# **Overview on UPC and perspectives in LHC** Run 3 and 4

**Charlotte Van Hulse** 

Heavy-ion meeting 10 December 2020



large-impact-parameter interactions



RB

large-impact-parameter interactions

hadronic interactions strongly suppressed

instead: electromagnetic interactions

 $b > R_A + R_B$ 

RB

RA

large-impact-parameter interactions

hadronic interactions strongly suppressed

instead: electromagnetic interactions

b>R<sub>A</sub>+R<sub>B</sub>



RA

large-impact-parameter interactions

hadronic interactions strongly suppressed

instead: electromagnetic interactions

tions uppressed ctions b>R<sub>A</sub>+R<sub>B</sub>

#### photon flux $\propto Z^2$





 $k_2$ 

 $k_1$ 





exclusive continuous dilepton production

3



exclusive continuous dilepton production

light-by-light scattering

Wigner distributions  $W(x, \vec{k}_T, \vec{b}_{\perp})$ 







 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)

Wigner distributions  $W(x, \vec{k}_T, \vec{b}_{\perp})$ 



 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)



 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)

 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)





 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)

Wigner distributions  $W(x, \vec{k}_T, \vec{b}_\perp)$ 

 $xP_z$ 

 $P_z$ 

impact-parameter dependent distributions

 $d^2 \vec{k}_T$ 

PRD 92 ('00) 071503 Int. J. Mod Phys. A 18 ('03) 173 Generalised parton distributions (GPDs)



 $b_{\perp}$ 

 $\int d^2 \vec{b}_{\perp}$ transverse-momentum dependent PDFs (TMDs)

Wigner distributions  $W(x, \vec{k}_T, \vec{b}_\perp)$ 

 $xP_z$ 

 $\begin{array}{c} P_z \\ \bullet \end{array} \quad \begin{array}{c} \text{impact-parameter} \\ \text{dependent distributions} \end{array}$ 

 $d^2 \vec{k}_T$ 

PRD 92 ('00) 071503 Int. J. Mod Phys. A 18 ('03) 173 Generalised parton distributions (GPDs)



 $b_{\perp}$ 





Pb

Pb

Pb

Pb Pb



Pb











Access to nuclear PDFs at low  $x_B$ , through photon-gluon fusion

 $\rightarrow$  constrain nuclear PBFs, where uncertainties are large



- Access to nuclear PDFs at low  $x_B$ , through photon-gluon fusion <sup>15</sup>
  - $\rightarrow$  constrain nuclear PBFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing





- Access to nuclear PDFs at low x<sub>B</sub>, through photon-gluon fusion
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing
- Experimental signature



- Access to nuclear PDFs at low x<sub>B</sub>, through photon-gluon fusion
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing



- Access to nuclear PDFs at low x<sub>B</sub>, through photon-gluon fusion
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing



direct photon

#### resolved photon

- Access to nuclear PDFs at low x<sub>B</sub>, through photon-gluon fusion
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing



direct photon

resolved photon

- Access to nuclear PDFs at low  $x_B$ , through photon-gluon fusion  $\bullet$ 
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing
- Experimental signature

- measurement:
  - ATLAS preliminary: ATLAS-CONF-2017-011 ullet

- Access to nuclear PDFs at low x<sub>B</sub>, through photon-gluon fusion
  - $\rightarrow$  constrain nuclear PDFs, where uncertainties are large
  - $\rightarrow$  access region of nuclear shadowing
- Experimental signature

- measurement:
  - ATLAS preliminary: ATLAS-CONF-2017-011  $\bullet$





#### **ATLAS** measurement

- PbPb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}; \ \mathcal{L}=0.38 \text{ nb}^{-1}$
- at least 2 jets
- pT,leading jet > 20 GeV; pT,subleading jet > 15 GeV
- |η<sub>jet</sub>|<4.4
- H<sub>T</sub>>40 GeV; M<sub>J</sub>>35 GeV
- # neutrons in ZDCs: 0nXn
- $\Sigma\Delta\eta$ >2 in 0n (photon) direction;  $\Sigma\Delta\eta$ <3 in Xn (break-up) direction

$$H_T = \sum_{jet} p_{T,jet} \xrightarrow{2 \to 2} 2\mathbf{Q}$$
$$M_J = \sqrt{\left(\sum_{jet} E_{jet}\right)^2 - \left|\sum_{jet} \vec{p}_{jet}\right|^2}$$



#### **ATLAS** measurement

- PbPb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}; \ \mathcal{L}=0.38 \text{ nb}^{-1}$
- at least 2 jets
- pT,leading jet > 20 GeV; pT,subleading jet > 15 GeV
- |η<sub>jet</sub>|<4.4</li>
- H<sub>T</sub>>40 GeV; M<sub>J</sub>>35 GeV
- # neutrons in ZDCs: 0nXn
- $\Sigma\Delta\eta$ >2 in 0n (photon) direction;  $\Sigma\Delta\eta$ <3 in Xn (break-up) direction



$$H_T = \sum_{\text{jet}} p_{T,jet} \xrightarrow{2 \to 2} 2\mathbf{Q}$$
$$M_J = \sqrt{\left|\left(\sum E_{\text{jet}}\right)^2 - \left|\sum \vec{p}_{\text{je}}\right|\right|}$$

V V jet



jet

#### **ATLAS** measurement

- PbPb at  $\sqrt{s_{NN}} = 5.02$  TeV;  $\mathcal{L}=0.38$  nb<sup>-1</sup>
- at least 2 jets
- pT,leading jet > 20 GeV; pT,subleading jet > 15 GeV
- η<sub>jet</sub> < 4.4</li>
- H<sub>T</sub>>40 GeV; M<sub>J</sub>>35 GeV
- # neutrons in ZDCs: 0nXn
- $\Sigma\Delta\eta$ >2 in 0n (photon) direction;  $\Sigma\Delta\eta$ <3 in Xn (break-up) direction



$$H_T = \sum_{\text{jet}} p_{T,jet} \xrightarrow{2 \to 2} 2\mathbf{Q}$$

$$M_J = \sqrt{\left(\sum_{\text{jet}} E_{\text{jet}}\right)^2 - \left|\sum_{\text{jet}} \vec{p}_{\text{jet}}\right|}$$

#### **ATLAS measurement: results**



$$y_J = \frac{1}{2} \ln \left( \frac{\sum_{j \in t} E_{j \in t} + \sum_{j \in t} p_{z,j \in t}}{\sum_{j \in t} E_{j \in t} - \sum_{j \in t} p_{z,j \in t}} \right)$$
$$x_A = \frac{M_J}{\sqrt{s}} e^{-y_J} \xrightarrow{2 \to 2} \text{ parton energy}$$







## **Exclusive dijets in photoproduction**

Gluons, small x



Y. Hatta et al., 116 (2016) 202301 Y. Hagiwara et al., PRD 95 (2017) 114032

• recoil proton momentum

$$\vec{\Delta}_{\perp} = -(\vec{k}_{1\perp} + \vec{k}_{2\perp})$$

- relatif dijet momentum  $\vec{P}_{\!\perp} = \frac{1}{2} (\vec{k}_{1 \perp} \vec{k}_{2 \perp})$
- back-to-back jets

 $P_{\perp} \gg \Delta_{\perp}$ 

 $Q^2$  small:  $k_\perp \sim P_\perp$ 



## **Exclusive dijets in photoproduction**

Gluons, small x



#### small x

 $W^{DP}(x,\vec{k}_{\perp},\vec{b}_{\perp}) = W^{DP}_0(x,k_{\perp},b_{\perp}) + 2W^{DP}_1(x,k_{\perp},b_{\perp})\cos 2(\phi_{k_{\perp}}-\phi_{b_{\perp}}) + \dots$ 

•. Here  $\vec{p}_{1}$  all  $\vec{p}_{1}$  and  $\vec{p}_{2}$  and  $\vec{p}_{3}$  and  $\vec{p}_{1}$  and  $\vec{p}_{3}$  and  $\vec{p}_{1}$  and  $\vec{p}_{1}$  and  $\vec{p}_{2}$  and  $\vec{p}_{3}$  a





## **Exclusive dijets in photoproduction**





#### small x elliptic component $W^{DP}(x,\vec{k}_{\perp},\vec{b}_{\perp}) = W^{DP}_0(x,k_{\perp},b_{\perp}) + 2 W^{DP}_1(x,k_{\perp},b_{\perp}) \cos 2(\phi_{k_{\perp}} - \phi_{b_{\perp}}) + \dots$



• recoil proton momentum relatif dijet more  $\vec{k}_{1\perp} = -(\vec{k}_{1\perp} + \vec{k}_{2\perp})$  $\vec{P}_{\perp} = \frac{1}{2} (k_{1\perp} - k_{2\perp})$ • relat# dijet momentum • back-t $\vec{p}_{\perp}$ -back $\vec{k}_{1}$ ( $\vec{k}_{1\perp}$ - $\vec{k}_{2\perp}$ )  $P \rightarrow \Delta \Delta$ • back-to-back jets  $P_{\perp} \gg \Delta_{\perp}$  $Q^2$  small:  $k_\perp \sim P_\perp$ 







$$\rangle \cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}})$$


$$\begin{array}{c} & \overset{k_{1}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k_{2}}{\overset{k}}{\overset{k_{2}}}{\overset{k_{2}}}{\overset{k}}{\overset{k_{2}}}{\overset{k_{2$$







• CMS preliminary: CMS-PAS-HIN-18-011

9





#### **CMS** measurement

- PbPb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}; \ \mathcal{L}=0.38 \text{ nb}^{-1}$
- exactly 2 jets
- pT,leading jet > 30 GeV; pT,subleading jet > 20 GeV
- |η<sub>jet</sub>|<2.4</li>
- $\eta_{jet} \eta_{track} < 1$
- rapidity gap in hemisphere opposite to dijet >1.2

•  $P_{\perp} > \Delta_{\perp}$ 





#### Exclusive dijet production or heavy di-mesons







 $\vec{P}_{\perp} =$ 

• back-to-back jets

 $P_{\perp} \gg \Delta_{\perp}$ 

$$\vec{k}_{\perp}, \vec{b}_{\perp}) = W_0^{DP}(x, k_{\perp}, b_{\perp}) + 2W_1^{DP}(x, k_{\perp}, b_{\perp}) \cos 2(\phi_{k_{\perp}} - \phi_{b_{\perp}}) +$$

$$\underbrace{\mathfrak{f}}_{(\pm)}, \vec{\Delta}_{\perp}) = G_0^{DP}(x, k_{\perp}, \Delta_{\perp}) + 2G_1^{DP}(x, k_{\perp}, \Delta_{\perp}) \cos 2(\phi_{k_{\perp}} - \phi_{\Delta_{\perp}}) +$$
elliptic component
$$=$$

$$\underbrace{\mathbf{f}}_{(\pm)}$$

$$\sigma \sim \sigma_0 + \langle \cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}}) \rangle \cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}})$$

Y. Hatta et al., 116 (2016) 202301 Y. Hagiwara et al., PRD 95 (2017) 114032 : al., 116 (2016) 202301

• recoil proton momentum

a et al., PRD 95 (2017) 114032 V-18-011

5.02 TeV)

) GeV

) GeV

0 22 24

 $!_{T}$  [GeV]

**..4** 

• relatif dijet momentum

$$\frac{1}{2}(\vec{k}_{1\perp} - \vec{k}_{2\perp})$$

 $Q^2$  small:  $k_\perp \sim P_\perp$ 

 $+ \dots$ 

 $+ \dots$ 

| $\vec{c}_{1\perp} + \vec{k}_{2\perp}$ ) |
|-----------------------------------------|
| momentum                                |
| $\vec{k}_{1\perp} - \vec{k}_{2\perp})$  |
| k jets                                  |
| -                                       |

1 momentum



integral of GTMDs e convolution

• •

#### Exclusive dijet production or heavy di-mesons





- recoil proton momentum  $\vec{\Delta}_{\perp} =$
- - $\vec{P}_{\perp} =$
- back-to-back jets

 $P_{\perp} \gg$ 

$$\vec{k}_{\perp}, \vec{b}_{\perp}) = W_0^{DP}(x, k_{\perp}, b_{\perp}) + 2W_1^{DP}(x, k_{\perp}, b_{\perp}) \cos 2(\phi_{k_{\perp}} - \phi_{b_{\perp}}) +$$

$$\underbrace{\mathfrak{g}}_{(\perp)}, \vec{\Delta}_{\perp}) = G_0^{DP}(x, k_{\perp}, \Delta_{\perp}) + 2G_1^{DP}(x, k_{\perp}, \Delta_{\perp}) \cos 2(\phi_{k_{\perp}} - \phi_{\Delta_{\perp}}) +$$
elliptic component
$$=$$

$$\underbrace{\mathbf{f}}_{(\perp)}$$

$$\sigma \sim \sigma_0 + \langle \cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}}) \rangle \cos 2(\phi_{P_{\perp}} - \phi_{\Delta_{\perp}})$$

Y. Hatta et al., 116 (2016) 202301 Y. Hagiwara et al., PRD 95 (2017) 114032 : al., 116 (2016) 202301

a et al., PRD 95 (2017) 114032 V-18-011

| $(\vec{1})$          | $1 \rightarrow 1$   |
|----------------------|---------------------|
| $-(\kappa_{1\perp})$ | $+\kappa_{2\perp})$ |

• relatif dijet momentum

$$\frac{1}{2}(\vec{k}_{1\perp} - \vec{k}_{2\perp})$$

$$\Delta_{\perp}$$

 $Q^2$  small:  $k_\perp \sim P_\perp$ 

 $+\ldots$ 

 $+ \dots$ 



 $c_{\perp} \sim P_{\perp}$ 

• •

1 momentum



5.02 TeV)

) GeV

D GeV

<u>.</u>4

integral of GTMDs e convolution





#### <u>Quarkonia</u>

approximate access to gluon PDF

$$\frac{d\sigma}{dt}\Big|_{t=0} \propto [g(x_B)]^2$$

Z. Phys. C**57** ('93) 89–92; arXiv:1609.09738

#### <u>Quarkonia</u>

approximate access to gluon PDF

$$\frac{d\sigma}{dt}\Big|_{t=0} \propto [g(x_B)]^2$$

Z. Phys. C**57** ('93) 89–92; arXiv:1609.09738



#### <u>Quarkonia</u>

approximate access to gluon PDF

$$\frac{d\sigma}{dt}\Big|_{t=0} \propto [g(x_B)]^2$$

Z. Phys. C**57** ('93) 89–92; arXiv:1609.09738

#### <u>Vector-mesons</u>

test saturation



#### <u>Quarkonia</u>



#### <u>Vector-mesons</u>

test saturation

















































- Measurements: Pb Pb Pb J/ψ



#### **Backgrounds to measurements**



continuous pair production

 remove via fit to invariant mass

#### **Backgrounds to measurements**





 remove via fit to invariant mass



inelastic production

- reject via signals in ZDCs, CASTOR, Herschel
- restrict p<sub>T,pair</sub> to < ~1 GeV</li>
- remove via fit to p<sub>T,pair</sub>
   (model assumption on

proton/ion dissociation

#### Cs, CASTOR, Herschel eV

(model assumption on shape of p<sub>T,pair</sub> distribution)

#### **Backgrounds to measurements**





remove via fit to invariant mass



inelastic production

- reject via signals in ZDCs, CASTOR, Herschel
- restrict p<sub>T,pair</sub> to < ~1 GeV</li>
- remove via fit to p<sub>T,pair</sub> (model assumption on shape of p<sub>T,pair</sub> distribution)

proton/ion dissociation

feeddown from higher-mass states

 reconstruct higher-mass state

### Results on J/ $\psi$ production in pPb collisions

→ access to low-x<sub>B</sub> gluon PDFs



## Results on J/ $\psi$ production in pPb collisions



access to low-x<sub>B</sub> gluon PDFs



- access to lacksquarelow-x<sub>B</sub> gluon nuclear PDFs
- probe shadowing



#### covered x<sub>B</sub> region

 $0.7 \cdot 10^{-2} < x_B < 3.3 \cdot 10^{-2}$  (dominant)  $1.1 \cdot 10^{-5} < x_B < 5.1 \cdot 10^{-5}$ 

- access to low-x<sub>B</sub> gluon nuclear PDFs
- probe shadowing



 $0.7 \cdot 10^{-2} < x_B < 3.3 \cdot 10^{-2}$  (dominant)  $1.1 \cdot 10^{-5} < x_B < 5.1 \cdot 10^{-5}$ 

- access to low-x<sub>B</sub> gluon nuclear PDFs
- probe shadowing



 $0.7 \cdot 10^{-2} < x_B < 3.3 \cdot 10^{-2}$  (dominant)  $1.1 \cdot 10^{-5} < x_B < 5.1 \cdot 10^{-5}$ 



probe shadowing



### Results on p<sup>0</sup> in pPb collisions





### Results on p<sup>0</sup> in pPb collisions















# **Exclusive continuous dilepton production** $Pb = Pb^* + X Pb$

- calibration for
  - photonuclear production of jets, vector mesons, …
  - light-by-light scattering



# **Exclusive continuous dilepton production** $Pb = Pb^* + X Pb$

- calibration for
  - photonuclear production of jets, vector mesons, …
  - light-by-light scattering



#### Pb $Pb^{\star} + X Pb$ **Exclusive continuous dilepton production**

- calibration for
  - photonuclear production of jets, vector mesons, ...
  - light-by-light scattering

- measurements:
  - ALICE, PbPb (m<sub>II</sub><10 GeV): Eur. Phys. J. C 73 ('13) 2617
  - ATLAS, PbPb (m<sub>II</sub>>10 GeV): arXiv:2011.12211
  - ATLAS, pp (m<sub>II</sub>>10 GeV): Phys. Lett. B 749 ('15) 242; Phys. Lett. B 777 ('18) 303
  - CMS, pp (m<sub>II</sub><10 GeV): JHEP 1201 ('12) 052



for m<sub>II</sub>>10 GeV: continuous dilepton production is dominant

## **ATLAS** measurement

- PbPb at  $\sqrt{s_{NN}} = 5.02 \text{ TeV}; \ \mathcal{L}=0.48 \text{ nb}^{-1}$
- exactly 2 oppositely charged muons
- p<sub>T,µ</sub> > 4 GeV
- |η<sub>µ</sub>|<2.4</li>
- m<sub>µµ</sub>>10 GeV
- p<sub>T,µµ</sub><2 GeV</li>
- classification of events depending on # neutrons in ZDC

arXiv:2011.12211

## **ATLAS** measurement

• PbPbpat  $\sqrt{s_{NN}} = 5.02$  PFeV;  $\mathcal{L} = 0.48$  nb<sup>-1</sup> Pb • exactly 2 oppositely charged muons • p<sub>T,µ</sub> > 4 GeV • |η<sub>μ</sub>|<2.4 • m<sub>µµ</sub>>10 GeV • p<sub>T,µµ</sub><2 GeV Pb  $Pb^{\star} + X Pb$ 

Contributions to event sample



#### arXiv:2011.12211



22
# **ATLAS** measurement

• PbPbpat  $\sqrt{s_{NN}} = 5.02$  PFeV;  $\mathcal{L} = 0.48$  nb<sup>-1</sup> Pb • exactly 2 oppositely charged muons • p<sub>T,µ</sub> > 4 GeV • |η<sub>μ</sub>|<2.4 • m<sub>µµ</sub>>10 GeV • p<sub>T,µµ</sub><2 GeV classification of events depending on meutrons in ZDC.  $Pb^{\star} + X Pb$ Pb

Contributions to event sample

signal



#### arXiv:2011.12211



22



# **ATLAS** measurement



Contributions to event sample



#### arXiv:2011.12211

#### • total fiducial cross section:

 $\sigma_{\rm fid}^{\mu\mu} = 34.1 \pm 0.3 (\text{stat.}) \pm 0.7 (\text{syst.}) \ \mu \text{b}$ 

#### $\sigma_{\rm fid}^{\mu\mu}({\rm STARlight}) = 32.1 \ \mu {\rm b}$

 $\sigma_{\rm fid}^{\mu\mu}({\rm STARlight}+{\rm PYTHIA8}) = 30.8 \ \mu {\rm b}$  (with QED FSR)



• total fiducial cross section:

 $\sigma_{\rm fid}^{\mu\mu} = 34.1 \pm 0.3 (\text{stat.}) \pm 0.7 (\text{syst.}) \ \mu \text{b}$ 

• acoplanarity:



#### $\sigma_{\rm fid}^{\mu\mu}({\rm STAR light}) = 32.1 \ \mu {\rm b}$

 $\sigma_{\rm fid}^{\mu\mu}({\rm STARlight}+{\rm PYTHIA8}) = 30.8 \ \mu {\rm b}$  (with QED FSR)

no neutrons in ZDC  $\rightarrow \alpha$ >0.01: higher-order QED



• rapidity dependence:



#### discrepancy at large rapidity

24



photon-energy dependence:

$$k_{1,2} = \frac{1}{2} m_{\mu\mu} e^{\pm y_{\mu\mu}}$$



photon-energy dependence:

$$k_{1,2} = \frac{1}{2} m_{\mu\mu} e^{\pm y_{\mu\mu}}$$

![](_page_78_Figure_3.jpeg)

path to reduce discrepancy: inclusion of  $\gamma\gamma$  collisions inside nucleus

![](_page_78_Picture_5.jpeg)

#### fractions of events with neutrons in 1 ZDC (Xn0n) and 2 ZDCs (XnXn):

![](_page_79_Figure_2.jpeg)

STARlight overestimates fractions

![](_page_79_Picture_5.jpeg)

![](_page_80_Figure_0.jpeg)

![](_page_80_Figure_1.jpeg)

light-by-light scattering

![](_page_80_Figure_4.jpeg)

![](_page_80_Picture_5.jpeg)

# Light-by-light scattering

- purely quantum-mechanical at  $O(\alpha_{EM}^4)$
- substantial QED correction to electron, muon anomalous magnetic moment
- possibly sensitive to new physics (axionlike particles)

![](_page_81_Picture_4.jpeg)

![](_page_81_Figure_5.jpeg)

# Light-by-light scattering

- purely quantum-mechanical at  $O(\alpha_{EM}^4)$
- substantial QED correction to electron, muon anomalous magnetic moment
- possibly sensitive to new physics (axionlike particles)

- measurements:
  - ATLAS: Nat. Phys. 13 ('17) 852; Phys. Rev. Lett. 123 ('19) 052001.
  - CMS: Phys. Lett. B 797 ('19) 134826

![](_page_82_Picture_7.jpeg)

![](_page_82_Figure_8.jpeg)

# ATLAS and CMS measurements

#### <u>ATLAS</u>

- PbPb at  $\sqrt{s_{NN}} = 5.02$  TeV;  $\mathcal{L}=1.73$  nb<sup>-1</sup>
- exactly 2 photons
- $E_{T,\gamma} > 3 \text{ GeV}; |\eta_{\gamma}| < 2.4$
- m<sub>γγ</sub>>6 GeV
- $p_{T,\gamma\gamma}$ <1 GeV or 2 GeV (for  $m_{\gamma\gamma}$ < or >12 GeV)
- (1-|Δφ|/π)<0.01</li>

#### <u>CMS</u>

- PbPb at  $\sqrt{s_{NN}} = 5.02$  TeV;  $\mathcal{L}=390$  µb<sup>-1</sup>
- exactly 2 photons
- $E_{T,\gamma} > 2 \text{ GeV}; |\eta_{\gamma}| < 2.4$
- m<sub>γγ</sub>>5 GeV
- p<sub>T,γγ</sub><1 GeV</li>
- (1-|Δφ|/π)<0.01</li>

### **ATLAS and CMS measurements**

#### ATLAS

- Pb at  $\sqrt{Pb Pb} = 1.73 \text{ nb}^{-1}$
- notorsexabeltopphotons
- $> 3 \text{ GeV}; |\eta_{\gamma}| \leq 2.4$
- >6 GeVM<sub>yy</sub>≥6 GeV
- <1 Get  $3\pi Get (60r 2) Get (60r 10) Get ($ Δφ|*/π*)<(**0.01**
- Contributions to event sample 'Enterria / Mudelin Physical Shuge 2019 794-9894 (2019) 791-794 signal

![](_page_84_Figure_8.jpeg)

correction via STARlight & data correction via SuperChic & data Fig. 1. Diagrams Figlight Biagrams of thight southing OFD-dietection (geD dielectrometer), and etentrate the south a south of the south

#### <u>CMS</u>

- 2 photoms and top photons
- $E_{T,\gamma} > 2$  Get  $\eta_{\gamma} \approx 2$  Get  $\eta_{\gamma} \approx 2$
- m<sub>γγ</sub>>5 GeVm<sub>γγ</sub>>5 GeV
- p<sub>T,γγ</sub><1 GeV

main background contributions

![](_page_84_Picture_20.jpeg)

# **ATLAS and CMS: results**

#### <u>ATLAS</u>

- events observed: 59
- events expected: 30±4(syst.) signal and 12±1(stat.)±3(syst.) background
- significance excess against background-only=8.2 $\sigma$
- fiducial cross section  $\sigma_{\rm fid}(\gamma\gamma \to \gamma\gamma) = 78 \pm 13(\text{stat.}) \pm 7(\text{syst.}) \pm 3(\text{lumi}) \text{ nb}$

cross sections consistent with standard-model predictions

#### <u>CMS</u>

- events observed: 14
- events expected: 9.0±0.9(theo.) signal and 4.0±1.2(stat.) background
  - significance excess against background-only=3.7 $\sigma$
  - fiducial cross section  $\sigma_{\rm fid}(\gamma\gamma \to \gamma\gamma) = 120 \pm 46(\text{stat.}) \pm 28(\text{syst.}) \pm 12(\text{theo}) \text{ nb}$

![](_page_85_Figure_13.jpeg)

![](_page_86_Figure_0.jpeg)

### **Exclusion limits for axion-like particles**

![](_page_87_Figure_1.jpeg)

ALP coupling to EM currents

![](_page_87_Figure_3.jpeg)

assumption: 100% ALP decay branching fraction to diphotons

#### The future

- Runs 3 and 4:

  - upgrade of detectors —> improve systematic uncertainties

! Still Run 2 data to be analysed and explore, e.g., photoproduction of jets

• 10x data for pPb and PbPb  $\longrightarrow$  improve statistically limited measurements

 $\rightarrow$  extend kinematic reach

#### The future

• Light-by-light scattering for  $m_{\gamma\gamma}$ <5 GeV by ALICE and LHCb in RUN3 and beyond:

![](_page_89_Figure_2.jpeg)

![](_page_89_Figure_4.jpeg)

![](_page_89_Figure_5.jpeg)

VELO

LHC beam

LHCb

#### SMOG2

![](_page_90_Picture_3.jpeg)

inject gas: He, Ne, Ar, and H<sub>2</sub>, D<sub>2</sub>

noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount of gas injected can be accurately measured in order to precisely compute the target densities from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well established system, operated by the proponents in previous experiments [32, 33].

#### 7.1 Overview

The system consists of four assembly groups, Fig. 36.

![](_page_90_Figure_10.jpeg)

Figure 36: The four assembly groups of the SMOG2 Gas Feed System: (i) GFS Main Table, (ii) Gas Supply with reservoirs, (iii) Pumping Station (PS) for the GFS, and (iv) Feed Lines. The pressure gauges are labelled AG1 (Absolute Gauge 1), AG2 (Absolute Gauge 2). The two dosing valves are labelled DVS (Dosing Valve for Stable pressure in the injection volume) and DVC (Dosing Valve for setting the Conductance). The Feeding Connections include the feeding into the VELO vessel and into the storage cell. The corresponding values are labelled CV (Cell Value), VV (VELO Value) and SV (Safety Value). A Full Range Gauge (FRG) monitors the pressure upstream of the last valves for feeding into the vessel (VV) and into the Cell (VC). A RGA with restriction and PS will be employed to analyze the composition of the injected gas (see Sect. 6.4).

(i) GFS Main Table: Table which hosts the main components for the injection of calibrated gas flow (volumes, gauges, and electro–pneumatic valves), to be located on the balcony at the P8 cavern;

![](_page_90_Picture_13.jpeg)

#### 34

![](_page_90_Picture_15.jpeg)

![](_page_90_Picture_16.jpeg)

LHCb

![](_page_91_Picture_2.jpeg)

noble gases), and cannot provide accurate determination of the injected gas flow rate Q.

For SMOG2 a new GFS, schematically shown in Fig. 36, has been designed. This system includes an additional feed line directly into the cell center via a capillary, Fig. 29. The amount of gas injected can be accurately measured in order to precisely compute the target densities from the cell geometry and temperature.

Beyond the constraints requested by LHC and LHCb, the scheme shown in Fig. 36 is a well established system, operated by the proponents in previous experiments [32, 33].

#### 7.1 Overview

The system consists of four assembly groups, Fig. 36.

![](_page_91_Picture_8.jpeg)

![](_page_92_Figure_1.jpeg)

![](_page_93_Figure_1.jpeg)

high-x<sub>B</sub> region

![](_page_94_Figure_1.jpeg)

![](_page_94_Figure_3.jpeg)

![](_page_95_Figure_1.jpeg)

 $\rightarrow$  Constrain nucleon and nuclear GPDs in high-x<sub>B</sub> region

![](_page_96_Figure_1.jpeg)

#### exclusive measurements with SMOG2:

|                         | pp                                                 | pHe                                          | pXe                                                  |
|-------------------------|----------------------------------------------------|----------------------------------------------|------------------------------------------------------|
| continuous $\mu^+\mu^-$ | $\sigma = 61.931 \text{ pb} = 686 \text{ evts}$    | $\sigma = 113.6 \text{ pb} = 0 \text{ evts}$ | $\sigma = 17.6 \text{ nb} = 29 \ 10^3 \text{ evts}$  |
| $J/\psi \to \mu^+\mu^-$ | $\sigma = 20.467 \text{ pb} = 2302 \text{ evts}$   | $\sigma = 27.3 \text{ pb} = 0 \text{ evts}$  | $\sigma = 1.3 \text{ nb} = 21 \ 10^3 \text{ evts}$   |
| $\phi \to K^+ K^-$      | $\sigma = 184 \text{ pb} = 12 \ 10^3 \text{ evts}$ | $\sigma = 109.4 \text{ pb} = 5 \text{ evts}$ | $\sigma = 11.0 \text{ nb} = 102 \ 10^3 \text{ evts}$ |

 $\rightarrow$  Constrain nucleon and nuclear GPDs in high-x<sub>B</sub> region

total uncertainty on cross section: 5-10%

![](_page_96_Picture_7.jpeg)

![](_page_97_Picture_0.jpeg)

![](_page_97_Figure_1.jpeg)

protons

gas protons, deuterons

![](_page_97_Picture_6.jpeg)

 $\sqrt{s_{NN}} = 115 \text{ GeV}$ 

![](_page_98_Picture_0.jpeg)

PDFs, and TMD PDFs

- solid fixed target at ALICE
  - complementary targets
  - complementary coverage in y<sub>CM</sub>

![](_page_98_Figure_5.jpeg)

![](_page_98_Figure_6.jpeg)

LHCb

![](_page_98_Picture_9.jpeg)

#### UPCs so far underexplored!

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_102_Picture_2.jpeg)

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_103_Picture_2.jpeg)

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_104_Picture_2.jpeg)

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_105_Picture_2.jpeg)

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_106_Picture_2.jpeg)

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei

![](_page_107_Picture_2.jpeg)

#### and a possible path to new physics
# Summary

#### UPCs so far underexplored! offer unique possibilities to study the structure of nucleons and nuclei



#### and a possible path to new physics

Beautiful physics programme to look forward to :!



# Back up

#### **ATLAS** measurement dijets



# **ATLAS measurement: results**



$$y_J = \frac{1}{2} \ln \left( \frac{\sum_{j \in t} E_{j \in t} + \sum_{j \in t} p_{z,j \in t}}{\sum_{j \in t} E_{j \in t} - \sum_{j \in t} p_{z,j \in t}} \right)$$
$$x_A = \frac{M_J}{\sqrt{s}} e^{-y_J}$$

$$z_{\gamma} = \frac{M_J}{\sqrt{s}} e^{+y_J}$$