

Heavy Ion Physics with the CMS experiment at the LHC

Bolek Wyslouch École Polytechnique/LLR & MIT

SACLAY 22 October 2010

Large Hadron Collider

• 2009-2011

- ◆ p+p at 7 TeV
- 2010, 2011
 - Pb+Pb at 2.8 TeV per nucleon pair
- 2013 and beyond
 - p+p at 14 TeV
 - Pb+Pb at 5.5 TeV per nucleon pair

Heavy lons

- Expect ~1 month of heavy ion collisions each year, starting in 10 weeks from now
- Start with very low luminosity in 2010, 2011, go to nominal in 2013
 - 10 μb⁻¹, 20 μb⁻¹, 0.5 nb⁻¹

CMS detector at the LHC

IR

Centrality and forward detectors

Centrality (impact parameter) determination is needed for most physics analyses

Energy in the forward hadronic calorimeter

TAN detector slot Phototubes Fibers

Zero Degree Calorimeter

IN

- Excellent performance of tracker
- Studying material, readout, alignment...
 - Silicon strip PID

Level 1 trigger

- Uses custom hardware
- Muon tracks + calorimeter information
- Decision after ~ $3\mu sec$

Level-1	p+p
Collision rate	1GHz
Event rate	32MHz
Output bandwidth	100 GByte/sec
Rejection	99.7%

High level Trigger

- ~1500 Linux servers (~10k CPU cores)
- Full event information available
- Runs "offline" algorithms

High Level Trigger	p+p
Input event rate	100kHz
Output bandwidth	225 MByte/sec
Output rate	150Hz
Rejection	99.85%

- Uses custom hardware
- Muon tracks + calorimeter information
- Decision after ~ $3\mu sec$

Level-1	Pb+Pb	p+p
Collision rate	3kHz (8kHz peak)	1GHz
Event rate	3kHz (8kHz peak)	32MHz
Output bandwidth	100 GByte/sec	100 GByte/sec
Rejection	none	99.7%

High level Trigger

- ~1500 Linux servers (~10k CPU cores)
- Full event information available
- Runs "offline" algorithms

High Level Trigger	Pb+Pb	p+p
Input event rate	3kHz (8kHz peak)	100kHz
Output bandwidth	225 MByte/sec	225 MByte/sec
Output rate	10-100Hz	150Hz
Rejection	97-99.7%	99.85%

October 22, 2010

Pb-Pb High-Level Triggering

Significantly enhanced statistical reach for hard probes: x20 - x300

CMS Heavy Ion Multi-Year Physics Plan

High Density QCD with Heavy Ions

- Particle production: multiplicity, azimuthal asymmetry, particle spectra, photons
- Two particle correlations
- Jet physics: fragmentation, flavor dependence, jet+γ, jet+Z⁰
- Quarkonia physics: J/ψ , Υ family
- Vector bosons: Z⁰ production
- Forward Energy Flow
- Ultra Peripheral Collisions
- and more...
- Many simulations will be updated with better knowledge of multiplicity as soon as we get data. PTDR was at 5.5 TeV/A

Charged Particle Multiplicity

proton-proton data

Pb-Pb simulation, **PTDR**

Charged Hadron Spectra p_T

CMS proton-proton data

Pb-Pb simulation

CMS proton-proton data

Z⁰ production

CMS proton-proton data

Pb-Pb simulation

10³

10²

10

ρ,ω φ

Heavy Flavor (J/ψ , Υ)

Pb-Pb simulation, PTDR

1 1 (400 50/2 350 Events / (0.066667 2200 120 120 100 50 0<u>⊏</u> 8.5 9

CMS proton-proton data

γ - jet in Pb-Pb (I): medium fragmentation functions

Medium-modified Fragmentation Functions

• Medium mod. FFs measurable for $z<0.7 \& 0.2 < \xi < 5$ with high significance

Syst. uncertainties dominated by (low) jet reco effic. 30-70 GeV

Summary: QCD matter with CMS @ LHC IR

multiplicity: entropy

Conclusions

- LHC will extend energy range and in particular high p_T reach of heavy-ion physics
- CMS is preparing to take advantage of its capabilities
 - Excellent rapidity and azimuthal coverage and high resolution
 - Quarkonia
 - Jets
 - Centrality, Multiplicity, Energy Flow reaching very low p_T
 - Essentially no modification to the detector hardware
 - New High Level Trigger algorithms specific for A+A
 - Zero Degree Calorimeter, CASTOR and TOTEM will be important additions extending forward coverage
 - Heavy-lon program is well integrated into the overall CMS Physics
 Program
- Initial performance of CMS indicates that we will be able to do great Heavy-lon physics
- The knowledge gained at RHIC&SPS will be extended to the new energy domain