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Brief plan

Introduction
Concept of a jet
jets at the LHC

Jets and soft backgrounds
effect on jets
area-median background subtraction

Jet fragmentation function
moments of the fragmentation function
extending the area-median subtraction

– p. 2



What is a “jet”?

concept/idea
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Jets

Final-state events are pencil-like
already observed in e+e− collisions:

Consequence of the collinear divergence
QCD (quark & gluon) branching proba: dP

dθ ∝ αs

θ
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Jets

Final-state events are pencil-like
already observed in e+e− collisions:

Consequence of the collinear divergence
QCD (quark & gluon) branching proba: dP

dθ ∝ αs

θ

“Jets” ≡ bunch of collimated particles ∼= hard partons
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Jets and partons

“Jets” ≡ bunch of collimated particles ∼= hard partons

obviously 2 jets

→
q

q
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Jets and partons

“Jets” ≡ bunch of collimated particles ∼= hard partons

3 jets

→

– p. 5



Jets and partons

“Jets” ≡ bunch of collimated particles ∼= hard partons

3 jets... or 4?

→

“collinear” is arbitrary
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Jets and partons

“Jets” ≡ bunch of collimated particles ∼= hard partons

3 jets... or 4?

→

“collinear” is arbitrary

“parton” concept strictly valid only at LO
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Jet definition

Partons/Particles/Calorimeter towers/Tracks

Jet definition
Jet algorithm Parameters

Jets
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Jet definition

A jet definiton is supposed to

give finite jet cross sections (th)

be fast enough (exp)

be (as) consistent (as possible) across different
view of an event (th&exp)

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ
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Note

This talk IS

how to reconstruct the jets and their properties from
the final-state particles

This talk IS NOT

about theoretical descriptions of Heavy-ion data
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What is a “jet”?

jets at the LHC
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2 major achievements

perturbative finiteness

Tevatron & LHC initial plans: cone algorithm
CDFJetClu, CDFMidPoint, D0MidPoint,
ATLASCone: IR-unsafe
CMSIterativeCone: collinear-unsafe
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2 major achievements

perturbative finiteness

Tevatron & LHC initial plans: cone algorithm
CDFJetClu, CDFMidPoint, D0MidPoint,
ATLASCone: IR-unsafe
CMSIterativeCone: collinear-unsafe

Recently cured
IR-safe cone: SISCone

[G.Salam,GS, 0704.0292]

Collinear-safe cone-like: anti-kt
[M.Cacciari,G.Salam,GS, 0802.1189]
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2 major achievements

perturbative finiteness

fast recombination algorithms
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Tevatron era: kt too slow: O(N3) for N particles
Now: (anti-)kt very fast: O(N2) or O(N log(N))

[M.Cacciari, G.Salam, 2005]
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2 major achievements

perturbative finiteness

fast recombination algorithms

[M.Cacciari, G.Salam, GS, www.fastjet.fr ]

Grown way beyond just fast recombinations:
plugins for used jet definitions
jet areas, background subtraction (see below)
tools for manipulating jets
more to come...

FastJet 3.0.3 in June 2012

Standard interface for jet clustering
for both theorists and experimentalists

– p. 10
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The anti- kt jets

All experiments use the anti-kt algorithm:
[M. Cacciari, G. Salam, GS, 2008]

From all the objects, define the distances

dij = min(k−2
ti , k−2

tj )(∆y2ij +∆φ2), diB = k−2
ti R2

repeatedly find the minimal distance
if dij: recombine i and j into k = i+ j

if diB: call i a jet

R is a size parameter (eg CMS: 0.5,0.7, ATLAS: 0.4,0.6)

Main property: hard jets are circular

– p. 11



Clustering in action: anti- kt (R = 0.7)

Start with your
favourite picture
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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Clustering in action: anti- kt (R = 0.7)
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LHC examples
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Jets in a soft background
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Pileup

Z → ℓ+ℓ− candidate at ATLAS

Low luminosity

(bunch population)
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Pileup

Z → ℓ+ℓ− candidate at ATLAS

Low luminosity

(bunch population)

High luminosity

(bunch population)

many (soft) pp interactions
with the hard one (here 25)

soft background in all the detector
– p. 15



Pileup

A CMS event with 78 pile-up vertices!

Today (2012 run), 30 PU vertices on average
– p. 16



Basic characterisation

Pileup mostly characterised by 3 numbers:

ρ: the average activity in an event (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ

y or φ

pt

event 1

y or φ

pt

event 2

ρ
ρ

σ
σρ
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Basic characterisation

Pileup mostly characterised by 3 numbers:

ρ: the average activity in an event (per unit area)

σ: the intra-event fluctuations (per unit area)

σρ: the event-to-event fluctuations of ρ

For a jet (of area A) in a given event that means:

pt → pt + ρA± σ
√
A

When averaging over many events

pt → pt + 〈ρ〉A± σρA± σ
√
A
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Illustration of the consequences
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Heavy ions

Note: same considerations for “spectator p and n”
Note: in heavy ion collisions

Typical case: anti-kt R = 0.4, 20 PU or 0−10% centrality

Estimates LHC, pp LHC, PbPb

ρ 15 GeV 200 GeV
σρ 4 GeV 40 GeV
σ 5 GeV 20 GeV
Ajet 0.5 0.5
δpt,jet 7.5 GeV 100 GeV
σjet 3.5 GeV 16 GeV
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Jet-area-based subtraction

[M.Cacciari, G.P. Salam, 07; M.Cacciari, G.P. Salam, GS, 2008]

p
(sub)
t,jet = pt,jet − ρestAjet

jet area: see e.g. M.Cacciari,G.P.Salam,GS,arXiv:0802.1188

ρbkg, the background pt density per unit area

break the event in
patches of similar size
e.g. cluster with kt

Estimate ρbkg using

ρbkg = median
j∈patches

{

pt,j
Aj

}

.
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Jet-area-based subtraction

[M.Cacciari, G.P. Salam, 07; M.Cacciari, G.P. Salam, GS, 2008]

p
(sub)
t,jet = pt,jet − ρestAjet

Jet area Ajet: per jet
Bkg density ρ: (typically) per event

Consequences:
corrects for the ρA shift
gets rid of the σρA smearing (across events)

left with the fluctuations σ
√
A (in-event)
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Subtraction benchmarks

Subtraction efficiency study:

Generate a hard event
Add PU events
Apply subtraction

hard jets
full jets
subtracted jets

– p. 21
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Subtraction benchmarks

Subtraction efficiency study:

Generate a hard event
Add PU events
Apply subtraction
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Subtraction benchmarks

Subtraction efficiency study:

Generate a hard event
Add PU events
Apply subtraction

hard jets
full jets
subtracted jets
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Recent developments

Improvements/extensions of the method

Methods to handle positional dependence of ρ
Directly relevant for the LHC (e.g. rapidity dependence)

[M.Cacciari,G.Salam,GS,2010-2011]

Subtraction of fragmentation function (moments)
Useful for quenching in PbPb collisions

[M.Cacciari,P.Quiroga,G.Salam,GS,arXiv:1209.6086]

Subtraction for jet mass and jet shapes
Important for jet tagging (“q v. g jet”, b jet, top jet, H → bb̄)

[M.Cacciari,J.Kim.G.Salam,GS,arXiv:1211.2811]
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Fragmentation function in HI collisions
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Fragmentation function in HI

Fragmentation function: momenta of the constituents
dNh

dz
with z =

pt,h
pt,jet

, ξ = log(1/z)

Idea: consider moments of the fragmentation function

MN =

∫ 1

0
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dz
or M jet

N =
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h∈jet p
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Fragmentation function in HI

Fragmentation function: momenta of the constituents
dNh

dz
with z =

pt,h
pt,jet

, ξ = log(1/z)

Idea: consider moments of the fragmentation function

MN =

∫ 1

0

dz zN
dNh

dz
or M jet

N =

∑

h∈jet p
N
t,h

pNt,jet

affected by the large PbPb Underlying event

reconstructed jet pt: see before

additional soft particles: apply e.g. a pt cut
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“Standard” background subtraction

Underlying idea:

measure the medium where it is not affected by
the hard jets

subtracts that from the fragmentation function

Simple test:

region transverse to the dijet event with the same area

– p. 25



Subtraction in moment space

Alternative approach:
use jet-area-based techniques in moment space

Introduce a new background property ρN

ρ = median
patches

{

pt,patch
Apatch

}

ρN = median
patches

{

∑

i∈patch p
N
t,i

Apatch

}

and subtract using

M sub
N =

∑

i∈jet p
N
t,i − ρNA

(pt − ρA)N
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Fragmentation function subtraction
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Improved subtraction

Problem:

steeply falling jet spectrum

cut on psubt,full tends to pick
smaller pt,hard
with upwards fluctuations 1/

N
 d

N
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Consequences:

pt,jet overestimated i.e. z underestimated:
underestimation at large N

extraneous soft particles in the medium:
overestimation at small N

– p. 28



Improved subtraction

Simple unfolding computed analytically in moment
space

assuming small fluctuations (σ)

(unfolded) inclusive jet spectrum
dN/dpt ∝ exp(−pt/µ) (locally)

compute event-by-event:
fluctuations σ in pt

fluctuations σN in
∑

pNt

correlations rN between
∑

pNt and pt

M sub,imp
N = M sub

N ×
(

1 +N
σ2A

µpt,jet

)

− rN
σσNA

µpNt,jet
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Improved subtraction

M sub,imp
N = M sub

N ×
(

1 +N
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µpt,jet

)

− rN
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Much nicer and only easily done in moments!
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Conclusion and perspectives

Many recent developments in use at the LHC:
jet algorithms with finite cross-sect. at all orders
in particular the anti-kt algorithm
FastJet: fast implementations and jet package

Pile-up and HI background subtraction:
2 key ingredients: jet area & median ρ

Now many applications
jet pt and 4-momentum
fragmentation function
jet shapes
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Backup slides
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FF moments: interesting N

Some interesting values of N :

N = 0 is the particle multiplicity

with only charged tracks N = 1 is the charged
fraction of momentum

Hadron spectrum ∝ p−n
t

⇒ Mn−1 is the ratio of the hadron and jet spectra

– p. 33
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