGS/SIS energy range (~2 GeV)
- Compatible with *ρ* broadening (+ Bremsstrahlung)
- "evidence for a source of temperature in excess of 70 MeV"

ALICE

Thermal dilepton production - excitation function

• Excess in the low mass region as a function of collision energy (chronometer)

Thermal dilepton production - excitation function

- Excess in the low mass region as a function of collision energy (**chronometer**)
- Extraction of effective temperature (thermometer)

Thermal dilepton production - excitation function

- Excess in the low mass region as a function of collision energy (chronometer)
- Extraction of effective temperature (thermometer)
- Large uncharted territory on the QCD phase diagram

ALICE measurements - Dielectrons LHC Run 2

- Central Pb-Pb collisions (2015 data only)
- Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)

ALICE measurements - Dielectrons LHC Run 2

- Central Pb-Pb collisions (2015 data only)
- Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)
- Comparisons to pure hadronic cocktail, nPDFs, and thermal scenarios inconclusive so far

(similar conclusion from Run 1 data)

ALICE measurements - Dimuons

- Limited background rejection at low p_T in LHC Run 1 and 2
- Focus on vector meson production in pp and Pb-Pb collisions → nuclear modification factor

Photoproduction

Photoproduction - STAR

STAR, Phys.Rev.Lett. 121 (2018) 13, 132301

Z

- Excess e^+e^- pair p_{T} distribution concentrates below $p_{T} \sim 0.15$ GeV/c
 - Evidence of photon interactions in hadronic heavy ion collisions

Z

Photoproduction - STAR

STAR, Phys.Rev.Lett. 121 (2018) 13, 132301

- Excess e^+e^- pair p_{T} distribution concentrates below $p_{T} \sim 0.15$ GeV/c
 - Evidence of photon interactions in hadronic heavy ion collisions
- *p***_T broadening w.r.t. UPC** (StarLight):
 - Importance of **impact parameter dependence** of initial electromagnetic field
 - Additional effects? See <u>S. Klein et al., arXiv:2003.02947 [hep-ph]</u> for a recent summary

Photoproduction - ALICE

Excess w.r.t. cocktail and thermal sources at p_{T.ee} < 0.1 GeV/c

Photoproduction - ALICE

- Excess w.r.t. cocktail and thermal sources at p_{T.ee} < 0.1 GeV/c</p>
- **Compatible with photo-production models** (caveat: no resolution effects taken into account here)
- Next steps: increase statistics by factor of two by including 2018 data, event-plane dependence,...

The next decade

2019 2020 2021 2022 2023 2023 2024 2025 2026 2027 2028 2029 2030 2040 2040 2050

At the LHC (changes due to Covid not included here):

Year	Systems, $\sqrt{s_{NN}}$	Time	L _{int} <u>HL-LHC WG5 yellow report</u>		
2021	Pb-Pb 5.5 TeV	3 weeks	2.3 nb^{-1}		
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)		
2022	Pb-Pb 5.5 TeV	5 weeks	3.9 nb^{-1}		
	O–O, p–O	1 week	$500~\mu\mathrm{b}^{-1}$ and $200~\mu\mathrm{b}^{-1}$		
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)		
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)		
2027	Pb–Pb 5.5 TeV	5 weeks	3.8 nb^{-1}	ALICE:	
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb ⁻¹ (ATLAS, CMS), 25 pb ⁻¹ (LHCb)	13 nb⁻¹	Pb-Pb
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)	0.6 pb^{-1}	n-Ph
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb^{-1} (ATLAS, CMS, LHCb)	0.0 00	P10
2029	Pb-Pb 5.5 TeV	4 weeks	3 nb^{-1}		
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)		hh hh
	pp reference	1 week		(<u>ALICE-PUBL</u>	<u>_1C-2020-005</u>)

The next decade

O Vazguez Doce, LHCC open session Sep 2020

The next decade

Michael Weber (SMI)

ALICE upgrades (Run 3 and 4) and dileptons

• Dimuons:

- Vertexing by Muon Forward Tracker
- Better mass resolution and reduced background

• Dielectrons:

- Improved vertex resolution (ITS2, ITS3)
- Reduced material budget (conversions)
- Higher data acquisition rate (50 kHz)
- Dedicated low B field run(s): improved efficiency at low p_{T} , better conversion rejection

Inner layers	(Run 1-2)	(Run 3)	(Run 4)	
X/X ₀	1.14%	0.38%	0.05%	
innermost radius	39 mm	22 mm	18 mm	
pixel size	$50x425 \mu m^2$	~27x29 µm²	O(15x15 µm²)	

CERN-LHCC-2019-018

A. Rossi, ICHEP 2020

ALICE - Dimuons (Run 3)

ALI-SIMUL-306418

Not optimized to reduce contribution of heavy-flavour sources

ALICE - Dimuons (Run 3)

HL-LHC WG5 yellow report ALICE

ALI-SIMUL-306418

Not optimized to reduce contribution of heavy-flavour sources

After subtraction of long-lived lightand (keep ρ) heavy-flavour sources \rightarrow measurement of ρ spectral shape

ALICE - Dielectrons (Run 3)

HL-LHC WG5 yellow report

Applying cuts on the pair DCA to reduce contribution of heavy-flavour sources

After subtraction of long-lived lightand (keep ρ) heavy-flavour sources \rightarrow measurement of ρ spectral shape

Heavy Ion Meeting, 17 Sep 2020

ALICE

ALICE - Dielectrons (Run 4)

ALI-SIMUL-306860

Applying cuts on the pair DCA to reduce contribution of heavy-flavour sources

After subtraction of long-lived lightand (keep ρ) heavy-flavour sources \rightarrow reduction of stat./syst. uncertainties

ALICE - Temperature extraction

• Temperature measurement at the LHC

- Heavy flavour uncertainties can be improved
- Large statistics will allow for more differential measurements (*p*_T dependence, flow, polarization)

Beyond 2030: ALICE 3

Beyond 2030: ALICE 3

a thin, light, fast all-silicon tracking & PID detector

Heavy-flavour and quarkonia

- Multiply Heavy Flavoured hadrons: Ξ_{cc} , Ω_{cc} , Ω_{ccc}
- Ultimate precision on B mesons at low p_T
- χ_{c1.2} states
- X, Y, Z charmonium-like states (e.g. X(3872))

Unique low material budget and low-p_T coverage

- Thermal radiation and electric conductivity
- Chiral symmetry restoration: modification of ρ , a₁
- Quantum statistics effects
- Condensate physics
- Soft Theorems .

ALICE 3 workshop: 13.-15. Oct 2020

Other future opportunities: beam energy scan

- Many new experiments covering a very wide μ_B region
 - NA60+, HADES/CBM, J-PARC, NICA, ...
- Reaching very high interaction rates \rightarrow precision physics

Other future opportunities: beam energy scan

251

STAR

200

100

200

- Many new experiments covering a very wide $\mu_{\rm B}$ region
 - NA60+, HADES/CBM, J-PARC, NICA, ...
- Reaching very high interaction rates \rightarrow precision physics
- Goal: Caloric curve from thermal dileptons

 $dN/dy|_{\pi^++\pi^-}$

9.2

56

CERN-SPSC-2019-017

20

127 138 146 185

CBM (FAIR SIS100)

100 s (GeV)

20 30

Other future opportunities: beam energy scan

- Many new experiments covering a very wide μ_{B} region
 - NA60+, HADES/CBM, J-PARC, NICA, ...
- Reaching very high interaction rates \rightarrow precision physics
- Goal: Caloric curve from thermal dileptons
- At LHC: opportunities with LHCb after upgrades

Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)

Summary

- Study QCD phase diagram with dileptons:
 - Temperature, space-time evolution, chiral symmetry

Summary

o and more dilepton experiments/possibilities

ALI-DER-311979

0.5

1.5

Heavy Ion Meeting, 17 Sep 2020

67

3.5

 $m_{\rm ee}~({\rm GeV}/c^2)$

3

2.5

2

Thank you!

Real photons?

$$\Xi_{\gamma}rac{\mathsf{d}^{3}N_{\gamma}}{\mathsf{d}^{3}p_{\gamma}}\propto e^{-E_{\gamma}/\mathcal{T}_{\mathrm{eff}}}$$

$$T_{
m eff} = \underbrace{\sqrt{rac{1+eta_{
m flow}}{1-eta_{
m flow}}}}_{2 \; {
m for} \; eta_{
m flow}=0.6} imes T$$

- Large blueshift at late times when $T \approx 150 200 \text{ MeV}$
- Extraction of initial temperature from data requires comparison to (hydro) model

Temperature evolution and extraction

- Isentropic trajectories that the medium follows in the QCD phase diagram
- Temperature-differential dielectron emission:

$$\frac{dN_{ee}}{dMdT} \propto \operatorname{Im}\Pi_{\rm EM}(M;T) e^{-M/T} T^{-m}$$

Partial restoration of chiral symmetry

- Space-time integral over the dilepton rate via relativistic hydrodynamics
- Switch between partonic and hadronic description at T = 170 MeV
 - **"Rho melting"**: hadronic emission rate similar to QGP rate at T = 170 MeV (not by construction), importance of baryon density (coupling to baryonic resonances)

Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)
Partial restoration of chiral symmetry

- Rho spectral function (constrained by low-energy measurements) + Ansatz for a1
 - + QCD and Weinberg sum rules
 - + Condensates from hadron resonance gas constrained by lattice QCD
 - + Chiral mixing

• accurately satisfied in vacuum

• In Medium:

condensates from hadron resonance gas, constrained by lattice-QCD

$$\langle \mathcal{O} \rangle_T \simeq \langle \mathcal{O} \rangle_0 + \sum_h d_h \int \frac{d^3k}{(2\pi)^3 2E_h} \langle h(\vec{k}) | \mathcal{O} | h(\vec{k}) \rangle n_h(E_h)$$

LHC predictions

Chiral mixing

Ralf Rapp, arXiv:1304.2309 [hep-ph]

- Chiral partners: ρ and a₁
 - In vacuum symmetry broken, no coupling a, of to dileptons
 - In medium with T >> T_c symmetry restored and partners mix
- Maximum effect at the LHC by comparing no mixing vs. maximum mixing (no temperature dependence of chiral restoration)
 - Above 1 GeV/c² large background from thermal QGP radiation
 - ~20% effect
- enhance the signal from the hadronic phase, e.g. by cutting on larger pair momenta
 - Larger transverse flow

Differential measurments - transverse momentum

- Interesting features in mass spectra in different p_T bins, e.g. vanishing medium effects with increasing momentum
- Effective temperature (from transverse momentum spectra) as function of mass Sensitive to radial flow (barometer) $T_{\text{eff}} \simeq T + M \langle \beta \rangle^2$
- Run 3/4: T_{eff} with a stat. precision of $\sigma(T_{\text{eff}})/T_{\text{eff}} = 1\%$ <u>ALICE, J. Phys. G 41 (2014) 087001</u>

Differential measurments - (elliptic) flow

<u>G. Vujanovic et al., Phys. Rev. C 101, 044904 (2020)</u>

- Direct and clean access the medium properties and dynamics of early stage of the collisions (mass as proxy for temperature) → resolve "photon puzzle"?
- Sensitivity to shear and bulk viscosity (together with hadronic observables)
- Run 3/4 ALICE: 1% absolute stat. uncertainty

ALICE, J. Phys. G 41 (2014) 087001

Differential measurments - polarization

NA60, Phys.Rev.Lett. 102 (2009) 222301

• Angular distribution of continuum dilepton pairs:

$$\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \lambda \cos^2\theta + \mu \sin^2\theta \cos\phi + \frac{\nu}{2}\sin^2\theta \cos^2\phi\right)$$

- Sensitive to photon source polarization (thermalization, gluon anisotropy, Drell-Yan,...)
- No estimate for Run 3/4 yet (NA60 used ~50k excess pairs)

Electric conductivity

- Large spread and interest in literature
- Connected to dilepton production via spectral function

 $\sigma_{\rm EM}(T) = - e^2 \lim_{q_0 \to 0} \left[\partial/\partial q_0 \operatorname{Im} \Pi_{\rm EM}(q_0, q=0; T) \right]$

Electric conductivity

Connected to dilepton production via spectral function

 $\sigma_{\rm EM}(T) = -e^2 \lim_{q_0 \to 0} \left[\partial/\partial q_0 \operatorname{Im} \Pi_{\rm EM}(q_0, q=0; T) \right]$

the transverse plane. For di-leptons, it would be interesting to find the spectrum below the temperature scale, $p_T \ll T$, because one is then sensitive to the transport peak which is characterized by electric conductivity. A detector with low- p_T coverage could lead to an excellent understanding of

<u>S. Flörchinger, arXiv:1812.08122</u> and <u>Slides ALICE-LMee workshop 2019</u>

How low is low?

- Need quantitative theory input (discussions started)
- Efficiency at low invariant mass and pair p_{T} (see slides later)
- Background? Cocktail sources not important, but what about photoproduction?

Thermal dilepton production - RHIC

- Excess in the low mass region in the full RHIC beam energy range (19.6 200 GeV)
- Compatible with *ρ* broadening + QGP thermal radiation
- Centrality dependent excess yield (thermal lifetime) in agreement with measurements

pp and p-Pb - ALICE

ALICE, arXiv:2005.11995 [nucl-ex]

- Heavy flavour cross section: extracted with 2D fit (m_{ee}, p_{T.ee})
 - Compatible with hadron measurements
 - Model dependence: sensitivity to production mechanisms

pp and p-Pb - ALICE

ALICE, arXiv:2005.11995 [nucl-ex]

pp and p-Pb - ALICE

ALICE, arXiv:2005.11995 [nucl-ex]

ALICE measurements - Dielectrons Run 2

- Central Pb-Pb collisions (2015 data only)
- Still large uncertainties (analysis of 2018 data with ~10 times larger sample ongoing)
- Comparisons to pure hadronic cocktail, nPDFs, and thermal scenarios inconclusive so far

Distinguish prompt and non-prompt sources

- Heavy-flavour hadrons have a **delayed decay**
 - D-meson cτ = 150-300 μm, B-meson cτ = 450 μm
- Can be used to **separate prompt and heavy flavour sources**
 - \rightarrow work in progress for p-Pb and Pb-Pb collisions

ALI-PUB-150209

 $DCA_{ee}(\sigma)$

ALICE measurements - Dielectrons Run 1

ALICE, Phys. Rev. C 99, 024002 (2019)

First low-mass/p_τ dielectron measurement at the LHC

Photoproduction - ALICE

Excess w.r.t. cocktail and thermal sources at $p_{T,ee} < 0.1 \text{ GeV/}c$

Photoproduction - ALICE

- Excess w.r.t. cocktail and thermal sources at p_{T.ee} < 0.1 GeV/c
- Compatible with photo-production models (caveat: no resolution effects taken into account here)
- Next steps: increase statistics by factor of two by including 2018 data, event-plane dependence,...

Thermal radiation in small systems (p-Pb)?

HL-LHC WG5 yellow report

ALICE. arXiv:2005.11995 [nucl-ex]

- Within uncertainties compatible with hadronic cocktail
- Need more statistics (Run 3 and beyond)
- Study multiplicity dependence (ongoing for Run 2)

Thermal radiation in small systems (pp)?

- Within uncertainties compatible with hadronic cocktail
- Need more statistics and reduce systematic uncertainties
- Extended pp programme in preparation: <u>ALICE-PUBLIC-2020-005</u>

dơ/d*m*_{ee} (mb / (GeV/*c*²))

0-1

 10^{-4}

Data/Cocktail

ALICE

Future high-energy pp programme with ALICE

Measurement	ALICE uniqueness	Other experiments		
Ω/π ratio vs. multiplicity	π , K, p PID $p_{\rm T} > 0.15$ GeV/c mid-y	·*		
Flow of π , K, p at high multiplicity	π , K, p PID $p_{\rm T} > 0.15$ GeV/c mid-y	CMS in Run 4 (with proposed timing layer)		
	$p_{\rm T} < 0.5 \; {\rm GeV}/c$ crucial for mass ordering	limited to $p_{\rm T} > 0.4~{ m GeV}/c$ at $ \eta \approx 1.4$		
h-jet recoil at high multiplicity	Charged jets $p_{\rm T}^{\rm jet} > 15 \; {\rm GeV}/c$	ATLAS and CMS (γ /Z–jet with $p_{\rm T}^{\rm jet} > 30 {\rm GeV}/c$)		
	maximum sensitivity to jet ΔE at low $p_{\rm T}^{\rm jet}$			
Nuclei and hypernuclei	$Z = 2$ nuclei PID $p_{\rm T} > 0.8$ GeV/c	*		
p-hyperon(Y) and Y-Y interaction	π , K, p PID $p_{\rm T} > 0.15$ GeV/c mid-y	_		
B mesons	PID, B mesons $p_{\rm T} > 0$ mid-y	ATLAS and CMS ($p_T > 5 \text{ GeV}/c$),		
	Reference for $p_{\rm T} < 5 \text{ GeV}/c \text{ B } R_{\rm AA}$	LHCb (forward rapidity)		
Jets and HF jets	Charged jets $p_{\rm T}^{\rm jet} > 10 {\rm ~GeV}/c$	ATLAS and CMS ($p_T > 30 \text{ GeV}/c$)		
	Larger dead cone aperture at low radiator E			
Charmonia	J/ψ , $\psi(2S) p_T > 0$ mid- and fwd-y,	ATLAS and CMS ($p_T > 3 \text{ GeV}/c$),		
	central-forward correlations	LHCb (forward rapidity)		
Low-mass central diffraction	π , K, p PID $p_{\rm T} > 0.15$ GeV/c mid-y	LHCb (forward rapidity)		
Low-mass dielectrons	e ID $p_{\rm T} > 75 \text{ MeV/}c$			

* possible in CMS only in Run 4 and with extended running (several months per year) at low rate (min-bias readout rate CMS Run 4: < 250 kHz i.e. 2–4 times lower than ALICE).

The next decade

C. Loizides, arXiv:2007.00710 [nucl-ex]

-

2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2040	2050
BESII	BM@N	MPD	NA62	CEE		CBM	/NA60+/J	PARC-H	11				
		LHCb-f	t	fsPHENI	X/forw	ard STAI	R				EIC	LHCb	FCC
		ALICE	/LHCb				CM	S/ATLAS	LS3			NGHI	SppC
		(LS2 L	pgrades)			ALI	CE ITS3-	FoCal				

At the LHC (changes due to Covid not included here):

Year	Systems, $\sqrt{s_{\rm NN}}$	Time	L _{int} <u>HL-LHC WG5 yellow report</u>		
2021	Pb-Pb 5.5 TeV	3 weeks	2.3 nb^{-1}		
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb $^{-1}$ (ATLAS, CMS), 25 pb $^{-1}$ (LHCb)		
2022	Pb-Pb 5.5 TeV	5 weeks	3.9 nb^{-1}		
	O–O, p–O	1 week	$500~\mu\mathrm{b}^{-1}$ and $200~\mu\mathrm{b}^{-1}$		
2023	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)		
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb $^{-1}$ (ATLAS, CMS, LHCb)		
2027	Pb–Pb 5.5 TeV	5 weeks	3.8 nb^{-1}	ALICE:	
	pp 5.5 TeV	1 week	3 pb^{-1} (ALICE), 300 pb^{-1} (ATLAS, CMS), 25 pb^{-1} (LHCb)	13 nb⁻¹	Pb-Pb
2028	p–Pb 8.8 TeV	3 weeks	0.6 pb^{-1} (ATLAS, CMS), 0.3 pb^{-1} (ALICE, LHCb)	0.6 nb^{-1}	n-Ph
	pp 8.8 TeV	few days	1.5 pb^{-1} (ALICE), 100 pb $^{-1}$ (ATLAS, CMS, LHCb)	0.0 00	P10
2029	Pb-Pb 5.5 TeV	4 weeks	3 nb^{-1}		
Run-5	Intermediate AA	11 weeks	e.g. Ar–Ar 3–9 pb^{-1} (optimal species to be defined)		ph
2	pp reference	1 week		(<u>ALICE-PUB</u>	<u>LIC-2020-005</u>)

ALICE - Dielectrons (Run 3)

ALI-SIMUL-306839

Applying cuts on the pair DCA to reduce contribution of heavy-flavour sources

$$\mathrm{DCA}_{\mathrm{ee}} = \sqrt{\frac{\mathrm{DCA}_1^2 + \mathrm{DCA}_2^2}{2}}$$

S. Scheid, HP2020

HL-LHC WG5 yellow report

ALICE

ALICE - Dielectrons (Run 3)

HL-LHC WG5 yellow report

ALI-SIMUL-306839

Applying cuts on the pair DCA to reduce contribution of heavy-flavour sources

After subtraction of long-lived lightand (keep ρ) heavy-flavour sources ALICE

Other collision systems - luminosities and dileptons

HL-LHC WG5 yellow report

Optimistic scenario

Heavy Ion Meeting, 17 Sep 2020

Michael Weber (SMI)

Other future opportunities: LHCb

LHCb. Phys. Rev. Lett. 120, 061801 (2018)

- PID and resolution limitations in momentum to be explored in detail
- Low multiplicity collisions only (no central heavy-ion collisions at the moment)

	LHCb	LHCb Upgrade I	LHCb Upgrade II
$\mathcal{L}_{instantaneous} (cm^{-2}s^{-1})$	4×10^{32}	$2 imes 10^{33}$	$2 imes 10^{34}$
b-hadron per evt.	0.003	0.02	0.2
c-hadron per evt. light,long-lived per evt.	0.04 0.51	0.22 2.08	221

<u>C. da Silva, Epiphany 2020</u>

Michael Weber (SMI)

Planned magnet station for low momentum electron tracking

Heavy Ion Meeting, 17 Sep 2020