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Di–jet correlations in A+A collisions

A powerful tool to scrutinize the ‘quark gluon plasma’

Similar studies for p+p provide the benchmark

Jet quenching: energy loss, momentum broadening, di–jet asymmetry
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Di–jet asymmetry (ATLAS)

Central Pb+Pb: ‘mono–jet’ events

The secondary jet cannot be distinguished from the
background: ET1 ≥ 100 GeV, ET2 > 25 GeV

Additional energy imbalance as compared to p+p : 20 to 30 GeV
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Di–jet asymmetry (CMS)

Central Pb+Pb: the secondary jet is barely visible

Detailed studies show that the ‘missing energy’ is associated with
the additional radiation of many soft quanta at large angles
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pQCD : the BDMPSZ mechanism

Gluon radiation triggered by interactions in the medium
Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov ∼ 1996

L

k

Gluon emission is linked to transverse momentum broadening

∆k2
⊥ ' q̂∆t with q̂ '

m2
D

λ
=

(Debye mass)2

mean free path

destroys the coherence between the gluon and its parent parton
increases the emission angle
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Formation time (τf) & angle (θf)

τf '
√
ω

q̂
θf ≡

∆k⊥
ω
'
(
q̂

ω3

)1/4

Soft gluons (small ω) : short formation times & large emission angles

Maximal ω for this mechanism : τf ' L ⇒ ωc = q̂L2

Θf

Θc

τf

Θs

L

τf

Θf

Soft gluons (ω � ωc) have τf � L & θf � θc

Edmond Iancu From Jet Quenching to Turbulence Rencontres Ions Lourds 6 / 22



Formation time (τf) & angle (θf)
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Soft gluons (small ω) : short formation times & large emission angles

Maximal ω for this mechanism : τf ' L ⇒ ωc = q̂L2
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After emission, the angle can further increase via medium rescattering
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Hard vs. soft emissions

The BDMPSZ gluon spectrum (probability for one gluon emission)

ω
dN

dω
' αs

L

τf (ω)
' αs

√
ωc
ω

Typical range: T ' 1GeV < ω ≤ ωc ' 50GeV

T (‘temperature’) : typical momentum scale of the medium (‘QGP’)

Relatively hard emissions with ω ∼ ωc :

rare events : probability of O(αs)

dominate energy loss by the leading particle (RAA) : Ehard ∼ αsωc

small angles though (θf ∼ θc) =⇒ the energy remains inside the jet

arguably, not so important for the di–jet asymmetry

One needs to understand mutiple medium–induced branchings
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Multiple emissions

c

L0

A typical event:
many soft cascades plus (sometimes) a harder emission
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Multiple emissions

Successive medium–induced branchings are independent
Non–trivial ! Not true for jet evolution in the vacuum !

+

22

In vacuum, interference effects lead to angular ordering
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Multiple emissions

Successive medium–induced branchings are independent

Non–trivial ! Not true for jet evolution in the vacuum !

In the medium, color coherence is rapidly lost via rescattering
Mehtar-Tani, Salgado, Tywoniuk (1009.2965; 1102.4317);
E. I., Casalderrey-Solana (1106.3864)

f

L

The interference effects are suppressed by a factor τf/L � 1

Blaizot, Dominguez, E.I., Mehtar-Tani (arXiv: 1209.4585)
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A classical branching process

Successive branchings are independent and quasi–local (τf � L)

+

the g → gg splitting vertex (the ‘blob’) : the BDMPSZ spectrum

the propagator (the ‘line’) : transverse momentum broadening in
between successive splittings

A stochastic process well suited for Monte–Carlo implementation

Similar Monte–Carlo’s have been already used for phenomenological
studies, on a heuristic basis.
MARTINI (Schenke, Gale, Jeon); Q-PYTHIA (Armesto, Salgado et al.);
Wiedemann, Zapp, Stachel

No previous derivation, nor study of the gluon spectrum at small x
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The spectrum from multiple branchings

(J.-P. Blaizot, E. I., Y. Mehtar-Tani, arXiv: 1301.6102)

Evolution equation for the gluon spectrum (integrated over k⊥)

D(x, t) ≡ x
dN

dx
where x =

ω

E
(energy fraction)

t : the time/distance traveled by the jet inside the medium

=
E

x�’ = x/z

x

D(x/z,t)d
dt

D(x,t) D(x,t)

x

(1 z)x

zx

t → t+ dt : one additional branching with splitting fraction z

Rate for change = ‘Gain’ - ‘Loss’

Formally similar to DGLAP ... but very different kernel & physics !
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First iteration

One branching =⇒ BDMPSZ spectrum by the leading particle

D(1)(x, L) ' αs
L

τf (ω)
=

t√
x

(t = L in appropriate units)
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What happens when increasing the time t ?
(i.e., when including the effects of multiple branchings)
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First iteration

One branching =⇒ BDMPSZ spectrum by the leading particle

D(1)(x, L) ' αs
L

τf (ω)
=

t√
x

(t = L in appropriate units)

One may expect the spectrum to be depleted at large x and to increase
faster at small x (as for DGLAP) :

∫ 1
0 dxD(x, t) = 1 for any t
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The scaling spectrum

But this is not what happens ! One rather finds (exact result)

D(x, t) ' t√
x

e−πt
2

for x� 1 and any t

“single emission by the leading particle” × “survival probability”
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Fine cancellations between ‘gain’ and ‘loss’ terms : turbulent flow
Scaling spectrum in 1/

√
x emerges as a fixed point (Kolmogorov)

Edmond Iancu From Jet Quenching to Turbulence Rencontres Ions Lourds 13 / 22



Energy flow

The energy disappears from the spectrum:
∫ 1

0 dxD(x, t) = e−πt
2

Energy flows (large x → small x) w/o accumulating in any bin x > 0

It accumulates into a ‘condensate’ at x = 0 (truly at xth = T/E � 1)
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Small x branchings are quasi–democratic: z ∼ 1/2 (unusual in QCD)
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Energy flow at large angles

Remember : small x =⇒ large emission angle

The energy which flows goes at very large angles !

The energy inside the jet is only weakly dependent upon the jet
angular opening R0, within a wide range of values for R0

x < x
R  = 0.30 R  = 0.8

0
0

x > x0

The energy inside the jet Ein : the energy in the spectrum at x > x0

The energy outside the jet : Eout (xth < x < x0) + Eflow︸ ︷︷ ︸
spectrum + condensate
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Energy flow at large angles
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The flow component: independent of x0 and the original energy E

Eflow = υ α2
s q̂L

2 (∼ 20GeV for L = 5 fm)
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Energy flow at large angles
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Good agreement with the analysis by CMS (arXiv:1102.1957)
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Conclusions

Medium–induced jet evolution is by now understood in pQCD

The associated energy loss involves two components :

hard emissions at small angles (energy loss by leading particle, RAA)

multiple soft branchings leading to turbulent flow
(energy loss at large angles, di–jet asymmetry)

c

L0

A Monte–Carlo implementation is currently under way
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No missing energy ! (CMS, arXiv:1102.1957)
... but a pronounced difference in the distribution of the total energy
in bins of ω ≡ pT and in the angle w.r.t. the jet axis

p
‖
T : projection of the

(transverse) energy along
the jet axis

p
‖
T < 0 : same hemisphere

as the trigger jet

p
‖
T > 0 : same hemisphere

as the secondary jet

all hadrons with
pT > 0.5 GeV are measured
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Excess of soft quanta (≤ 4 GeV) in the hemisphere of secondary jet
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In–out asymmetry
Increase the angular opening ∆R of the jet
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The soft energy in excess is found at very large angles
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Di–jet asymmetry : AJ (CMS)
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Event fraction as a function of the di–jet energy imbalance in p+p (a)
and Pb+Pb (b–f) collisions for different bins of centrality

AJ =
E1 − E2

E1 + E2
(Ei ≡ pT,i = transverse energy)

Additional energy loss of 20 to 30 GeV due to the medium
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Di–jet asymmetry : ∆φ (CMS)
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Event fraction as a function of the azimuthal angle ∆φ

Typical event topology: still a pair of back–to–back jets

The secondary jet loses energy without being deflected

The additional in–medium radiation is relatively soft
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Nuclear modification factor at RHIC & the LHC

RA+A ≡
1

A2

dNA+A/d
2p⊥dη

dNp+p/d2p⊥dη

 (GeV/c)
T

p
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R
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1

 = 2.76 TeVNNsPb-Pb  0 - 5%

70 - 80%

Strong suppression (RAA . 0.2) at moderate p⊥

Probing the energy loss by the leading particle
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