

LUND UNIVERSITY

Jets in QCD media

Konrad Tywoniuk

Y. Mehtar-Tani, C.A. Salgado, KT PRL 106 (2011) 122002
Y. Mehtar-Tani, C.A. Salgado, KT PLB 707 (2011) 156
Y. Mehtar-Tani, KT arXiv:1105:1346 [hep-ph]
Y. Mehtar-Tani, C.A. Salgado, KT arXiv:1112.5031 [hep-ph]

Recontres Ions Lourds, IPN Orsay, Paris 17 february 2012

 Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes

 LPHD: Hadronization does not affect inclusive observables (jet shape, energy distribution etc..)

 Originally a hard parton (quark/gluon) which fragments into many partons with virtuality down to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect inclusive observables (jet shape, energy distribution etc..)

2

Large time domain for pQCD: $\frac{1}{\sqrt{s}} < t < \frac{\sqrt{s}}{\Lambda_{OCD}^2}$

4

 \Rightarrow a laboratory to study coherence effects.

4

 \Rightarrow a laboratory to study coherence effects.

 $\Rightarrow \text{ a laboratory to study coherence effects.}$ $\omega \frac{dN^{\text{vac}}}{d^3 k} = \frac{\alpha_s}{(2\pi)^2 \omega^2} \left(Q_q^2 \mathcal{R}_{\text{coh}} + (Q_q + Q_{\bar{q}})^2 \mathcal{J} \right)$ $\mathcal{R}_{\text{coh}} = \mathcal{R}_q + \mathcal{R}_{\bar{q}} - 2\mathcal{J}$

The hard scale **Q**_{hard} is: $\delta \mathbf{k} = \mathbf{\kappa} - \mathbf{\bar{\kappa}}$ $|\delta \mathbf{k}| \simeq \omega \theta_{q\bar{q}}$

5

[gluon relative momentum off the antenna]

The hard scale **Q**_{hard} is:
$$\delta \mathbf{k} = \mathbf{\kappa} - \bar{\mathbf{\kappa}}$$

$$\left|\deltam{k}
ight|\simeq\omega heta_{qar{q}}$$
 ,

[gluon relative momentum off the antenna]

$$oldsymbol{C}(oldsymbol{k})\equiv rac{oldsymbol{\kappa}}{oldsymbol{\kappa}^2}-rac{ar{oldsymbol{\kappa}}}{ar{oldsymbol{\kappa}}^2}$$

$$\omega \frac{dN_{\gamma^*}}{d^3k} = \frac{\alpha_s C_F}{\pi^2} C^2(k)$$

 $ig| \delta oldsymbol{k}ig| \simeq \omega heta_{qar{q}}$ $oldsymbol{C}(oldsymbol{k}) \equiv rac{oldsymbol{\kappa}}{oldsymbol{\kappa}^2} - rac{ar{oldsymbol{\kappa}}}{ar{oldsymbol{\kappa}}^2}$ The hard scale **Q**_{hard} is: $\delta k = \kappa - \bar{\kappa}$ [gluon relative momentum off the antenna] $\omega \frac{dN_{\gamma^*}}{d^3k} = \frac{\alpha_s C_F}{\pi^2} C^2(k)$ $1/k^{2}$ $oldsymbol{C}^2(oldsymbol{k}) = \left\{egin{array}{cc} rac{1}{oldsymbol{k}^2} & oldsymbol{k} \ll \delta oldsymbol{k}, ext{ or } heta \ll heta_{qar q} \ rac{\delta oldsymbol{k}^2}{oldsymbol{k}^4} & oldsymbol{k} \gg \delta oldsymbol{k}, ext{ or } heta \gg heta_{qar q} \end{array}
ight.$ NVdK² 0.1 0.01 0.1 10 $k^2/$

 $ig| \delta oldsymbol{k}ig| \simeq \omega heta_{qar{q}}$ $oldsymbol{C}(oldsymbol{k}) \equiv rac{oldsymbol{\kappa}}{oldsymbol{\kappa}^2} - rac{ar{oldsymbol{\kappa}}}{ar{oldsymbol{\kappa}}^2}$ The hard scale **Q**_{hard} is: $\delta k = \kappa - \bar{\kappa}$ [gluon relative momentum off the antenna] $\omega \frac{dN_{\gamma^*}}{d^3k} = \frac{\alpha_s C_F}{\pi^2} C^2(k)$ $1/k^2$ $egin{aligned} egin{aligned} egin{aligned} egin{aligned} C^2(m{k}) &= \left\{ egin{aligned} rac{1}{m{k}^2} & m{k} \ll \deltam{k}, \ \mathrm{or} \ eta \ll heta_{qar{q}} \ rac{\deltam{k}^2}{m{k}^4} & m{k} \gg \deltam{k}, \ \mathrm{or} \ eta \gg heta_{qar{q}} \ eta \gg heta_{qar{q}} \end{aligned}
ight\} egin{aligned} & \left[egin{aligned$ 0.01 0.1 10 k^2/C

 $egin{aligned} & \left| \delta m{k}
ight| \simeq \omega heta_{qar{q}} \ & m{C}(m{k}) \equiv rac{m{\kappa}}{m{\kappa}^2} - rac{ar{m{\kappa}}}{ar{m{\kappa}}^2} \end{aligned}$ The hard scale **Q**_{hard} is: $\delta k = \kappa - \bar{\kappa}$ [gluon relative momentum off the antenna] $\omega \frac{dN_{\gamma^*}}{d^3k} = \frac{\alpha_s C_F}{\pi^2} C^2(k)$ $1/k^{2}$ $oldsymbol{C}^2(oldsymbol{k}) = \left\{ egin{array}{ccc} rac{1}{oldsymbol{k}^2} & oldsymbol{k} \ll \delta oldsymbol{k}, ext{ or } oldsymbol{ heta} \ll heta_{qar{q}} & oldsymbol{ ilde{ heta}}_{0.1}
ight\} \ rac{\delta oldsymbol{k}^2}{oldsymbol{k}^4} & oldsymbol{k} \gg \delta oldsymbol{k}, ext{ or } oldsymbol{ heta} \gg heta_{qar{q}} & oldsymbol{ ilde{ heta}}_{0.1}
ight\}$ 0.01 emissions at large angles are sensitive to 0.1 10 the total charge of the emitting system

 $egin{aligned} & \left| \delta m{k}
ight| \simeq \omega heta_{qar{q}} \ & m{C}(m{k}) \equiv rac{m{\kappa}}{m{\kappa}^2} - rac{ar{m{\kappa}}}{ar{m{\kappa}}^2} \end{aligned}$ The hard scale **Q**_{hard} is: $\delta \mathbf{k} = \mathbf{\kappa} - \bar{\mathbf{\kappa}}$ [gluon relative momentum off the antenna] $\omega \frac{dN_{\gamma^*}}{d^3k} = \frac{\alpha_s C_F}{\pi^2} C^2(k)$ $1/k^{2}$ $egin{aligned} egin{aligned} egin{aligned} egin{aligned} C^2(m{k}) &= \left\{ egin{aligned} rac{1}{m{k}^2} & m{k} \ll \deltam{k}, \ \mathrm{or} \ eta \ll heta_{qar{q}} \ rac{1}{m{k}^4} & m{k} \gg \deltam{k}, \ \mathrm{or} \ eta \gg heta_{qar{q}} \end{aligned}
ight\} egin{aligned} & \left[egin{aligned} & egin{aligned} &$ 0.01 emissions at large angles are sensitive to 0.1 10 k^2/\dot{C} the total charge of the emitting system

5

• interferences are at work at large angles!

THE HARD SCALE

- the hard scale determines the maximal k₁ of gluons that can be produced by the system
- in the vacuum, the only such scale is
 related to the opening angle of the antenna

THE HARD SCALE

the hard scale determines the maximal k₁ of gluons that can be produced by the system

6

in the vacuum, the only such scale is
 related to the opening angle of the antenna

k

< Qhard	incoherent radiation
> Ohard	coherence

 $\Theta_{qar{q}}$

HOW IS THE JET MODIFIED?

 θ_{2}

0

n

 θ_1

 θ_3

 θ_2'

CMS Experiment at LHC, CERN Data recorded: Sun Nov 14 19:31:39 2010 CEST Run/Event: 151076 / 1328520 Lumi section: 249

Φ

-2

bleading jet 70.0 GeV/c

8

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL 106 (2011) 122002, PLB 707 (2011) 156

- eikonal approximation for fixed opening angle of the pair
- medium is modeled as a classical background field

$$J_q^{(0)}(x) = g\delta^{(3)}\left(\vec{x} - \frac{\vec{p}}{E}t\right)\Theta(t)Q_q$$

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL 106 (2011) 122002, PLB 707 (2011) 156

- eikonal approximation for fixed opening angle of the pair
- medium is modeled as a classical back

Acground field

$$J_q^{(0)}(x) = g\delta^{(3)} \left(\vec{x} - \frac{\vec{p}}{E}t\right) \Theta(t)Q_q$$

$$\vec{p}$$

$$J \equiv J_q + J_{\bar{q}}$$

 $x^+=L^+$

9

000000000

x+=0

g*, Y*

 $[D_{\mu}, F^{\mu\nu}] = J^{\nu} , \ [D_{\mu}, J^{\mu}] = 0$ Classical Yang-Mills eq:

ANTENNA SETUP IN MEDIUM

Mehtar-Tani, Salgado, KT PRL 106 (2011) 122002, PLB 707 (2011) 156

- eikonal approximation for fixed opening angle of the pair
- medium is modeled as a classical background field

Classical Yang-Mills eq: $[D_{\mu}, F^{\mu\nu}] = J^{\nu}$, $[D_{\mu}, J^{\mu}] = 0$ Linear response: $\Box A^{i} - 2ig \left[A^{-}_{med}, \partial^{+}A^{i}\right] = -\frac{\partial^{i}}{\partial^{+}}J^{+} + J^{i}$

9

Gelis, Mehtar-Tani (2005), Mehtar-Tani (2007)

x+=0

 $x^+=L^+$

9

Գ_{զզ}

Considering soft gluon emissions: only the quarks interact!

$$J_q^{(0)}(x) = g\delta^{(3)}\left(\vec{x} - \frac{\vec{p}}{E}t\right)\Theta(t)Q_q$$

Considering soft gluon emissions: only the quarks interact!

$$J_q(x) = g U_p(x^+, 0) \,\delta^{(3)}(\vec{x} - \frac{p}{E}t)\Theta(t) \,Q_q$$
$$x = k^+/p^+$$

$$\mathcal{R}_q \equiv \frac{g^2 C_F}{x(p \cdot k)} \approx \frac{4g^2 C_F}{\omega^2 \,\theta_{pk}^2} \qquad \qquad UU^{\dagger} = 1$$

10

$$\mathcal{J} \equiv \frac{g^2 C_F}{N_c^2 - 1} \langle \operatorname{Tr} U_q(L, 0) U_{\bar{q}}^{\dagger}(L, 0) \rangle \frac{\boldsymbol{\kappa} \cdot \bar{\boldsymbol{\kappa}}}{x \bar{x} \, (p \cdot k) (\bar{p} \cdot k)}$$

Receeccoo

Considering soft gluon emissions: only the quarks interact!

$$J_q(x) = g U_p(x^+, 0) \,\delta^{(3)}(\vec{x} - \frac{p}{E}t)\Theta(t) \,Q_q$$

Wilson line along the traject \bar{a}_{y}^{k+/p^+}

$$egin{aligned} U_p(x^+,0) &= \mathcal{P}_+ \exp\left\{ig\int_0^{x^+}\!\!\!\!\!dz^+ \left[T\cdot A^-_{
m med}(z^+,z^+p_\perp/p^+)
ight]
ight.\ \mathcal{R}_q &\equiv rac{g^2C_F}{x(p\cdot k)} pprox rac{4g^2C_F}{\omega^2\, heta_{nk}^2} & UU^\dagger = 1 \end{aligned}$$

10

$$\mathcal{J} \equiv \frac{g^2 C_F}{N_c^2 - 1} \langle \operatorname{Tr} U_q(L, 0) U_{\bar{q}}^{\dagger}(L, 0) \rangle \frac{\boldsymbol{\kappa} \cdot \bar{\boldsymbol{\kappa}}}{x \bar{x} \, (p \cdot k) (\bar{p} \cdot k)}$$

Lececcooo

Considering soft gluon emissions: only the quarks interact!

$$J_q(x) = g U_p(x^+, 0) \,\delta^{(3)}(\vec{x} - \frac{p}{E}t)\Theta(t) \,Q_q$$

10

Wilson line along the traject $\bar{c}k_{y}^{+/p^{+}}$

$$U_p(x^+, 0) = \mathcal{P}_+ \exp\left\{ ig \int_0^{x^+} dz^+ \left[T \cdot A_{\text{med}}^-(z^+, z^+ p_\perp / p^+) \right] \right\}$$

$$\begin{split} \Delta_{\rm med} &= 1 - \frac{1}{N_c^2 - 1} \langle \mathbf{Tr}_{x(pp_k)}^{g^2 C_F} x^{\ddagger} , \mathbf{A}_{\omega^2) \theta_{p_k}^2 \bar{p}}^{g^2 C_F \dagger}(x^+, 0) \rangle^{UU^{\dagger}} = \\ &\approx 1 - e^{-\frac{1}{12} \hat{q}} \, \theta_{q\bar{q}}^2 \, L^3 \end{split}$$

- the decoherence parameter $\mathcal{J} \equiv \frac{g^2 C_F}{N_c^2 - 1} \langle \operatorname{Tr} U_q(L,0) U_{\bar{q}}^{\dagger}(L,0) \rangle \frac{0 \cdot \mathcal{U}_{\bar{L}}}{x \bar{r}} (p \cdot k) (\bar{p} \cdot k) ransport$ coefficient
COLOR PRECESSION

Considering soft gluon emissions: only the quarks interact!

$$J_q(x) = g U_p(x^+, 0) \,\delta^{(3)}(\vec{x} - \frac{p}{E}t)\Theta(t) \,Q_q$$

10

Wilson line along the traject $\bar{c}k^+/p^+$

- the decoherence parameter

$$U_p(x^+, 0) = \mathcal{P}_+ \exp\left\{ ig \int_0^{x^+} dz^+ \left[T \cdot A_{\text{med}}^-(z^+, z^+ p_\perp / p^+) \right] \right\}$$

$$\begin{split} \Delta_{\rm med} &= 1 - \frac{1}{N_c^2 - 1} \langle \mathbf{Tr}_{x(p\,p\,k)}^{g^2 C_F} x^{\ddagger}, \mathbf{Q}_{yk}^{4g^2 C_{F^{\dagger}}}(x^+, 0) \rangle^{UU^{\dagger}} = \\ &\approx 1 - e^{-\frac{1}{12}\hat{q}} \,\theta_{q\bar{q}}^2 \,L^3 \end{split}$$

 $\tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$: timescale of decoh.

 $= \theta_{qq}$

LERERERE

$$0) \stackrel{0}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\overset{\bullet}{\operatorname{res}}} \stackrel{\bullet}{\underset{\operatorname{coefficient}}} ransport$$

L,

How is the medium resolved?

- medium fluctuates at distances larger than Q_s
 - zero color on average!
- probed by wavelengths $\lambda < Q_s^{-1}$

How is the medium resolved?

- medium fluctuates at distances larger than Q_s
 - zero color on average!
- probed by wavelengths $\lambda < Q_s^{-1}$

medium fluctuates at distances

zero color on average!

larger than Q_s

 $\hat{\mathbf{q}}$: mean \perp mom. transfer per unit length

11

How is the medium resolved?
medium fluctuates at distances larger than Q_s

zero color on average!

• probed by wavelengths $\lambda < Q_s^{-1}$

What resolves the medium?

THE SOFT LIMIT - revisited

- emissions outside the medium
- soft divergence
- antiangular ordered $(1/\theta)$

$$egin{array}{c} oldsymbol{\kappa}\cdotoldsymbol{\kappa}\ xar{x}\,(p\cdot k)(ar{p}\cdot k) \end{array}$$

1

THE SOFT LIMIT - revisited

$$\mathcal{M}^{a}_{q,\lambda}(k) = -2ig rac{\kappa \cdot \epsilon_{\lambda}}{\kappa^{2}} U^{ab}_{p}(L,0) Q^{b}_{q}$$

- emissions outside the medium
- soft divergence

1

• antiangular ordered $(1/\theta)$

$$\omega \frac{dN^{\text{med}}}{d^3k} = \frac{8\alpha_s C_F \,\hat{q}}{\pi} \frac{\kappa \cdot \bar{\kappa}}{\kappa^2 \bar{\kappa}} \int_0^{L^+} dx^+ \sigma(|\delta \boldsymbol{n}|x^+)$$

$$\frac{\kappa \cdot \bar{\kappa}}{\kappa \bar{x} \, (p \cdot k)(\bar{p} \cdot k)}$$

THE SOFT LIMIT - revisited

$$\mathcal{M}^{a}_{q,\lambda}(k) = -2ig rac{\kappa \cdot \epsilon_{\lambda}}{\kappa^{2}} U^{ab}_{p}(L,0) Q^{b}_{q}$$

13

- emissions outside the medium
- soft divergence

1

• antiangular ordered $(1/\theta)$

THE SOFT LIMIT - revisited Leeeeeee $\mathcal{M}^{a}_{q,\lambda}(k) = -2ig \frac{\kappa \cdot \epsilon_{\lambda}}{\kappa^{2}} U^{ab}_{p}(L,0) Q^{b}_{q}$ emissions outside the medium soft divergence 0.01 0.1 1 9 antiangular ordered $(1/\theta)$ Y. Mehtar-Tani, C.A. Salgado, KT PRL 106 (2011) 122002 $\omega \frac{dN^{\text{med}}}{d^3k} = \frac{8 \,\alpha_s C_F \,\hat{\bar{q}}}{\pi} \left[\frac{\boldsymbol{\kappa} \cdot \bar{\boldsymbol{\kappa}}}{\boldsymbol{\kappa}^2 \bar{\boldsymbol{\kappa}}} \right] \int_0^{L^+} dx^+ \sigma(|\delta \boldsymbol{n}|x^+)$ $\kappa\cdotar\kappa$ $x \bar{x} (p \cdot k) (\bar{p} \cdot k)$

1

13

TWO REGIMES

$$\Delta_{\rm med}(\theta_{q\bar{q}},L) \equiv \frac{\hat{q}}{m_D^2} \int_0^{L^+} \mathrm{d}x^+ \left[1 - \frac{|\mathbf{r}_{\perp}| m_D x^+}{L^+} K_1 \left(\frac{|\mathbf{r}_{\perp}| m_D x^+}{L^+} \right) \right]$$

Medium decoherence parameter→ controls the cancellation of interferences

$$|\boldsymbol{r}_{\perp}| = |\delta \boldsymbol{n}| L^+ \simeq heta_{q \bar{q}} L$$

14

$$\Delta_{\rm med} \approx n_0 L^+ \equiv N_{\rm scat}$$

•
$$r_{\perp}^{-1} \ll m_D$$

"saturation" regime

$\Delta_{\rm med} \rightarrow 0$ **Coherence**

 $\Theta_{qar{q}}$

- $\Delta_{\rm med} \rightarrow 0$ **Coherence**
- $\Delta_{\rm med} \rightarrow 1$ **Decoherence**

- $\Delta_{\rm med} \rightarrow 0$ **Coherence**
- $\Delta_{\rm med} \rightarrow 1$ **Decoherence**

$$dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\text{med}} \Theta(\cos\theta_{q\bar{q}} - \cos\theta) \right] \,.$$

 $\Theta_{qar{q}}$

- $\Delta_{\rm med} \rightarrow 0$ **Coherence**
- $\Delta_{\rm med} \rightarrow 1$ **Decoherence**

 $dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\text{med}} \Theta(\cos\theta_{q\bar{q}} - \cos\theta) \right] \,.$

 \Rightarrow geometrical separation!

 $\Theta_{qar{q}}$

 $\Theta_{qar{q}}$

 $\Delta_{\rm med} \rightarrow 0$ **Coherence**

 $\Delta_{med} \rightarrow 1$ Decoherence

 $dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\text{med}} \Theta(\cos\theta_{q\bar{q}} - \cos\theta)\right] \,.$

 $\Theta_{qar{q}}$

 $\Delta_{\rm med} \rightarrow 0$ **Coherence**

 $\Delta_{med} \rightarrow 1$ Decoherence

 $dN_{q,\gamma^*}^{\text{tot}} = \frac{\alpha_s C_F}{\pi} \frac{d\omega}{\omega} \frac{\sin\theta \ d\theta}{1 - \cos\theta} \left[\Theta(\cos\theta - \cos\theta_{q\bar{q}}) + \Delta_{\text{med}} \Theta(\cos\theta_{q\bar{q}} - \cos\theta) \right] \,.$

C.A. Salgado, Y. Mehtar-Tani, KT arXiv:1112.5031 [hep-ph]

The hard scale of the problem: $Q_{\text{hard}} = \max(r_{\perp}^{-1}, Q_s)$

C.A. Salgado, Y. Mehtar-Tani, KT arXiv: 1112.5031 [hep-ph]

The hard scale of the problem: $Q_{\text{hard}} = \max(r_{\perp}^{-1}, Q_s)$

 $k_{\perp} > Q_{hard}$: coherence!

C.A. Salgado, Y. Mehtar-Tani, KT arXiv:1112.5031 [hep-ph]

The hard scale of the problem: $Q_{hard} = \max(r_{\perp}^{-1}, Q_s)$ $k_{\perp} > Q_{hard}$: coherence! One scattering with the medium: $Q_s \equiv m_D$

C.A. Salgado, Y. Mehtar-Tani, KT arXiv: 1112.5031 [hep-ph]

The hard scale of the problem: $Q_{hard} = \max\left(r_{\perp}^{-1}, Q_{s}\right)$ $k_{\perp} > Q_{hard}$: coherence! One scattering with the medium: $Q_{s} \equiv m_{D}$ $\omega \frac{dN_{dip.}^{med}}{d^{3}k} = \frac{8\alpha_{s}C_{F}\hat{q}L}{\pi} \left\langle \left\{1 - \frac{\sin(k \cdot r)}{k \cdot r}\right\} \frac{q^{2}}{k^{2}(k-q)^{2}} \right\rangle$ $r_{\perp}^{-1} \gg m_{D}$

C.A. Salgado, Y. Mehtar-Tani, KT arXiv: 1112.5031 [hep-ph]

The hard scale of the problem: $Q_{hard} = \max(r_{\perp}^{-1}, Q_s)$ $1/k^{2}$ $k_{\perp} > Q_{hard}$: coherence! 1/k⁴ One scattering with the medium: $Q_s \equiv m_D$ 0.01 0.1 10 k^2/\dot{Q}_{hard}^2 $\omega \frac{dN_{\text{dip.}}^{\text{med}}}{d^3 k} = \frac{8\alpha_s C_F \,\hat{q}L}{\pi} \left\langle \left\{ 1 - \frac{\sin(\boldsymbol{k} \cdot \boldsymbol{r})}{\boldsymbol{k} \cdot \boldsymbol{r}} \right\} \left| \frac{\boldsymbol{q}^2}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2} \right\rangle \right\rangle$ $r_{\perp}^{-1} \gg m_D$ $|\boldsymbol{q}| \sim m_D$ **Gunion-Bertsch** spectrum

C.A. Salgado, Y. Mehtar-Tani, KT arXiv: 1112.5031 [hep-ph]

The hard scale of the problem: $Q_{hard} = \max(r_{\perp}^{-1}, Q_s)$ $1/k^{2}$ dN/dK² $k_{\perp} > Q_{hard}$: coherence! 0.01 One scattering with the medium: $Q_s \equiv m_D$ 0.1 10 k^2/\dot{Q}_{hard}^2 $\omega \frac{dN_{\text{dip.}}^{\text{med}}}{d^3 k} = \frac{8\alpha_s C_F \,\hat{q}L}{\pi} \left\langle \left\{ 1 - \frac{\sin(\boldsymbol{k} \cdot \boldsymbol{r})}{\boldsymbol{k} \cdot \boldsymbol{r}} \right\} \left| \frac{\boldsymbol{q}^2}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2} \right\rangle \right\rangle$ $r_{\perp}^{-1} \gg m_D$ $|\boldsymbol{q}| \sim m_D$ $\omega \frac{dN_{\text{decoh.}}^{\text{med}}}{d^3k} = \frac{8\alpha_s C_F \,\hat{q}L}{\pi} \left\langle \frac{\boldsymbol{q}^2}{\boldsymbol{k}^2 (\boldsymbol{k} - \boldsymbol{q})^2} \right\rangle \qquad r_{\perp}^{-1} \ll m_D$ **Gunion-Bertsch** spectrum

16

ONSET OF DECOHERENCE - FINITE GLUON ENERGIES

Above ω_{max} medium induces independent radiation inside the cone.

ONSET OF DECOHERENCE - FINITE GLUON ENERGIES

Above ω_{max} medium induces independent radiation inside the cone.

Harder gluons are produced inside the medium Leads to the appearance of the independent component...

ENERGY SPECTRUM

MEDIUM-INDUCED RADIATION

Baier, Dokshitzer, Mueller, Peigne, Schiff (1997-2001), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2001-2002)

- emitted off a single emitter
- gluon interaction \Rightarrow k₁-broadening
- no soft/collinear divergence

MEDIUM-INDUCED RADIATION

21

Baier, Dokshitzer, Mueller, Peigne, Schiff (1997-2001), Zakharov (1996), Wiedemann (2000), Gyulassy, Levai, Vitev (2001-2002)

- emitted off a single emitter
- gluon interaction \Rightarrow k_⊥-broadening
- no soft/collinear divergence

$$\langle k_{\perp} \rangle \sim m_D \qquad \bar{\omega}_c \sim m_D^2 L$$

For dense media: $\Delta t > \lambda_{mfp} \Rightarrow \text{ coherent emission}$ $\Delta t = \frac{\omega}{k_{\perp}^{2}}$ $k_{\perp}^{2} = \mu^{2} \frac{\Delta t}{\lambda_{mfp}}$ $\Delta t = \sqrt{\frac{\omega}{\hat{q}}}$

RADIATION IN A DENSE MEDIUM

$$\mathcal{R}_q \simeq 4\omega \int_0^L dt \int \frac{d^2 \mathbf{k}'}{(2\pi)^2} \mathcal{P}(\mathbf{k} - \mathbf{k}', L - t) \sin\left(\frac{\mathbf{k}'^2}{2\sqrt{\hat{q}\omega}}\right) \exp\left(-\frac{\mathbf{k}'^2}{2\sqrt{\hat{q}\omega}}\right)$$

- emission along the whole length of the medium
- two step process
- broadening can transport gluons up to arbitrary large angles!

Y. Mehtar-Tani, C.A. Salgado, KT in preparation

RADIATION IN A DENSE MEDIUM

$$\mathcal{R}_q \simeq 4\omega \int_0^L dt \int \frac{d^2 \mathbf{k}'}{(2\pi)^2} \mathcal{P}(\mathbf{k} - \mathbf{k}', L - t) \sin\left(\frac{\mathbf{k}'^2}{2\sqrt{\hat{q}\omega}}\right) \exp\left(-\frac{\mathbf{k}'^2}{2\sqrt{\hat{q}\omega}}\right)$$

$$\mathcal{P}(\boldsymbol{k},\xi) = \frac{4\pi}{\hat{q}\,\xi} e^{-\frac{\boldsymbol{k}^2}{\hat{q}\,\xi}}$$

⇒ prob. of acquiring mom. **k** after ξ

- emission along the whole length of the medium
- two step process
- broadening can transport gluons up to arbitrary large angles!

Y. Mehtar-Tani, C.A. Salgado, KT in preparation

$$1 - \Delta_{\text{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

Y. Mehtar-Tani, C.A. Salgado, KT PLB 707 (2011) 156 Y. Mehtar-Tani, KT arXiv:1105:1346 [hep-ph] J. Casalderrey-Solana, E. Iancu JHEP 1108, 015

$$1 - \Delta_{\text{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

 interferences of emissions inside the medium are only active on short time-scales

$$1 - \Delta_{\text{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

- interferences of emissions inside the medium are only active on short time-scales
- antiangular component is saturated decoherence of the vacuum

$$1 - \Delta_{\text{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

- interferences of emissions inside the medium are only active on short time-scales
- antiangular component is saturated decoherence of the vacuum
- but large angles imply $\tau_f < \tau_d$
 - emissions that happen close enough to the antenna origin generate a vacuumlike contribution which restores coherence at k_⊥ > Q_s

$$1 - \Delta_{\mathrm{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

- interferences of emissions inside the medium are only active on short time-scales
- antiangular component is saturated decoherence of the vacuum
- but large angles imply $\tau_f < \tau_d$
 - emissions that happen close enough to the antenna origin generate a vacuumlike contribution which restores coherence at k_⊥ > Q_s

$$1 - \Delta_{\text{med}}(t, 0) \simeq \exp\left[-\frac{1}{12}\hat{q}\theta_{q\bar{q}}^2 t^3\right] \qquad \Longrightarrow \qquad \tau_d = \left(\hat{q}\theta_{q\bar{q}}^2\right)^{-1/3}$$

- interferences of emissions inside the medium are only active on short time-scales
- antiangular component is saturated decoherence of the vacuum
- but large angles imply $\tau_f < \tau_d$
 - emissions that happen close enough to the antenna origin generate a vacuumlike contribution which restores coherence at k_⊥ > Q_s

$$\mathcal{J}|_{decoh.} \simeq \begin{cases} 4\omega \tau_d \sin\left(\frac{k^2}{2\sqrt{\hat{q}\omega}}\right) \exp\left(-\frac{k^2}{2\sqrt{\hat{q}\omega}}\right) & k^2 \ll Q_s^2 \\ \frac{4\omega^2}{k^2} & k^2 \gg Q_s^2 \end{cases}$$

$$= \text{ before classical broadening} \\ = \text{ two components:} \\ = \text{ BDMP-like} \\ = \text{ vacuum-like hard} \\ \text{ component} \end{cases} \quad \begin{array}{c} \mathbf{0} \\ \mathbf{0} \\$$

0.1

A

1

CONCLUSIONS

- * copious jets in heavy-ion collisions at the LHC
- * independent radiation inside the cone collinear limit, as in vacuum
- * medium induces coherent radiation up to hard scale large angle radiation
- * a two scale problem: $Q_{hard} = max(\mathbf{r}_{\perp}^{-1}, \mathbf{Q}_{s})$ \Rightarrow jet probes medium, and vice versa
- ★ interplay: decoherence (k_⊥ < Q_{hard}) vs. coherence (k_⊥ > Q_{hard})
 > building block of jet calculus

backup

ANTENNA IN MEDIUM

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], C.A. Salgado, Y. Mehtar-Tani, KT, in preparation E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

ANTENNA IN MEDIUM

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], C.A. Salgado, Y. Mehtar-Tani, KT, in preparation E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

Multiple scattering:

$$\mathcal{J} = \operatorname{Re} \left\{ \int_{0}^{\infty} dy'^{+} \int_{0}^{y'^{+}} dy^{+} (1 - \Delta_{\operatorname{med}}(y^{+}, 0)) \right.$$

$$\times \int d^{2} \boldsymbol{z} \exp \left[-i\boldsymbol{\bar{\kappa}} \cdot \boldsymbol{z} - \frac{1}{2} \int_{y'^{+}}^{\infty} d\xi \, n(\xi)\sigma(\boldsymbol{z}) + i\frac{k^{+}}{2}\delta n^{2}y^{+} \right] \quad \left| \delta n \right| \simeq \theta_{q\bar{q}}$$

$$\times \left(\partial_{y} - ik^{+} \, \delta n \right) \cdot \partial_{z} \, \mathcal{K}(y'^{+}, \boldsymbol{z}; y^{+}, \boldsymbol{y} | k^{+}) |_{\boldsymbol{y} = \delta \boldsymbol{n} y^{+}} \right\} + \operatorname{sym.}$$

$$\mathcal{K}\left(y'^{+}, \boldsymbol{z}; y^{+}, \boldsymbol{y} | k^{+}\right) = \int \mathcal{D}[\boldsymbol{r}] \exp \left[\int_{y^{+}}^{y'^{+}} d\xi \left(i\frac{k^{+}}{2}\dot{\boldsymbol{r}}^{2}(\xi) \right) \cdot \frac{1}{2}n(\xi)\sigma(\boldsymbol{r}) \right) \right]$$

$$\sigma(\mathbf{r}) = 2\alpha_{S}C_{A} \int \frac{d^{2}\mathbf{q}}{(2\pi)^{2}} \mathcal{V}^{2}(\mathbf{q} \left[1 - \cos(\mathbf{r} \cdot \mathbf{q}) \right] \text{ Brownian motion of } q^{+}g \text{ system through medium potential...}$$

Decoherence a high SCALING BEHAVIORS

 $\Delta_{\text{med}} \approx 1 - \exp\left[-\frac{1}{12}Q_s^2 r_{\perp}^2\right]$ "dipole" regime $\Gamma_{\perp} < Q_s$ " regime $\int_{Q_s^{-1}} Q_s^{-1} = \int_{Q_s^{-1}} Q_s^{-1} = \int_{Q_s^{-1}} \Delta_{\text{med}}$

 $Q \equiv \max\left(r_{\perp}^{-1}, Q_s\right)$

Color octet antenna

$$(2\pi)^2 \,\omega \frac{dN_{g^*}^{\text{tot}}}{d^3 k} = \frac{\alpha_s}{\omega^2} \Big[C_F \left(\mathcal{R}_{\text{sing}} + 2\Delta_{\text{med}} \mathcal{J} \right) + C_A (1 - \Delta_{\text{med}}) \mathcal{J} \Big]$$
$$\mathcal{R}_{\text{sing}} \equiv \mathcal{R}_q + \mathcal{R}_{\bar{q}} - 2\mathcal{J}$$