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What is a jet?

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect inclusive 
observables (jet shape, energy distribution etc..)
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ANTENNA SPECTRUM

⇒ a laboratory to study coherence effects.
γ∗, g∗
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SCALE ANALYSIS
∣∣δk

∣∣ ! ωθqq̄δk = κ− κ̄
 [gluon relative momentum off the antenna]

The hard scale Qhard is:
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SCALE ANALYSIS

the rest of the paper. The soft-gluon emission amplitude is thus connected to
the gauge field through the reduction formula (2.2) via

Ma
λ(0)(k) = lim

k2→0
−k2Ai,a

(0)(k)εi
λ(k) . (2.15)

The resulting cross section is given by

dσ = dσel
∑

λ=±1

|Ma
(0),λ|2

d3k

(2π)3 2ω
(2.16)

and factorizes into the Born elastic cross section for the qq̄ production process,
dσel, and the radiation described by the square of the emission amplitude. The
latter reads

∑

λ=±1

|Ma
λ(0)|2 = 4 g2

(
1
κ2

Q2
q +

1
κ̄2 Q2

q̄ + 2
κ · κ̄
κ2κ̄2 Qq ·Qq̄

)
. (2.17)

Then, the spectrum of emitted gluons, defined as dNvac = dσ/dσel, is readily
found in the octet case to be

ω
dNvac

d3k
=

αs

(2π)2 ω2

(
CFRsing + CAJ

)
, (2.18)

where Rsing = Rq +Rq̄ − 2J . The singlet contribution

Rsing = 2ω2 p · p̄
(p · k) (p̄ · k)

, (2.19)

is the well-known antenna emission pattern [9]. In Eq. (2.18), we have defined
Rq ≡ 4ω2/κ2, and analogously for the antiquark, which constitutes the radia-
tion spectrum off an independent constituent, and

J ≡ 4 ω2 κ · κ̄
κ2κ̄2 , (2.20)

which describes the quark-antiquark interference.
To begin with, let us focus on the singlet term Rsing. This spectrum is diver-

gent when the energy of the emitted gluon becomes soft, ω → 0. Divergencies
also arise when the gluon is emitted collinearly to the either the quark or the
antiquark. Introducing the transverse component of the well-known emission
current [9, 12]

C(k) ≡ κ

κ2
− κ̄

κ̄2 , (2.21)

the singlet term simply becomes Rsing = 4ω2 C2(k). The emission current
has a characteristic behavior governed by the characteristic scale related to the
opening angle of the pair, namely

C2(k) =
(k+δn)2

κ2 κ̄2 =





k−2 θ $ θqq̄ ,

(k+δn)2 k−4 θ % θqq̄ ,
(2.22)
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THE HARD SCALE

Θqq̄

the hard scale determines the maximal k⊥ of gluons that 
can be produced by the system

in the vacuum, the only such scale is                            
related to the opening angle of the antenna
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2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at √sNN = 2.76 TeV. Plot-
ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. η
and φ, with the identified jets highlighted in red, and labeled with the corrected jet transverse
momentum.

The data provide information on the evolution of the dijet imbalance as a function of both
collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of
the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons
reconstructed in the high-resolution tracker system, the modification of the jet fragmentation
pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet
quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |η| < 5.2, where η = −ln [ tan(θ/2)] and θ is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |η| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|η| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
∆η × ∆ϕ = 0.087× 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |η| < 2.5, and provides track reconstruction down to
pT ≈ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the

JETS IN HIC @ LHC

Pb+Pb √s=2,76 TeV
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The paper is organized as follows: the experimental setup, event triggering, selection and char-
acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and
a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic
coverage over a large range of pseudorapidity, |η| < 5.2, where η = −ln [ tan(θ/2)] and θ is
the polar angle relative to the particle beam. In this study, jets are identified primarily using
the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the
brass/scintillator hadron calorimeter (HCAL) covering |η| < 3. In addition, a steel/quartz-
fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|η| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are
grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by
∆η × ∆ϕ = 0.087× 0.087 at central rapidities, having a coarser segmentation at forward rapidi-
ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The
event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the
full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists
of pixel and silicon-strip layers covering |η| < 2.5, and provides track reconstruction down to
pT ≈ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set
of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the
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(I) Significant dijet energy asymmetry
(II) Soft particles at large angles
(III) Vacuum-like fragmentation
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the 3-dimensional density of scattering centers. In this case, we easily find that

1

N2
c − 1

〈TrUp(L, 0)U
†
p̄(L, 0)〉 = exp

[
− 1

2

∫ L

0
dx+n(x+) σ(|δn|x+)

]
, (18)

where

σ(|δn|x+) = 2αsCA

∫
d2q

(2π)2
V2(q)

[
1− cos(δn · q x+)

]
(19)

The transverse vector δn = p/p+ − p̄/p̄+, introduced above, scales like |δn| $
θqq̄. Expanding Eq. (18) to first order in the medium field, we recover our
previous result in the soft limit [19]. In the harmonic oscillator approximation
n(x+)σ(r) ≈ 1

2 q̂ r
2 [22], we can define the transport coefficient above which

decoherence is achieved q̂coh = (θ2qq̄ L
3)−1, i.e., ∆med $ 1 for q̂ & q̂coh.

The generalization of the above results to the octet case follows closely the
discussion above and reads

(2π)2 ω
dN tot

g∗

d3k
=

αs

ω2

[
CF (Rsing + 2∆med J ) + CA(1−∆med)J

]
, (20)

where the second term describes emissions by the total charge of the pair, i.e.,
the parent gluon. The former, singlet term was already discussed above. Note
that in the totally opaque medium, the latter contribution vanishes, decorre-
lating the quarks from their parent. This implies a memory loss effect in the
medium, so that

dN tot
g∗

∣∣∣
opaque

= dN tot
γ∗

∣∣∣
opaque

, (21)

i.e., the antenna radiation is independent of the total color charge.
The latter result completes the picture of medium-induced decoherence: it

is consistent with the breakdown of angular ordering found for the singlet spec-
trum and the properties summarized in Eqs. (16) and (21) fully define the
universal property of independent soft radiation off emitters traversing a very
dense environment.

3. Conclusions

The spectra in Eqs. (13) and (20) suggest that the probabilistic nature of the
fragmentation process for soft radiation survives. While the complete descrip-
tion of jet fragmentation in the presence of a medium still is missing, our results
provide a starting point for further studies and contain key features that have
to be incorporated, e.g., in calculations of jet observables and high-pT Monte-
Carlo generators for heavy-ion collisions. We note that different attempts at
phenomenological implementations of color decoherence in Monte-Carlo shower
codes were recently considered in [23, 24].

Although a direct comparison to the experimental findings is not possible at
this stage, we would like to mention some qualitative features which render our
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1

N2
c − 1

〈TrUp(L, 0)U
†
p̄(L, 0)〉 = exp

[
− 1

2

∫ L

0
dx+n(x+) σ(|δn|x+)

]
, (18)

where

σ(|δn|x+) = 2αsCA

∫
d2q

(2π)2
V2(q)

[
1− cos(δn · q x+)

]
(19)

The transverse vector δn = p/p+ − p̄/p̄+, introduced above, scales like |δn| $
θqq̄. Expanding Eq. (18) to first order in the medium field, we recover our
previous result in the soft limit [19]. In the harmonic oscillator approximation
n(x+)σ(r) ≈ 1

2 q̂ r
2 [22], we can define the transport coefficient above which

decoherence is achieved q̂coh = (θ2qq̄ L
3)−1, i.e., ∆med $ 1 for q̂ & q̂coh.

The generalization of the above results to the octet case follows closely the
discussion above and reads

(2π)2 ω
dN tot

g∗

d3k
=

αs

ω2

[
CF (Rsing + 2∆med J ) + CA(1−∆med)J

]
, (20)

where the second term describes emissions by the total charge of the pair, i.e.,
the parent gluon. The former, singlet term was already discussed above. Note
that in the totally opaque medium, the latter contribution vanishes, decorre-
lating the quarks from their parent. This implies a memory loss effect in the
medium, so that

dN tot
g∗

∣∣∣
opaque

= dN tot
γ∗

∣∣∣
opaque

, (21)

i.e., the antenna radiation is independent of the total color charge.
The latter result completes the picture of medium-induced decoherence: it

is consistent with the breakdown of angular ordering found for the singlet spec-
trum and the properties summarized in Eqs. (16) and (21) fully define the
universal property of independent soft radiation off emitters traversing a very
dense environment.

3. Conclusions

The spectra in Eqs. (13) and (20) suggest that the probabilistic nature of the
fragmentation process for soft radiation survives. While the complete descrip-
tion of jet fragmentation in the presence of a medium still is missing, our results
provide a starting point for further studies and contain key features that have
to be incorporated, e.g., in calculations of jet observables and high-pT Monte-
Carlo generators for heavy-ion collisions. We note that different attempts at
phenomenological implementations of color decoherence in Monte-Carlo shower
codes were recently considered in [23, 24].

Although a direct comparison to the experimental findings is not possible at
this stage, we would like to mention some qualitative features which render our
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TWO REGIMES

r⊥-1 ≫ mD

“dipole” regime
color transparency

r⊥-1 ≪ mD

“saturation” regime

∆med(θqq̄, L) ≡
q̂

m2
D

∫ L+

0
dx+

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]

for the quark interference spectrum. A completely analogous expression holds
for the antiquark coherent spectrum Jmed

q̄ . The total medium-induced interfer-

ences are simply Jmed = Jmed
q + Jmed

q̄ .
Indeed, the decomposition described above is completely arbitrary seen from

the perspective of gauge invariance, but will prove helpful in analyzing the
spectrum, as we will show below. In fact, in Section 5.3 we show that Jmed

q

and Jmed
q̄ cancel in the collinear region close to the direction of either of the

constituents. This is analogous to the antenna spectrum in vacuum which is just
the superposition of two independent spectra inside the cone. [SOME MORE
EXPLANATION HERE?]

4. The soft limit

The general features of the medium-induced spectrum (3.49) simplify con-
siderably in the soft limit, i.e., for ω → 0, allowing us to access the main features
of the spectrum analytically. The discussion in this section parallels and extends
the one in [7]. The divergent contribution arises from the first term in Eq. (3.49)
where

lim
ω→0

L · L̄ =
κ · κ̄
κ2κ̄2 (4.63)

which is simply J /(4ω2) according to the definition in (2.18). Furthermore,
limω→0(ν + ν̄)/2 " q. The spectrum yields then

ω
dNmed

d3k
=

αsCF

π ω2
2J

∫ L+

0
dx+ q̂ σ

(
|δn|x+

)
(4.64)

where

σ(|δn|x+) =

∫

V(q)

(
1− cos δn · q x+

)

=
1

4πm2
D

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.65)

and |r⊥| = |δn|L+ " θqq̄L. The quantity in (4.65) is the forward dipole–medium
amplitude.

Most importantly, (4.64) contains a soft divergency and vanishes if the gluon
is collinear to either the quark or the antiquark, cf. (2.20). A further remarkable
property of (4.64) is the factorisation of the radiation process, described entirely
by 2J , and the medium interaction, which is fully contained in σ(|δn|x+).

Writing the phase space out in detail, we obtain

dNmed
∣∣
ω→0

=
αsCF

π
∆med(θqq̄, L) 2J

dω

ω

dΩ

4π
, (4.66)

where

∆med(θqq̄, L) ≡
q̂

m2
D

∫ L+

0
dx+

[
1− |r⊥|mD x+

L+
K1

(
|r⊥|mD x+

L+

)]
, (4.67)

16

Medium decoherence parameter
➙ controls the cancellation of interferences

∆med ≈ 1

6
q̂L+ r2⊥

[
ln

1

r⊥mD
+ const.

]

∆med ≈ n0L
+ ≡ Nscat
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Rmed
q = 32πq̂

∫

V(q)

∫ L+

0
dx+

[
1− cos

(
ν2

2k+
x+

)]
ν

ν2
·L

Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read

ω
dN interf

d3k
=

8αsCF q̂

π

∫

V(q)

∫ L+

0
dx+

{[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L −
[
1− cos

(
ν̄2

2k+
x+

)]
ν

ν2
· L̄

}
.

(3.59)

Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely

dNmed = dNmed
q + dNmed

q̄ (3.60)

where

ω
dNmed

q

d3k
=

αsCF

(2π)2 ω2

(
Rmed

q − Jmed
q

)
. (3.61)

The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives

Jmed
q = −32π q̂

∫

V(q)

∫ L+

0
dx+

{
1

2

[
1− cos

(
ν + ν̄

2
· δnx+

)]
L · L̄

−
[
1− cos

(
ν2

2k+
x+

)]
ν̄

ν̄2 ·L
}

, (3.62)
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.
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Following the vacuum decomposition, we can divide the spectrum into an inco-
herent superposition of the quark an the antiquark contribution, namely
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The independent spectrum Rmed
q was already discussed in the previous subsec-

tion and is defined in (3.57). The interferences, on the other hand, are not
as simply recovered as in the vacuum case. By looking at the phase struc-
ture in (3.59) it becomes clear that the product of Lipatov vertices in the first
line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
identical phase structure, e.g., as in (3.55) for the quark, to either the quark or
the antiquark. This procedure gives
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
and read
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Ultimately, these approaches are only heuristically motivated and provide
working hypotheses for phenomenological applications. In order to establish an
consistent showering picture and, possibly, identify the corresponding ordering
variable for subsequent emission, an analysis of the interferences arising between
various emitters is essential. The rest of the paper is devoted to the study of
these interference terms in the context to antenna radiation.

3.2. Novel interference terms

In addition to the diagrams described in the previous subsection, where the
gluon is emitted and subsequently absorbed by the same emitter, we also find
novel contributions stemming from the medium-induced interference between
the two emitters of the antenna. These contributions were first discussed in [7]
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line of (3.59) comes with a phase related to the pair as a whole while the two
remaining terms are dictated by the phase structure of emissions off each of
the components. Therefore, we divide the Lipatov contribution between the
two constituents and associate the remaining component which comes with the
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MEDIUM-INDUCED RADIATION

emitted off a single emitter
gluon interaction ⇒ k⊥-broadening
no soft/collinear divergence
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RADIATION IN A DENSE 
MEDIUM

emission along the whole 
length of the medium
two step process
broadening can transport 
gluons up to arbitrary 
large angles!
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to the antenna origin generate a vacuum-
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BACK TO COHERENCE

before classical broadening
two components:

BDMP-like
vacuum-like hard 
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CONCLUSIONS

copious jets in heavy-ion collisions at the LHC
 independent radiation inside the cone - collinear limit, as in 
vacuum
 medium induces coherent radiation up to hard scale - large 
angle radiation

a two scale problem: Qhard = max( r⊥-1 , Qs)
⇒ jet probes medium, and vice versa

interplay: decoherence (k⊥ < Qhard) vs. coherence (k⊥ > Qhard)
⇒ building block of jet calculus
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HIJING+PYTHIA

FIG. 3: (top) Dijet asymmetry distributions for data (points) and unquenched HIJING with superimposed PYTHIA dijets
(solid yellow histograms), as a function of collision centrality (left to right from peripheral to central events). Proton-proton
data from

√
s = 7 TeV, analyzed with the same jet selection, is shown as open circles. (bottom) Distribution of ∆φ, the

azimuthal angle between the two jets, for data and HIJING+PYTHIA, also as a function of centrality.

tral events a peak is visible at higher asymmetry values
(asymmetries larger than 0.6 can only exist for leading
jets substantially above the kinematic threshold of 100
GeV transverse energy). The ∆φ distributions show that
the leading and second jets are primarily back-to-back in
all centrality bins; however, a systematic increase is ob-
served in the rate of second jets at large angles relative
to the recoil direction as the events become more central.

Numerous studies have been performed to verify that
the events with large asymmetry are not produced by
backgrounds or detector effects. Detector effects primar-
ily include readout errors and local acceptance loss due to
dead channels and detector cracks. All of the jet events
in this sample were checked, and no events were flagged
as problematic. The analysis was repeated first requiring
both jets to be within |η| < 1 and |η| < 2, to see if there
is any effect related to boundaries between the calorime-
ter sections, and no change to the distribution was ob-
served. Furthermore, the highly-asymmetric dijets were
not found to populate any specific region of the calorime-
ter, indicating that no substantial fraction of produced
energy was lost in an inefficient or uncovered region.

To investigate the effect of the underlying event, the
jet radius parameter R was varied from 0.4 to 0.2 and
0.6 with the result that the large asymmetry was not re-
duced. In fact, the asymmetry increased for the smaller
radius, which would not be expected if detector effects
are dominant. The analysis was independently corrobo-
rated by a study of “track jets”, reconstructed with ID
tracks of pT > 4 GeV using the same jet algorithms. The

ID has an estimated efficiency for reconstructing charged
hadrons above pT > 1 GeV of approximately 80% in the
most peripheral events (the same as that found in 7 TeV
proton-proton operation) and 70% in the most central
events, due to the approximately 10% occupancy reached
in the silicon strips. A similar asymmetry effect is also
observed with track jets. The jet energy scale and under-
lying event subtraction were also validated by correlating
calorimeter and track-based jet measurements.

The missing ET distribution was measured for mini-
mum bias heavy ion events as a function of the total ET

deposited in the calorimeters up to about ΣET = 10 TeV.
The resolution as a function of total ET shows the same
behavior as in proton-proton collisions. None of the
events in the jet selected sample was found to have an
anomalously large missing ET .

The events containing high-pT jets were studied for the
presence of high-pT muons that could carry a large frac-
tion of the recoil energy. Fewer than 2% of the events
have a muon with pT > 10 GeV, potentially recoiling
against the leading jet, so this can not explain the preva-
lence of highly asymmetric dijet topologies in more cen-
tral events.

None of these investigations indicate that the highly-
asymmetric dijet events arise from backgrounds or
detector-related effects.

In summary, first results are presented on jet recon-
struction in lead-lead collisions, with the ATLAS detector
at the LHC. In a sample of events with a reconstructed
jet with transverse energy of 100 GeV or more, an asym-

ATLAS Coll. PRL 105 (2010) 252303

AJ =
ET1 − ET2

ET1 + ET2

(I) Significant jet 
asymmetry 

∆φ > π
/
2

(II) Soft particles 
at large angles

Track-jet correlations: missing pT

! sum the pT along the leading jet axis of  all tracks with pT>0.5GeV/c,|!|<2.4

! only the jet axis is used, not the pT

! The lost energy carried by the low pT particles is mostly transferred to large 
angles wrt the leading jet 

15
Phys.Rev. C 84, 024906 (2011)

Track-jet correlations: missing pT vs Aj

! sum the pT along the leading jet axis of  all tracks with pT>0.5GeV/c,|!|<2.4

! only the jet axis is used, not the pT

! The lost energy for the asymmetric dijets is transferred to low pT particles

14
Phys.Rev. C 84, 024906 (2011)

CMS Coll. PRC 84 (2012) 024906

(III) Vacuumlike 
fragmentation

Fragmentation distributions

! Fragmentation pattern independent of  energy lost in the medium

18
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Fragmentation distributions

! Fragmentation pattern independent of  energy lost in the medium

18
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Fragmentation distributions

! Fragmentation pattern independent of  energy lost in the medium
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from C. Mironov 
[CMS], Encontro 
Santiago-Lisboa 2012
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ANTENNA IN MEDIUM

J = Re

{∫ ∞

0
dy′+

∫ y′+

0
dy+

(
1−∆med(y+, 0)

)

×
∫

d2z exp
[
−iκ̄ · z − 1

2

∫ ∞

y′+
dξ n(ξ)σ(z) + i

k+

2
δn2y+

]

×
(
∂y − ik+ δn

)
· ∂z K(y′+,z ; y+,y |k+)

∣∣
y=δny+

}
+ sym. ,

Multiple scattering:

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], C.A. Salgado, Y. Mehtar-Tani, KT, in preparation
E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

|δn| ! θqq̄
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J = Re
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0
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(
1−∆med(y+, 0)
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×
∫

d2z exp
[
−iκ̄ · z − 1
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∫ ∞

y′+
dξ n(ξ)σ(z) + i

k+

2
δn2y+

]

×
(
∂y − ik+ δn

)
· ∂z K(y′+,z ; y+,y |k+)

∣∣
y=δny+

}
+ sym. ,

Multiple scattering:

Brownian motion of q+g system 
through medium potential...

σ(r) = 2αSCA

∫
d2q

(2π)2
V2(q)

[
1− cos(r · q)

]

K
(
y′+,z; y+,y|k+

)
=

∫
D[r] exp

[∫ y′+

y+
dξ

(
i
k+

2
ṙ2(ξ)− 1

2
n(ξ)σ(r)

)]

Y. Mehtar-Tani, KT arXiv:1105.1346 [hep-ph], C.A. Salgado, Y. Mehtar-Tani, KT, in preparation
E. Iancu, J. Casalderrey-Solana arXiv:1105.1760 [hep-ph]

|δn| ! θqq̄
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Color octet antenna

the 3-dimensional density of scattering centers. In this case, we easily find that

1

N2
c − 1

〈TrUp(L, 0)U
†
p̄(L, 0)〉 = exp

[
− 1

2

∫ L

0
dx+n(x+) σ(|δn|x+)

]
, (18)

where

σ(|δn|x+) = 2αsCA

∫
d2q

(2π)2
V2(q)

[
1− cos(δn · q x+)

]
(19)

The transverse vector δn = p/p+ − p̄/p̄+, introduced above, scales like |δn| $
θqq̄. Expanding Eq. (18) to first order in the medium field, we recover our
previous result in the soft limit [19]. In the harmonic oscillator approximation
n(x+)σ(r) ≈ 1

2 q̂ r
2 [22], we can define the transport coefficient above which

decoherence is achieved q̂coh = (θ2qq̄ L
3)−1, i.e., ∆med $ 1 for q̂ & q̂coh.

The generalization of the above results to the octet case follows closely the
discussion above and reads

(2π)2 ω
dN tot

g∗

d3k
=

αs

ω2

[
CF (Rsing + 2∆med J ) + CA(1−∆med)J

]
, (20)

where the second term describes emissions by the total charge of the pair, i.e.,
the parent gluon. The former, singlet term was already discussed above. Note
that in the totally opaque medium, the latter contribution vanishes, decorre-
lating the quarks from their parent. This implies a memory loss effect in the
medium, so that

dN tot
g∗

∣∣∣
opaque

= dN tot
γ∗

∣∣∣
opaque

, (21)

i.e., the antenna radiation is independent of the total color charge.
The latter result completes the picture of medium-induced decoherence: it

is consistent with the breakdown of angular ordering found for the singlet spec-
trum and the properties summarized in Eqs. (16) and (21) fully define the
universal property of independent soft radiation off emitters traversing a very
dense environment.

3. Conclusions

The spectra in Eqs. (13) and (20) suggest that the probabilistic nature of the
fragmentation process for soft radiation survives. While the complete descrip-
tion of jet fragmentation in the presence of a medium still is missing, our results
provide a starting point for further studies and contain key features that have
to be incorporated, e.g., in calculations of jet observables and high-pT Monte-
Carlo generators for heavy-ion collisions. We note that different attempts at
phenomenological implementations of color decoherence in Monte-Carlo shower
codes were recently considered in [23, 24].

Although a direct comparison to the experimental findings is not possible at
this stage, we would like to mention some qualitative features which render our

7

Consider a qq̄ pair with momenta p ≡ (E, !p) and p̄ ≡ (Ē, !̄p), respectively,
created in the splitting of a virtual photon or gluon moving in the +z di-
rection. In the absence of the medium, the classical eikonalized current that
describes the pair created at time t0 = 0 reads Jµ

(0) = Jµ
q (0) + Jµ

q̄ (0), where

Jµ,a
q (0) = g pµ

E δ(3)(!x − !p
E t)Θ(t)Qa

q . Here, Qq denotes the color charge vector of

the quark (and, analogously, Qq̄ for the antiquark). The sum of quark and an-
tiquark charges gives the color charge of the whole system, i.e., the charge of
the parent projectile, Qq +Qq̄ = QI , where I denote the color representation of
the pair (I ≡ γ∗, g∗). In the case of a highly virtual g∗ → qq̄ splitting, the third
component of the current, ensuring color conservation, is implicit and will not
contribute in the forward region thanks to the gauge choice.

Concerning the singlet configuration, γ∗ → qq̄, the color charge of the an-
tenna is vanishing, Qγ∗ = 0, thus Qq = −Qq̄. In the octet case, on the other
hand, it is given by Qg∗ , namely the color vector of the parent gluon. Then, by
taking the square of the total color charge, we get that 2Qq ·Qq̄ = CA − 2CF ,
since Q2

q = CF ≡ (N2
c −1)/2Nc and Q2

g = CA ≡ Nc. Other color configurations,
e.g., g∗ → gg, can be considered in a similar fashion.

We use light-cone variables defined by k = (k+, k−,k), where k± ≡ (ω ±
k3)/

√
2 and k ≡ (k1, k2), and similarly for any vector in what follows. At

leading order in the coupling, g, the linearized CYM equations yield, together
with Eq. (1),

Ma
(0)λ(k) = −ig

[
κ · ελ

x (p · k) Qa
q +

κ̄ · ελ
x̄ (p̄ · k) Qa

q̄

]
, (2)

where we have introduced the following transverse vectors κi ≡ ki − x pi and
κ̄i ≡ ki− x̄ p̄i (i = 1, 2), along with the momentum fractions x ≡ k+/p+ ≈ ω/E
and x̄ ≡ k+/p̄+ ≈ ω/Ē (which are implicit in the rest of the paper). Summing
over the gluon polarization vectors, it can be easily checked that the well known
cross section for the color octet case reads [21]

(2π)2 ω
dNvac

g∗

d3k
=

αs

ω2
[CFRsing + CAJ ] , (3)

where Rsing ≡ Rq + Rq̄ − 2J with Rq = 2/(nq · n), and analogously for the
antiquark, and J = κ · κ̄/[ω2(nq ·n)(nq̄ ·n)], where nµ

q = pµ/E and nµ = kµ/ω.
Let us briefly recall some key features of this spectrum. In the singlet case,

when we only are left with the first term in Eq. (3), the two collinear poles in
Rsing can be split into two terms, Pq = Rq−J for the quark and analogously for
the antiquark, which comprise the quark and the antiquark collinear divergences,
respectively. Averaging Pq over the azimuthal angle leads to gluon emissions
confined to a cone defined by the opening half-angle of the qq̄ pair, θqq̄, so that
the spectrum reads

dNvac
q,γ∗ =

αsCF

π

dω

ω

sin θ dθ

1− cos θ
Θ(cos θ − cos θqq̄), (4)

where θ is the angle between the quark and the emitted gluon. In the octet
case, the additional term, coming with the adjoint color factor, CA, gives rise to

3
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