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flow in p-Pb

Introduction

Signatures of sQGP

Main signatures of sQGP in ultra-relativistic A+A collisions

Collective flow
Jet quenching

Flow manifests itself in harmonic components in the momentum
spectra, certain features in correlation data (ridges), interferometry
(femtoscopy), ...

Bozek 2010: p+A and p+p in hydro
Ridges discovered in small systems, p+A and high-multiplicity
p+p
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Introduction

3-stage approach

Our three-phase approach: initial → hydro → statistical
hadronization

Initial phase - Glauber model
Hydrodynamics - 3+1 D viscous event-by-event
Statistical hadronization

Main questions:

Are the central p-Pb collisions collective?

What is the nature of the initial state?
What are the limits on applicability of hydrodynamics?
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3-stage approach

Snapshots of initial Glauber condition in central p+Pb
Typical transverse-plane configuration of centers of the participant nucleons in
a p+Pb collision generated with GLISSANDO
5% of collisions have more than 18 participants, rms ∼ 1.5 fm – large!
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3-stage approach

Snapshot of peripheral Pb+Pb

Most central values of Nw in p-Pb would fall into the 60-70% or
70-80% centrality class in Pb+Pb
Pb+Pb: c=60-70% ≡ 22 ≤ Nw ≤ 40, c=70-80% ≡ 11 ≤ Nw ≤ 21
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3-stage approach

Positions of sources
placed in the centers of the colliding nucleons or in the
centers-of-mass of the colliding pairs
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3-stage approach

Smearing

Gaussian smearing with width 0.4 fm (physical effect)

This is fed into e-by-e hydro as initial condition
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3-stage approach

Size in p+Pb

p+Pb, Nw = 18
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red - centers of participants, blue - center-of-mass of colliding pairs
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3-stage approach

Size in p+Pb vs Pb+Pb

fixed Nw = 18
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smaller size in p+Pb → larger entropy density → more rapid
expansion

All in all, initial conditions in most central p+Pb not very far from
peripheral Pb+Pb
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3-stage approach

Multiplicity distribution
To reproduce the multiplicity distribution of the most central events in
p+Pb one needs to fluctuate the strength of the Glauber sources. We
overlay the Gamma distribution (Gamma + Poisson = negative
binomial). At statistical hadronization Poissonian fluctuations are
generated
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3-stage approach

Initial condition in spatial rapidity

f(η∥)± = exp

(
−
(|η∥| − η0)

2

2σ2
η

θ(|η∥| − η0)

)
(yb ± η∥)

yb
θ(yb ± η∥),

η0 = 2.5, ση = 1.4, yb = 8.58 - beam rapidity, +/- indicates the
forward/backward moving participant nucleons
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[Bialas & Czyż 2005, Adil & Gyulassy 2005, Gazdzicki & Gorenstein 2006,
Bzdak 2009, ...]
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3-stage approach

Assumed factorization of the transverse and longitudinal
distributions

alignment of F and B event planes (can be checked experimentally)

collimation of flow at distant longitudinal separations → ridges!
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3-stage approach

Surfers - the near-side ridge
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3-stage approach

Hydrodynamics [Bożek 2011]

3+1 D viscous event-by-event hydrodynamics

τinit = 0.6 fm/c, η/s = 0.08 (shear), ζ/s = 0.04 (bulk)

freezeout at Tf = 150 MeV

average initial temperature in the center of the fireball
Ti = 242 MeV (< R2 >1/2= 1.5 fm), or
319 MeV (< R2 >1/2= 0.9 fm)
lattice spacing of 0.15 fm (thousands of CPU hours)
realistic equation of state (lattice + hadron gas [Chojnacki &
Florkowski 2007]), viscosity necessary for small systems
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3-stage approach

< R2 >1/2= 1.5 fm < R2 >1/2= 0.9 fm
pPb 5020GeV Npart=19
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isotherms at freeze-out Tf = 150 MeV for two sections in the
transverse plane
evolution lasts about 4 fm/c - shorter but more rapid than in A+A
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3-stage approach

Statistical Hadronization

Statistical hadronization via Frye-Cooper formula + resonance
decays (THERMINATOR), transverse-momentum conservation
approximately imposed, local charge conservation included
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Flow

LHC: v2 vs ATLAS
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Flow

v2 and v3 vs pT
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Flow

v2 and v3 from the scalar-product method

[STAR 2002, Luzum & Ollitrault 2012]
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Flow

v2 and v3

cuts: |η| < 2.5, 0.3 < pT < 5 GeV
< R2 >1/2= 1.5 fm

c=0-3.4% c=3.4-7.8%
Glauber+Poisson

v2{2}2 [10−3] 3.70(1) 3.78(2)
v3{2}2 [10−3] 1.04(1) 0.95(1)
v2{4}4 [10−6] -0.4(4) 1.83(5)

Glauber+NB
v2{2}2 [10−3] 8.18(12) 8.24(10)
v3{2}2 [10−3] 1.52(8) 1.51(6)
v2{4}4 [10−6] 15(7) 16(6)

more fluctuations → more harmonic flow
v2{4} very sensitive (fluctuations)
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Flow

pT spectra of π+
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Correlations

Definition of the 2D correlation function

C(∆η,∆ϕ) =
Npairs

phys (∆η,∆ϕ)

Npairs
mixed(∆η)

= S(∆η,∆ϕ)
B(∆η,∆ϕ)

(more convenient than the “per-trigger” correlations)
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Correlations

Ridge in p-Pb, ATLAS
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Correlations

Projection on 2 ≤ |∆η| ≤ 5, ATLAS

Y (∆ϕ) =

∫
B(∆ϕ)d(∆ϕ)

N
C(∆ϕ)− bZYAM

The near-side ridge from our model:
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Correlations

Ridge in p-Pb
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Correlations

Flow from correlations (two-particle cumulants)
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Correlations

LHC: vn{2, |∆η| > 2GeV} vs CMS
top - v2, bottom - v3
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Interferometry

HBT radii
Interferometric radii due to Bose-Einstein correlations - measure of the size of
the system at freeze-out
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hydro model
p-Pb 5.02TeV
p-p 7TeV
Au-Au 200GeV
Cu-Au 200GeV
Pb-Pb 2.76TeV

ALICE Data
p-p 900GeV
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Pb-Pb 2.76TeV

STAR Data
Cu-Cu 62.4GeV
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Au-Au 62.4GeV
Au-Au 200GeV
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Conclusions

Conclusions
In hydro there is flow! Is there collectivity in small systems?

→ collective dynamics is compatible with high-multiplicity LHC
data for p-Pb

vn coefficients measured in p-Pb reproduced semiquantitatively
Model 2-D correlations exhibit the two ridges, in particular the
near-side ridge (“surfers”)
Interferometric radii for p+Pb are close to the A+A line, away
from the p+p line - way to distinguish, will be verified shortly
by ALICE

Other effects (jets, corona, ...)
p+p, other approaches
Other models of the initial collision [Bzdak et al. 2013,
CGC+hydro]


