Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions

J. Milošević University of Belgrade and Vinča Institute of Nuclear Sciences, Belgrade, Serbia on behalf of the CMS Collaboration

Outline

- Azimuthal anisotropy
- Anisotropy in ultra-central PbPb collisions
- Factorization breaking mechanism and its consequences to the anisotropy measurements w.r.t. the global event plane
- p_{τ} -dependent event plane fluctuations in PbPb and pPb collisions
- Comparison to the hydrodynamic predictions
- η -dependent event plane fluctuations in PbPb and pPb collisions
- Conclusions

Anisotropy harmonics v_n

♦ The most famous, and the most pronounced is the elliptic flow, v₂
♦ Spatial anisotropy → ∇p_x > ∇p_y → momentum anisotropy
♦ Azimuthally anisotropic emission of particles w.r.t the event plane (EP)
♦ In each event, Ψ_n of EP is constructed from emitted particles
♦ There are methods which do not require knowledge of the EP

$$\frac{1}{N_{trig}}\frac{dN}{d\Delta\phi} = \frac{N_{assoc}}{2\pi} \{1 + 2\sum_{n} V_{n\Delta}\cos(n\Delta\phi)\}$$

June 4th 2015

Seminar, Saclay, France

v_n from 2D two-particle correlations

correlation:
$$\frac{1}{N_{trig}} \frac{d^2 N^{pair}}{d\Delta \eta d\Delta \phi} = B(0,0) \frac{S(\Delta \eta, \Delta \phi)}{B(\Delta \eta \Delta \phi)}, \qquad \Delta \phi = \phi^{trigg} - \phi^{assoc} \\ \Delta \eta = \eta^{trigg} - \eta^{assoc},$$

To remove jets: $|\Delta \eta| > 2$

$$S(\Delta\eta,\Delta\phi) = \frac{1}{N_{trig}} \frac{d^2 N^{same}}{d\Delta\eta d\Delta\phi} \qquad \qquad B(\Delta\eta,\Delta\phi) = \frac{1}{N_{trig}} \frac{d^2 N^{mix}}{d\Delta\eta d\Delta\phi}$$

Fourier harmonics $V_{n\Delta}$ directly from: $\left\langle \left\langle \cos(n\Delta\phi) \right\rangle \right\rangle_S - \left\langle \left\langle \cos(n\Delta\phi) \right\rangle \right\rangle_B$

Anisotropy harmonics, v_n , are then extracted from $V_{n\Delta}$ as:

$$v_n\{2, \left| \Delta \eta \right| > 2\}(p_T) = \frac{V_{n\Delta}(p_T, p_T^{ref})}{\sqrt{V_{n\Delta}(p_T^{ref}, p_T^{ref})}}$$

Role of initial state fluctuations on anisotropy

Anisotropy harmonics

with order higher than 2

v_2 , v_3 , v_4 , v_5 and v_6 using multiple methods

Simple, circle-like geometry does not describe the formed system precisely enough

Ultra-central collisions

Asymmetric (pPb) high--multiplicity collisions

Phys.Lett. B724 (2013) 213 (arXiv:1305.0609)

Ultra-central PbPb collisions

Ultra-central PbPb collisions

Approaching UC collisions, v_n are mianly driven by fluctuations:

Ultra-central collisions ideally suit to test effects due to initial-state fluctuations

June 4th 2015

Flow in ultra-central PbPb collisions

 v_n from two-particle correlations for different harmonic order

All orders of v_n tend to saturate approaching 0.0-0.2% centrality

→ Effect dominantly induced by initial state fluctuations

Seminar, Saclay, France

Factorization breaking – p_T dependence

Initial state inhomogeneity

arXiv:1212.1008 Viemi et al.

Factorization breaking – new insights on initial states

• How to connect $v_n(p_T)$ and $V_{n\Delta}(p_T)$?

♦ Usual assumption that EP angle Ψ_n does not depend on p_T leads to factorization

 $V_{n\Delta}(p_{T1}, p_{T2}) = \sqrt{V_{n\Delta}(p_{T1}, p_{T1})} \times \sqrt{V_{n\Delta}(p_{T2}, p_{T2})} = v_n(p_{T1}) \times v_n(p_{T2})$

★ Gardim et al., PRC 87, 031901(R) (2013) and Heinz et al., PRC 87, 034913 (2013) proposed that not only v_n depends on p_T , but also Ψ_n could depends on p_T due to event-by-event (EbE) fluctuating initial state. The overlapping region is not homogeneous but has a lumpy structure

✤ then:

$$\begin{split} V_{n\Delta}(p_{T1}, p_{T2}) = \left\langle v_n(p_{T1})v_n(p_{T2})\cos\left[n(\Psi_n(p_{T1}) - \Psi_n(p_{T2}))\right] \right\rangle \\ \neq \sqrt{V_{n\Delta}(p_{T1}, p_{T1})} \times \sqrt{V_{n\Delta}(p_{T2}, p_{T2})} \end{split}$$

even if hydro flow is the only source of the correlation

initial state fluctuations $\rightarrow \Psi_n(p_T) \rightarrow$ factorization breaking

June 4th 2015

$\begin{aligned} & \textbf{Factorization breaking} \\ & \textbf{ new observable: } r_n = \frac{V_{n\Delta}(p_T^{trig}, p_T^{assoc})}{\sqrt{V_{n\Delta}(p_T^{trig}, p_T^{trig})}\sqrt{V_{n\Delta}(p_T^{assoc}, p_T^{assoc})}} = \\ & \frac{\left\langle v_n(p_T^{trig})v_n(p_T^{assoc})\cos\left[n(\Psi_n(p_T^{trig}) - \Psi_n(p_T^{assoc}))\right]\right\rangle}{\sqrt{v_n^2(p_T^{trig})v_n^2(p_T^{assoc})}} = \begin{cases} 1 \\ <1 \\ >1 \end{cases} & fact. holds \\ fact. breaks \\ non-flow \end{cases}$

★ Large effect is expected and confirmed in ultra central PbPb collisions **CMS collaboration**: Studies of azimuthal dihadron correlations in ultra-central PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, JHEP **1402** (2014)088

✤ As in pPb collisions initial-state fluctuations play a dominant role could we expect a similar (in size) effect?

★ Two hydro models with different initial conditions and η/s were developed:
 ♦ Heinz-Shen VISH2+1: PRC 87, 034913 (2013)
 ♦ Kozlov et. al.: arXiv:1405.3976

• Constraining of initial conditions and η /s by comparing to the exp. data?

r_2 in ultra-central PbPb collisions and VISH2+1

• The effect increases with rise of p_T^{trig} and p_T^{trig} - p_T^{assoc}

The biggest effect seen in ultra-central collisions while for semi-central collisions, the effect achieves only a size of 2–3%

The VISH2+1 model qualitatively gives a good description of CMS data for both MC-Glauber and MC-KLN initial conditions

♦ Large insensitivity to η /s → an independent constraint to the initial-state

r_2 from high-multiplicity pPb collisions

pPb r_2 : comparison to Kozlov et. al hydro model

r_3 from high-multiplicity pPb collisions

pPb r₃: comparison to Kozlov et. al hydro model

r_n multiplicity dependence at the highest Δp_T

Dramatic increase at ultracentral PbPb. For small centralities (>5%) \approx few % The r_2 in pPb is a bit smaller than in PbPb Strong r_3 multiplicity dependence in pPb, but very weak in PbPb A non-flow effect in pPb for the highest p_{τ}^{trig} in lower multiplicities VISH2+1 qualitatively describes CMS data Kozlov et al. hydro model describes pPb. Gives stronger effect for PbPb and fails for r_3 at low multiplicity

Factorization breaking – η dependence $f(p_T,\phi,\eta) \sim 1 + 2\sum v_n(p_T,\eta) \cos \left[n \left(\phi - \Psi_n(p_T,\eta) \right) \right]$ n=1Ψ_n $\Psi_n(\eta^b)$ n Bozek et al., arXiv: 1011.3354 **Global twist**

Dumitru et al., arXiv: 1108.4764

η -dependent r_n using Hadronic Forward (HF)

η -dependent r_n in PbPb

- The r_2 factorization
- breaking effect increases with increase of η^a
- Except for the most central collisions, the increase is approximately linear

arXiv: 1503.01692 submitted to PRC

- The effect of factorization breaking is much stronger for higher-order harmonic r₃ – opposite to the p_T dependence
- Almost linear increase of the effect size
- Parameterization:

$$r_n(\eta^a,\eta^b) \approx e^{-2F_n^\eta\eta^a}$$

η -dependent r_n in pPb

- A significant factorization breakdown in η found in pPb collisions with increase of η^a
- The effect increases approximately linearly with η^a
- Parameterization with F_n^{η} is purely empirical introduced just to quantify behavior of the data

$$r_n(\eta^a,\eta^b) \approx e^{-2F_n^\eta\eta^a}$$

arXiv: 1503.01692 submitted to PRC

η-dependent r_n vs multiplicity

- The *F*₂^η has a minimum around midcentral
 PbPb and increases for peripheral and most central collisions
- At similar multiplicity, F_2^{η} in pPb larger than the one in PbPb
- Except for the most central PbPb, there is a very weak centrality dependence of F₃^η
- In PbPb, higher-orders F_3^{η} and F_4^{η} , show much stronger factorization breaking than for the second order

Conclusions

- Azimuthal anisotropy in ultra-central PbPb collisions dominantly induced by initial state fluctuations
- CMS measured factorization breaking of two-particle correlations in PbPb and pPb
- Strong p_{τ} -dep. effect in ultra-central PbPb
- ✤ 2-3% in pPb, comparable to PbPb at similar mult.
- Qualitatively consistent with hydro models with p_T dependent EP angle induced by initial-state fluct.
- The factorization breaking effect in η is smallest for mid-central PbPb; increases going to peripheral and most central collisions
- Significantly larger effect in pPb than in PbPb
- 3-rd and 4-th order effect are stronger than the 2-nd

Backup

June 4th 2015

Start the protons out here

Compact Muon Solenoid (CMS) - schematic view

A slice through CMS detector in a plane perpendicular to the beam axis

charged particles with: $|\eta| \le 2.4$ $p_T \ge 0.3 GeV/c$ Wide kinematic coverage

June 4th 2015

Compact Muon Solenoid (CMS) - schematic view

Long-range azimuthal correlations - ridge

- Collectivity diminishing as system size decreases
- Thus, in pp and pPb collisions no collectivity is expected
- But with increasing the incident energy in pp or pPb collisions a small and hot QGP could be created and collectivity could appear

Does the ridge in *pp* and *pPb* collisions originate from hydrodynamics flow like in PbPb collisions or it is connected with color-glass condensate (CGC)

Triangular flow (v_3) in PbPb and pPb

4

Stringy proton caught by nucleus? (PRD **89** (2014) 025019)

 v_2 in peripheral PbPb and high-multiplicity pPb collisions

Seminar, Saclay, France

v_2 in PbPb and pPb collisions vs multiplicity

- v₂{4}, v₂{6}, v₂{8} and v₂{LYZ} are in a mutual agreement within 10% for both PbPb and pPb collisions
- As v₂ in pPb does not depend on number of particles used in its reconstruction, it is a strong evidence to support interpretation of the long-range correlation as a collective phenomenon

June 4th 2015

Shown at Quiark Matter 2014

v_n from multi-particle correlations – cumulants

where in d_2 {4}(p_T) one of four reference particles is replaced with a particle from a particular p_T region.

Seminar, Saclay, France

v_n from even higher order cumulants

$$\left\langle \left\langle 6 \right\rangle \right\rangle = \left\langle \left\langle e^{in(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 - \phi_6)} \right\rangle \right\rangle$$

$$v_n \left\{ 6 \right\} = \left\langle \left\langle 6 \right\rangle \right\rangle - 9 \cdot \left\langle \left\langle 4 \right\rangle \right\rangle \left\langle \left\langle 2 \right\rangle \right\rangle + 12 \cdot \left\langle \left\langle 2 \right\rangle \right\rangle^3$$

$$v_n \left\{ 6 \right\} = \left\langle \left\langle 6 \right\rangle \right\rangle - 9 \cdot \left\langle \left\langle 4 \right\rangle \right\rangle \left\langle \left\langle 2 \right\rangle \right\rangle + 12 \cdot \left\langle \left\langle 2 \right\rangle \right\rangle^3$$

8-th order even more complicated c_n formulae $v_n \{8\} = 4 \left| -\frac{1}{33} c_n \{8\} \right|$

and corresponding differential flow coefficients

Within hydrodynamics is:

$$v_2\left\{2\right\} > v_2\left\{4\right\} \approx v_2\left\{6\right\} \approx v_2\left\{8\right\} \approx \ldots \approx v_2\left\{\infty\right\}$$

Lee-Yang Zero (LYZ) method correlates all particles of interest seen in an event and in principle should exclude any non-flow effect

Flow in ultra-central PbPb collisions

 v_n from two-particle correlations for different harmonic order

JHEP 1402 (2014) 088 (arXiv:1312.1845)

All orders of v_n tend to saturate approaching 0.0-0.2% centrality

→ Effect dominantly induced by initial state fluctuations

June 4th 2015

Seminar, Saclay, France

Long-range correlations of strange particles at CMS

Partonic degree of freedom in pPb collisions

Partonic degree of freedom in PbPb collisions

Partonic degree of freedom – triangular flow

Strange particles, K^0_{S} and Λ , show a similar behavior concerning the scaling to the n_a also for v_3 No calculations on v_3 scaling to the n_a has been performed in recombination models

Triangular flow (v_3) in PbPb

 $v_3(\Psi_3) \approx v_3\{2, |\Delta \eta| > 2\} >> v_3\{4\}$ nearly independent on centrality Strong effect of initial state fluctuations

Seminar, Saclay, France

Phys.Rev. C89 (2014) 044906 (*arXiv:*1310.8651)

 v_3 in peripheral PbPb and high-multiplicity pPb collisions

Remarkable similarity of v₃
 magnitude in both, PbPb and pPb
 If jet-induced correlations are
 independent of pPb multiplicity,
 they could be removed by
 subtracting low-multiplicity yields

✤ The low-multiplicity-subtracted v₂{2, |∆η|>2} pPb results are between v₂{2} and v₂{4}, while the triangular flow remains unchanged under such a subtraction

Quadrangular flow (v_4) in PbPb

Seminar, Saclay, France

June 4th 2015

45