

- Huge energy jump from RHIC: factor 14!
- Hottest nuclear matter ever created in the laboratory
- New probes or processes
- Excellent detectors
- Today from CMS:
 - Jets and the phenomenon of jet quenching

High p_T Suppression from RHIC

- π⁰ cross section measured in p+p and central (small impact parameter) Au+Au collisions @ 200 GeV
- The yield of high p_T hadrons is suppressed by a ~ 5 X compared to p+p expectation*
 - * p+p data scaled by the number of binary collisions

Springer Verlag. Landolt-Boernstein Vol. 1-23A.

- Correlation of hadrons of 4 GeV/c < p_{T, trigger} < 6 GeV/c 2 GeV/c < p_{T, partner} < p_{T, trigger}
- Near-side peak shows similar jet correlation in p+p and Au+Au
- Away-side jet correlation nearly extinguished in this p_T range
- Supports a geometrical picture of energy loss

Dihadron Correlations from STAR $\frac{1}{2}$

CMS detector at the LHC

A Dijet in Central PbPb

At LHC energies, jets with p_T of order 100 GeV/c cleanly separable from background fluctuations in central PbPb collisions

Jet Measurements in AA

Large background of soft particles, $dN_{charged}/d\eta| \sim 1600$ for 5% most central events

A schematic view of a jet measurement in heavy ions

Jets are reconstructed from energy reaching calorimeters

Partons lose energy as they traverse the dense medium

Some jet energy lost to

- -Low p_T particles
- -Large angle radiation
- -Nuclear interactions, decays, etc.

Measurements of parton energy loss allow to

- Determine the nature of QCD radiation at finite T/p
- Determine the transport properties of the QGP

- Minimum bias collisions are triggered by a coincidence on either side of the HF or BSC
- Jet are triggered at HLT with a 50 GeV/c p_T threshold (uncorrected, background subtracted)
- The jet trigger is fully efficient around corrected p_T of 100 GeV/c

Reconstruction of Jets in HI collisions

- Jets are accompanied by the large "thermal background" or "underlying event" that depends on the overall event multiplicity
 - Use background subtraction procedures
- CMS uses several jet finding algorithms
 - Iterative Cone
 - Anti-k_T (M. Cacciari, G. P. Salam, G. Soyez, JHEP 0804:063,2008.)
- Jets are found using different sets of detectors
 - Calorimetric Jets: use ECAL and HCAL
 - Particle Flow Jets: use Tracker and Calorimeters
- Jet cone size can vary
 - We use R=0.5
- CMS HI "workhorse"
 - IC5 CaloJets with iterative background subtraction (O. Kodolova et al., EPJC (2007))

Background Subtraction Method

- 1. Background energy per tower calculated in strips of η.
- 2. Iterative Cone (R=0.5) algorithm run on subtracted towers
- 3. Background energy recalculated excluding jets
- 4. Jet algorithm rerun on background subtracted towers, now excluding jets, to obtain final jets

Method: O. Kodolova et al., EPJC (2007) 117.

Analysis Details

- Collision Selection
 - Reject Beam Halo (BSC)
 - HF Coincidence
 - Pixel cluster compatibility with vertex
 - ECAL/HCAL noise cleaning
- Dijet Selection
 - Leading jet: p_{T,1} > 120 GeV/c, |η| < 2
 - Subleading jet: p_{T,2} > 50 GeV/c, |η| < 2
 - Azimuthal Angle: $\Delta \phi_{12} > 2/3 \pi$ radians
- Monte Carlo
 - PYTHIA 6.423, tune D6T
 - Adjusted for isospin ratio of Pb(208)
 - Embedded in real data or simulated data using the HYDJET generator

Before Collision Selection

Leading Jet p_T Distributions

No strong modification to shape of leading jet spectrum

Dijet Azimuthal Correlations

No strong angular deflection of reconstructed jets

Angular Decorrelation Quantified

No angular decorrelation beyond systematic uncertainties

Dijet p_T Asymmetry

Dijet asymmetry quantified by $A_J \rightarrow$ insensitive to energy scale uncertainty

Jet p_T cuts place a threshold on A_J e.g., $p_{T,1}$ =120 & $p_{T,2}$ =50 GeV/c $\rightarrow A_J$ < 0.41

Dijet p_T Asymmetry

Striking enhancement of asymmetry with increasing centrality

Dijet Imbalance Quantified

Smooth decrease in the fraction of balanced jets with increasing centrality Note: Dijets in which no subleading jet found above threshold are included

Main idea: Use charged tracks to trace the fate of the energy lost by subleading jet

Look at the sum p_T of charged tracks in 3 different p_T ranges

Baseline is PYTHIA+HYDJET where generator information is available for charged particles

Asymmetry Dependence of Fragmentation

- In MC, <u>rare</u> asymmetric dijets are due to the presence of a third jet
- Relative abundance of tracks in the 3 ranges is largely unchanged with asymmetry

- Both data and MC show that dijet asymmetry is also apparent in charged tracks
- In data the fraction of energy carried by low p_T tracks increases with asymmetry
- An enhancement of low p_T tracks at large angles is observed in asymmetric dijets

η, φ Reflection Method

The background is evaluated within the cone symmetric about η This avoids ϕ dependent variations due detector efficiency or hydrodynamic flow The regions around mid-rapidity, $|\eta| < 0.8$, and $|\eta| > 1.6$ are excluded

Missing p_T

To explore momentum balance to low p_T over all angles, calculate the "missing p_T "

Sum the track transverse momenta projected onto the leading jet axis:

$$p_T^{||} \equiv \sum_{\text{tracks}} -p_{\text{T,track}} \cos\left(\phi_{\text{track}} - \phi_{\text{leading jet}}\right)$$

Defined such that tracks on the away side give a positive contribution

Missing p_T: Data vs. MC

In MC, events are balanced, p_T composition is independent of centrality

For $p_T > 500$ MeV, p_T balance recovered!

In data, for asymmetric events, leading jet is balanced by low p_T tracks, Particularly in central events

Missing p_T: In vs. Out-of-Cone

Asymmetric events in MC show significant energy beyond R=0.8, carried by high p_T tracks \rightarrow 3 jet events

In-cone, p_T balance in data fairly similar to MC

Out-of-cone, p_T balance in data dominated by low p_T tracks

Summary

- During the first LHC Heavy Ion run CMS collected ~8.7 μb-1 with heavy ion collisions at B=3.8T and B=0 corresponding to >60M Min Bias events
- The analysis of data continues, our first paper summarizes detailed studies of jets with large apparent calorimetric energy imbalance
- The large acceptance of the CMS tracker allowed us to demonstrate large shift of energy to low p_T particles and demonstrate that most of these particles are outside of the jet cone