What does the LHC J/ψ v₂ tell us?

Camelia Mironov LLR/Ecole polytechnique

Today

Onia in AA collisions

- Tool: in a deconfined, colored charged medium, Debye screening
 - \longrightarrow different T for different onia states \rightarrow in situ thermometer of the QGP

state	J/ψ	χ_c	ψ'	Υ	χ_b	Υ′	χ_b'	Υ"
$\Delta E [\text{GeV}]$	0.64	0.20	0.05	1.10	0.67	0.54	0.31	0.20
r_0 [fm]	0.50	0.72	0.90	0.28	0.44	0.56	0.68	0.78

Table 3: Quarkonium Spectroscopy from Non-Relativistic Potential Theory [9]

- More than a tool: an interesting (and unknown) destiny in the QGP
 - **q**q
 - low-p_T : 'bulk' hydrodynamics
 - intermediate-p_T: recombination recombination
 - high-p_T: fragmentation en loss
 - ightharpoonup QQ
 - similar as for light?
 - modified for each different state

Klubert, Satz, arXiv:0901.3831

Onia in AA collisions

Debye screening vs p_T

- 'Stronger' and 'further' for the excited state
- theory update?
- Destroys a state (gone)

Regeneration and v₂ vs p_T

- Excited charmonia states missing theory
 - from Upsilon (Rapp '10): 2S higher regeneration contribution than 1S
- v2 correlated with the regeneration
- Puts back some yield

CMS-HIN-12-014

Fragmentation and En loss vs p_T

- v2 asymmetry related to path length dependence of en loss
- Destroys and/or shifts the kinematics

BUT, one should ...

- .. ask:
 - \longrightarrow is the 'pre bound J/ ψ ' that loses energy or the parent ccbar'
 - \Longrightarrow if not, the en loss of 'pre bound J/ ψ ' different than of the single charm (to form later a D)
 - \Longrightarrow at high-p_T: have fragmentation J/ψ the en loss is of the parent parton?
 - \longrightarrow the destroyed J/ ψ feeds the D yield (though 10:90 ratio)
- ... consider time/scales ...
 - medium time to form, its lifetime and size are important
 - $t^{formation} \sim 1/\Delta E \rightarrow excited states$:
 - 'larger' (easier to be 'found')
 - weaker bound (easier to break once 'found'),
 - longer time to form → longer in 'proto-state' (more chances to be found and broken)
 - Size and binding energy seems logical to think that matter at all p_T

High-p_{T:} excited vs ground state

- $R_{AA}(\psi(2S)) < R_{AA}(J/\psi)$
 - → ordered suppression → size/binding energy/formation time at play
 - if jet-like en loss *only*, the double ratio should've been 1 ...

High-p_{T:} open vs closed

- $igorplus R_{AA}$ for D and J/ψ similar
 - coincidence? (same for intermediate region, 2-5 GeV/c)
 - it's actually the parent losing an 'universal' energy before the mesons are formed?

Intermediate-p_{T:} 3-6 GeV/c

- Slightly higher yield in most central events: recombination kicks in?
 - does it affect the states with different binding energy differently?

Excited vs ground state

Ultimate proof for recombination?

whatever it is, it looks also a process dependent on binding energy/size of the state

Low-p_T

At LHC Non zero flow at intermediate p_T

M. Rosati, SaporeGravis201

- $R_{AA}(LHC) < R_{AA}(RHIC)$
 - regeneration compensates for the yield lost via screening
- v2(LHC) ? v2 (RHIC)
 - related to the regeneration
 - not sure I understand how: parent charm quarks have some v₂
 - is it smaller than that of light, hence the sum (for the bound state) is smaller than of the light OR
 - same as that of light, but when combining, some 'interferences' (different p_T, slowing down each other?)

Debye screening? partonic break-up? recombination?

Debye screening? partonic break-up? recombination?

Debye screening? partonic break-up? jet-like en loss?

10

High-p_T

 \bigcirc R_{AA}(LHC) < $R_{AA}^{N_{part}}$ (RHIC)

stronger (?), longer life plasma —> more time to break the state with partonic dissociation?

• $v_2(LHC)$ prompt J/ψ , $6.5 < p_T < 30 \text{ GeV/c}$, |y| < 2.4, $10 - 60 \frac{\%}{2}$

- 0.054 \pm 0.013(stat.) \pm 0.006(syst.) (3.8 σ)

probing just the path length dependence of the en loss

- \bigcirc While R_{AA} is the same, the asymmetry is different ... makes sense?
 - R_{AA} shows when things disappeared/got modified (break-up, en loss)
 - \rightarrow v₂ reflects the real estate of the remaining things (and possibly how they ended as such)

Quark scaling

- Approximate scaling for D, J/ψ behaves differently
- D has asymmetry from the 1) thermalized charm OR 2) light quark it combines with OR 3) just probing path lengths dependence
- - the 'pre-bound' state has a v2, which with extra contributions from regenerations makes the v2 larger at low-pT?
 - dominated by the path length dependence of en loss whose en loss?
- Need more precision at low-p_T for J/ψ and all over for D

Today

Yes, you can ... but should you?

Au-Au at 200 GeV Pb-Pb at 2.76 TeV

Intermediate-p_T: open vs closed

- $\ \ \, \ \, \ \, R_{AA}$ for D and J/ψ similar
 - coincidence?
 - it's actually the parent losing an 'universal' energy before the mesons are formed?