Status of net-proton fluctuation measurements with ALICE and long-term perspectives

Mesut Arslandok

Physikalisches Institut Universität Heidelberg

Motivation #1

QCD phase diagram

Motivation #1

QCD phase diagram

Why fluctuations?

Multiplicity distributions

~**15000 charged particles** are detected in one central Pb-Pb collision

Multiplicity distributions

Mesut Arslandok, Heidelberg (PI)

What kind of a system we are talking about?

What kind of a system we are talking about?

What kind of a system we are talking about?

Motivation #2: How to link experiment to theory?

Closer look at QCD Phase diagram: Nature of chiral phase transition

F. Karsch, Schleching 2016

A. Andronic, P. Braun-Munzinger, J. Stachel and K. Redlich

$$\bar{\psi}\psi\rangle_l^{n_f=2} = \frac{T}{V}\frac{\partial\ln Z}{\partial m_l}$$
$$\chi_{m,l} = \frac{\partial}{\partial m_l}\langle\bar{\psi}\psi\rangle_l^{n_f=2}$$

$$\langle \bar{\psi}\psi \rangle_l^{n_f=2} = \frac{T}{V} \frac{\partial \ln Z}{\partial m_l}$$

 $\chi_{m,l} = \frac{\partial}{\partial m_l} \langle \bar{\psi}\psi \rangle_l^{n_f=2}$

Chemical freeze-out near $T_{pc} \rightarrow$ motivation to look for higher order moments

<u>LQCD</u>

$$\frac{P}{T^4} = \frac{1}{VT^3} \ln Z \left(V, T, \mu_{B,Q,S} \right) \bigoplus \hat{\chi}_n^{N=B,S,Q} = \frac{\partial^n P / T^4}{\partial \left(\mu_N / T \right)^n}$$

Susceptibilities

At 4th order LQCD shows a deviation (~30% from unity) from Hadron Resonance Gas (HRG)

What is the baseline?

Skellam distribution

Uncorrelated Poisson limit: \geq

 $\langle N_B N_{\overline{B}} \rangle = \langle N_B \rangle \langle N_{\overline{B}} \rangle$

Skellam distribution

Orsay, 19.12.2019

12

From data to physics

A Large Ion Collider Experiment

Main detectors used:

- Inner Tracking System (ITS) → Tracking and vertexing
- ➤ Time Projection Chamber (TPC) <</p>
 - → Tracking and Particle Identification (PID)
- ✓ Vertex 0 (V0)
 → Centrality determination

Data Set:

- \succ $\sqrt{s_{\rm NN}} = 5.02$ TeV, ~78 M events
- → $\sqrt{s_{\rm NN}} = 2.76$ TeV, ~12 M events

Kinematic acceptance:

- ➢ 0.6
- ▷ |η|<0.2, 0.4, ..., 0.8

The Method

"The 1st was <u>never to accept anything for true</u> which I did not clearly know to be such; that is to say, carefully to avoid precipitancy and prejudice, and to comprise nothing more in my judgment than what was presented to my mind so clearly and distinctly as to exclude all ground of doubt.

The 2nd, to divide each of the difficulties under examination into as many parts as possible, and as might be necessary for its adequate solution.

The 3rd, to conduct my thoughts in such order that, by commencing with objects the simplest and easiest to know, I might ascend by little and little, and, as it were, <u>step by step, to the knowledge of the</u> <u>more complex</u>; assigning in thought a certain order even to those objects which in their own nature do not stand in a relation of antecedence and sequence.

The last, in every case to make enumerations so complete, and <u>reviews so general, that I might be</u> assured that nothing was omitted."

Experimental Challenges

Baryon number conservation

Baryon number conservation imposes subtle correlations

Volume Fluctuates

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130

Volume Fluctuates

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nucl. Phys. A 960 (2017) 114-130

Mesut Arslandok, Heidelberg (PI)

Volume Fluctuations at RHIC energies

Participant fluctuations will be present even in the limit of very fine centrality bins

Incoherent addition of data from intervals with very small centrality bin width will eliminate true dynamical fluctuations.

P. Braun-Munzinger, A. Rustamov, J. Stachel, Nuclear Physics A 960 (2017) 114–130

Effect of resonances

> Net-electric-charge: → Strongly dominated by resonance contributions

Effect of resonances

- > Net-electric-charge: -> Strongly dominated by resonance contributions
- ▶ Net-strangeness: \rightarrow Kaons are dominated by ϕ -decay

Effect of resonances

- Net-electric-charge:
 → Strongly dominated by resonance contributions
- ▶ Net-strangeness: \rightarrow Kaons are dominated by ϕ -decay
- > Net-baryon:
 - → Due to **isospin randomization**, at $\sqrt{s_{NN}}$ > 10 GeV **net-baryon** fluctuations can be obtained from corresponding **net-proton** measurements (<u>M. Kitazawa</u>, and M. Asakawa, Phys. Rev. C 86, 024904 (2012))
 - $\rightarrow\,$ No resonance feeding $p+\overline{p}$
 - \rightarrow Best candidate for measuring charge susceptibilities

Particle Identification?

via specific energy loss as function of momentum in the TPC

Cut based vs Identity method

Cut-based approach: count tracks of a given particle type

Cut based vs Identity method

Cut-based approach: count tracks of a given particle typeIdentity method:count probabilitiesto be of a given particle type

Cut based vs Identity method

Cut based vs Identity method

Cut based approach

- Use additional detector information or reject a given phase space bin
- Challenge: efficiency correction and contamination
- Identity Method
 - Gives folded multiplicity distribution
 - Easier to correct inefficiencies
 - Ideal approach for low momentum (p<2 GeV/c)

Mesut Arslandok, Heidelberg (PI)

Recent results

^{VT³} 1st and 2nd order cumulants

LQCD expectations:

- ✓ 1st moments → $T_{pc} = T_{freeze-out} = ~ 156 \text{ MeV}$
- ✓ 2nd moments → No deviation from HRG at T_{pc}

 VT^3

1st and 2nd order cumulants

2nd order cumulants

- > Deviation from Skellam baseline is due to **baryon number conservation**
- > ALICE data suggest long range correlations, $\Delta y = \pm 2.5$ unit or longer

2nd order cumulants

- > Deviation from Skellam baseline is due to baryon number conservation
- > ALICE data suggest long range correlations, $\Delta y = \pm 2.5$ unit or longer
- EPOS agrees with ALICE data but HIJING deviates significantly
 - Event generators based on string fragmentation (HIJING) conserve baryon number over $\Delta y = \pm 1$ unit

3rd order cumulants

- > Data agree with Skellam baseline "0" as a function of centrality and pseudorapidity
- Achieved precision of better than 5%

3rd order cumulants

- > Data agree with Skellam baseline "0" as a function of centrality and pseudorapidity
- Achieved precision of better than 5%
- > EPOS and HIJING in agreement with data
 - Both models conserve global charge \rightarrow net-p within acceptance is ~ 0

4th order cumulants of net-p

 C_3/C_2 and C_4/C_2 agree with Skellam at LHC energies?

- Small acceptance
- Low statistics
- Cut-based approach for PID

Analysis within a larger kinematic acceptance using Identity Method is in progress

After ALICE upgrade

- New ITS: better vertexing
- Faster TPC: MWPC → GEMs
- Record minimum-bias Pb-Pb data at 50kHz
 - Order of magnitude more events
- ➢ 6th order and may be beyond

Summary

- > Net-electric-charge fluctuations: Challenge are the dominant resonance contributions
- Net-proton fluctuations:
 - ✓ 1st order: $T_{fo}^{ALICE} \sim T_{pc}^{LQCD}$
 - ✓ 2nd order: Deviation from Skellam baseline is due to baryon number conservation
 - ALICE data suggests long range correlations
 - ✓ **3rd order:** Agrees with Skellam baseline **"0"** as a function of centrality and pseudorapidity
 - Achieved precision of **better than 5%** for the κ_3/κ_2 results is promising for the higher order cumulants
- Up to 3rd order ALICE data agree with the LQCD expectations

Summary

- Net-electric-charge fluctuations: Challenge are the dominant resonance contributions
- **Net-proton fluctuations:**
 - ✓ 1st order: $T_{fo}^{ALICE} \sim T_{pc}^{LQCD}$

 $\hat{\chi}_{n}^{N=B,S,Q} = \frac{\sqrt{\partial 2 \mathbb{P}/\partial r} \text{der: Deviation from Skellam baseline in due to <math>\hat{\chi}_{B}^{A}$ and $\hat{\chi}_{B}^{A}$ and

- - - Achieved precision of **better than 5%** for the κ_3/κ_2 results is promising for the higher order cumulants
- **Up to 3rd order** ALICE data agree with the LQCD expectations

Open Questions

Experiment

- Efficiency correction
 → realistic detector simulations
- Volume fluctuations
 - \rightarrow centrality resolution
- Effect of resonances
- Measurement at low energies
- Systematic uncertainties

o ...

Theory

- $\circ \quad \begin{array}{l} \text{Efficiency correction} \\ \longrightarrow \text{ unfolding or } ... \end{array}$
- Volume fluctuations
- Effect of resonances
- Measurement at low energies
 - \rightarrow baryon stopping, deuteron formation ...
- o Effect of hydrodynamic evolution

o ...

• Adam Bzdak et. al., arXiv:1906.00936

Probing the Phase Structure of Strongly Interacting Matter: Theory and Experiment, https://indico.gsi.de/event/7994/overview

BACKUP

2nd order cumulants of net-p: Acceptance dependence

- Consistent with the baryon number conservation picture
 - Increase in fraction of accepted p, \overline{p} -> stronger constraint of fluctuations due to baryon number conservation
- EPOS & HIJING show this drop qualitatively

2^{nd} order cumulants of net- Λ at LHC

represents a possible state that the real system!

probability of a given state with E_i and N_i

emble

namic susceptibilities

ic susceptibilities

, can $\frac{1}{10}$ chosen to smoothly matter the equation of trate at $\mu = 0$ fion of scale can incorrect the information of trate at $\mu = 0$ fing singular behave the information of the scale of the state of the scale of the

in Fig_x 6-mean the critical point, Using the universal enderitical point, Using the universal enderitical point, Using the universal enderities of the universal enderi

r lines of fixed T. Three such lines are shown in Fig == Opfor simplicity), we "I Nistrate Thows the scale of the definited of the second state of the secon eminar. Januarv 20. Heidelberg of susceptibilities χ_k . It is instructive to follow χ_k along lines of fixed χ_k . Three such lines are by the traverse the crossover region (papel (a) two Figure 1) the density ensembles continue used with a the are fixed χ_k . It is instructive to follow χ_k along lines of fixed χ_k . Three such lines are by the traverse the crossover region (papel (a) two Figure 1) the density ensembles continue used are the crossover region (papel (a) two Figure 1) the density ensembles continue used are the crossover region (papel (a) two Figure 1) the density ensembles continue used are the crossover region (papel (a) two Figure 1) the density ensembles continue used are the crossover region (papel (a) two Figure 1) the density ensembles continue used are the crossover region (b) the density ensembles continue used are the crossover region (b) the density ensembles continue used are the crossover region (c) the density ensembles continue used are the crossover region (c) the density ensembles continue used are the crossover region (c) the density ensembles continue used are the conti in the set of the case where the isothermal line is classified the original definition of the origina n in the third Eq. (50)), will be sensitive to the proximity of the vertical points in the ground of the ground of the proximity of the vertical points in the ground of the proximity of the vertical points in the ground of the proximity of the vertical points in the ground of the proximity of t e traverse of the order susceptibilities. We see that denotisy up is imply, as here acy in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry is in the bacy in the density will entry it is in the bacy in the density will entry it is in the density of the densi pseudo-critical region closer to the critical (sein Eis, in Ellipsted ill Hargensvalue to othen proximily not the isridical factor gats he c ase where many consistent and the higher the order of the sustent bit is the instruction of the sustent and th cumulants shown in the contour plots can be solution derstood estibilities changes in the density when traversing the density when traversing the analysis of the density n is solved or solver to the density in the density n is solved or solver to the density in the density of the density n is solved or solver to the density in the density of the density n is solved or solver to the density is a solution of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density n is solved or solver to the density of the density of the density of the density of the density n is solved or solver to the density of (50)), will find that away from the present of the content of the order susceptibidities and the second of the strate of the steeper in the back on the design when the As we have seen, the high-order cumulants snow pointivita dependence of the and the the clossover region. Critical regions close close close control of the Discounced the stistence of a cross-over transition at μ_{2}^{point} where correlation repeated by the predicted by the pre ts shown in the freezeout temperature, which is conservation suggests that the measurement of net-baryon cumulants may also provide an avenue to establish the preserve temperature which is a supervised of the preserve temperature of higher der verstaar of for the density unia as the systems created by high statute OLD calculations, a cross-over transition results in negative sixth and eighth order the systems created by welf as lattice OLD calculations, a cross-over transition results in negative sixth and eighth order the systems created by welf as lattice OLD calculations, a cross-over transition results in negative sixth and eighth order the systems created by welf as lattice OLD calculations, a cross-over transition results in negative sixth and eighth order the systems created by welf as lattice OLD calculations, a cross-over transition results in negative sixth and eighth order the systems created by the systems of the system of the systems created by the systems of the systems of the systems created by the systems of the syste hat away from the interview of the derivatives (specific the superimental evidence that the systems created in high energy bravy ion collisions fragge out classification to the contract of t Orsay, 19.12 2019 and the complete complete of pois of the susception of the suscept

Cross Cumulants

Orsay, 19.12.2019

Mesut Arslandok, Heidelberg (PI)

Efficiency correction

Orsay, 19.12.2019

Mesut Arslandok, Heidelberg (PI)

Expectations for the 3rd and 4th order cumulants

Effect of baryon number conservation at 4th order?

- Small acceptance → small multiplicities → approach to Poissonian limit
- Acceptance is more crucial for the 4th cumulant

P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310

3rd and 4th order cumulants of net-p at RHIC

 κ_4

 κ_2

*K*₃

 κ_2

GSI

Effect of baryon number conservation

 $\succ \kappa_3/\kappa_2$ and κ_4/κ_2 cannot be simultaneously explained for the lowest two energies

Possible biases due to efficiency correction procedure and cut based approach

Volume in experiment? \rightarrow "Centrality"

"Model" vs ALICE Data

Volume Fluctuations: 2nd order

150*10⁶ Events

 m, \overline{m} from single wounded nucleon

Volume Fluctuations: 3rd order

 $\eta, \overline{\eta}$ from single wounded nucleon

does not vanish

Volume Fluctuations: 4th order

Efficiency correction: $\kappa_2(p - \bar{p})/\kappa_2(Skellam)$

Efficiency correction with binomial assumption:

<u>T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)</u> Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

Efficiency correction: $\kappa_3(p-\bar{p})/\kappa_2(p-\bar{p})$

Efficiency correction with binomial assumption:

<u>T. Nonaka, M. Kitazawa, S. Esumi, Phys. Rev. C 95, 064912 (2017)</u> Adam Bzdak, Volker Koch, Phys. Rev. C86, 044904 (2012)

Orsay, 19.12.2019

Mesut Arslandok, Heidelberg (PI)

 \blacktriangleright Probability of measuring n_B baryons in the acceptance:

$$B(n_B; N_B, \alpha) = \frac{N_B!}{n_B! (N_B - n_B)!} \alpha^{n_B} (1 - \alpha)^{N_B - n_B} \qquad \alpha = \frac{\langle N_B^{acc} \rangle}{\langle N_B^{4\pi} \rangle}$$

Multiplicity distribution in the acceptance:

$$P(n_B) = \sum_{N_B} B(n_B; N_B, \alpha) P(N_B)$$

The moments of the measured baryon distributions can be then calculated

$$\langle n_B \rangle = \sum_{n_B=0}^{\infty} n_B P(n_B) = \alpha \langle N_B \rangle,$$

AC implementation of canonical ensemble

Two baryon species with the baryon numbers +1 and -1 in the ideal Boltzmann gas

$$Z_{GCE}(V,T,\mu) = \sum_{N_B=0}^{\infty} \sum_{N_{\overline{B}}=0}^{\infty} \frac{\left(\lambda_B z\right)^{N_B}}{N_B!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} = e^{2z\cosh\left(\frac{\mu}{T}\right)}, \quad \lambda_{B,\overline{B}} = e^{\pm \frac{\mu}{T}}$$

$$Z_{CE}(V,T,B) = \sum_{N_B=0}^{\infty} \sum_{N_{\overline{B}}=0}^{\infty} \frac{\left(\lambda_B z\right)^{N_B}}{N_B!} \frac{\left(\lambda_{\overline{B}} z\right)^{N_{\overline{B}}}}{N_{\overline{B}}!} \delta\left(N_B - N_{\overline{B}} - B\right) = I_B\left(2z\right)\Big|_{\lambda_B=\lambda_{\overline{B}}=1}$$

$$\left\langle N_{B,\overline{B}}\right\rangle_{GCE} = \lambda_{B,\overline{B}} \frac{\partial \ln Z_{GCE}}{\partial \lambda_{B,\overline{B}}} = e^{\pm \frac{\mu}{T}} z, \quad z = \sqrt{\left\langle N_B \right\rangle_{GCE} \left\langle N_{\overline{B}} \right\rangle_{GCE}}$$

$$\left\langle N_{B,\overline{B}}\right\rangle_{CE} = \sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}} \frac{I_{B\mp 1} \left(2\sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}}\right)}{I_{B} \left(2\sqrt{\left\langle N_{B}\right\rangle_{GCE}} \left\langle N_{\overline{B}}\right\rangle_{GCE}}\right)}$$

R. Hagedorn, K. Redlich Z. Phys. 27, 1985 V.V. Begun, M. I. Gorenstein, O. S. Zozulya, PRC 72 (2005) 014902 P. Braun-Munzinger, B. Friman, F. Karsch, K. Redlich, V. Skokov, NPA 880 (2012) A. Bzdak, V. Koch, V. Skokov, PRC87 (2013) 014901

P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310

Orsay, 19.12.2019

Mesut Arslandok, Heidelberg (PI)

P. Braun-Munzinger, A. Rustamov, J. Stachel, NPA 982 (2019) 307-310
3rd and 4th cumulants

"The disconnected part of the light quark susceptibility describes the fluctuations in the light quark condensate"