Time structure of QGP using top quarks in PbPb collisions

Liliana Apolinário

February 2020

TÉCNICO LISBOA

IPN Orsay, France

What happens when a high momentum particle travels through the QGP?

What happens when a high momentum particle travels through the QGP?

What happens when a high momentum particle travels through the QGP?

Medium-induced energy loss

- parton shower

What happens when a high momentum particle travels through the QGP?

- parton shower

What happens when a high momentum particle travels through the QGP?

L. Apolinário

- parton shower

What happens when a high momentum particle travels through the QGP?

L. Apolinário

+

Expanding Medium

What happens when a high momentum particle travels through the QGP?

L. Apolinário

What happens when a high momentum particle travels through the QGP?

L. Apolinário

ATLAS (2014)

Medium effects on Hadronization?

CMS (2014)

ATLAS (2014)

Increase of outer region of the jet transverse profile/soft fragments

Medium effects on Hadronization?

ATLAS (2014)

Increase of outer region of the jet transverse profile/soft fragments

Core of the jet transverse profile/ hard fragments unmodified

Medium effects on Hadronization?

What happens when a high momentum particle travels through the QGP?

ATLAS (2014)

Increase of outer region of the jet transverse profile/soft fragments

Core of the jet transverse profile/ hard fragments unmodified

Reduction of intermediate region of the jet transverse profile/intermediate fragments

What is the information that we get?

Integrated result of the whole medium (fast) evolution \bigstar

However... \bigstar

> Strong time-dependence of the medium properties (expansion and cooling of the system)

Small-size systems (high-multiplicity pp and pA collisions) show signatures of collective behaviour

What is the information that we get?

Integrated result of the whole medium (fast) evolution \bigstar

However... \bigstar

> Strong time-dependence of the medium properties (expansion and cooling of the system)

Small-size systems (high-multiplicity pp and pA collisions) show signatures of collective behaviour

Need to devise a strategy to probe the time-structure of the QGP!

What is so special about tops (ttbar events) for QGP studies?

Small lifetime $\tau_{top}^{rest} = 0.15$ fm/c \bigstar

+

Expanding QGP Time (fm/c)

What is so special about tops (ttbar events) for QGP studies?

Small lifetime $\tau_{top}^{rest} = 0.15$ fm/c \bigstar

Decays to a color neutral probe (W boson)

Lifetime $\tau_{W}^{rest} = 0.10$ fm/c +

+

 \blacklozenge

What is so special about tops (ttbar events) for QGP studies?

Small lifetime $\tau_{top}^{rest} = 0.15$ fm/c \bigstar

Decays to a color neutral probe (W boson)

Lifetime $\tau_{W}^{rest} = 0.10$ fm/c +

Leptonic decay: tagging (+ 2 b-jets)

+

 \blacklozenge

- What is so special about tops (ttbar events) for QGP studies?
- Small lifetime $\tau_{top}^{rest} = 0.15$ fm/c \bigstar
 - Decays to a color neutral probe (W boson)
 - Lifetime $\tau_{W}^{rest} = 0.10$ fm/c
 - Leptonic decay: tagging (+ 2 b-jets)
 - Hadronic decay: natural time delayed probe

 $\mathbf{+}$

What is so special about tops (ttbar events) for QGP studies?

Small lifetime $\tau_{top}^{rest} = 0.15$ fm/c \bigstar

Decays to a color neutral probe (W boson)

Lifetime $\tau_{W}^{rest} = 0.10$ fm/c

Leptonic decay: tagging (+ 2 b-jets) +

Hadronic decay: natural time delayed probe

Total time delay depends on transverse boost: (X = top or W-boson)

 $\left(\frac{p_{t,X}^2}{m_X^2}\right)$ $\gamma_{t,X} =$ $\boldsymbol{\Lambda}$

What happens with a Wooson decaying hadronically inside the QGP?

numerical factors we should have

Medium able to "see" both particles independently Quarks start interact with the medium \implies Hadronic probe of the QGP is formed Pictures

What happens with a Wiboson decaying hadronically inside the QGP?

numerical factors we should have

Medium able to "see" both particles independently Quarks start interact with the medium \implies Hadronic probe of the QGP is formed Pictures

What happens with a Wiboson decaying hadronically inside the QGP?

numerical factors we should have

Medium able to "see" both particles independently Quarks start interact with the medium \implies Hadronic probe of the QGP is formed Pictures

What are the available timescales that we are able to probe with this system?

+

LA, Milhano, Salgado, Salam (2019)

What are the available timescales that we are able to probe with this system?

+

LA, Milhano, Salgado, Salam (2019)

What are the available timescales that we are able to probe with this system?

+

LA, Milhano, Salgado, Salam (2019)

What are the available timescales that we are able to probe with this system?

+

LA, Milhano, Salgado, Salam (2019)

Pythia = pp collisions... How to include energy loss? And coherence effects?

Pythia = pp collisions... How to include energy loss? And coherence effects?

0.9E

0.8

0.7F

0.6

0.5E

0.4

0.3

0.2

Ę

From Z+jet measurements: $\Delta E/E \sim 15\%$ (independent of the pt) \bigstar

Average momentum imbalance +

Average number of lost pairs

- Pythia = pp collisions... How to include energy loss? And coherence effects?
- From Z+jet measurements: $\Delta E/E \sim 15\%$ (independent of the pt) \bigstar
 - Emission from qqbar "antenna" lose energy proportionally to the distance that they travel:
 - BDMPS (brick): $\Delta E/E \sim L^2$
 - + BDMPS (expanding medium): $\Delta E/E \sim L$

- Pythia = pp collisions... How to include energy loss? And coherence effects?
- From Z+jet measurements: $\Delta E/E \sim 15\%$ (independent of the pt) \bigstar
 - Emission from qqbar "antenna" lose energy proportionally to the distance that they travel:
 - BDMPS (brick): $\Delta E/E \sim L^2$

Pythia particles are scaled taking into account the (boosted) decay time and decoherence time of their parent particles:

 $\tau_{\text{tot}} = \tau_{\text{top}} + \tau_{W} + \tau_{d}$ Time at which the antenna decoheres

Pythia particles are scaled taking into account the (boosted) decay time and decoherence time of their parent particles:

 $\tau_{\text{tot}} = \tau_{\text{top}} + \tau_{W} + \tau_{d}$

Time at which the

antenna decoheres

Reconstructed W mass: mw

will depend on the energy that is lost (medium length that jet is able to "see")

What is the observable?

Simple observable that can be related with energy loss: reconstructed W jet mass

How to relate it to the timescale?

Transverse boost (reconstructed top p_T) links to the average time at which particles start to interact with the medium

LA, Milhano, Salgado, Salam (2019)

p_{t,top}^{reco} (bin average) [GeV/c]

How to relate it to the timescale?

Transverse boost (reconstructed top p_T) links to the average time at which particles start to interact with the medium

Able to measure the density evolution profile

ັ_{τm}= 1.0 fm/c 🔰 unquenched $\tau_m = 5 \text{ fm/c}$ 0 τ_{m} = 2.5 fm/c = τ_{m} = 10 fm/c quenched

Unquenched = pp reference Quenched = scaled pp reference

LA, Milhano, Salgado, Salam (2019)

QGP tomography?

FCC: able to scan most of the QGP lifetime!

section and luminosity too limited....

QGP tomography?

FCC: able to scan most of the QGP lifetime!

section and luminosity too limited....

QGP tomography?

FCC: able to scan most of the QGP lifetime!

section and luminosity too limited....

Tops @ LHC

Inclusive distribution (no pt trigger info)

Average total delay time at the LHC is very small...

L. Apolinário

Tops @ LHC

Inclusive distribution (no pt trigger info)

But there is a large dispersion that one can play with.

Average total delay time at the LHC is very small...

L. Apolinário

Tops @ LHC

Short vs Long lived medium

Maximum brick time, τ_m , that can be distinguished (from full quenching) with 2σ , as a function of Lequiv PbPb:

Distinction between different timescales still possible at the LHC:

LHC (limited by planned luminosities):

- + 10 nb⁻¹: $\tau_m \sim 1.3$ fm/c.
- + 30 nb⁻¹: $\tau_m \sim 2$ fm/c
- Higher $\sqrt{s_{NN}}$ (11, 20 or 39 TeV):
 - Able to probe larger medium lifetimes

 \blacklozenge

Lighter lons

- Higher luminosity, but smaller energy loss...
- Might bring some advantages on the achieved timescales \bigstar
 - + HL-LHC:
 - PbPb with $L_{int} = 10 \text{ nb}^{-1}$: 1.5 fm/c
 - + XeXe with $L_{int} = 2-3 \times L_{int}$ from PbPb: 1-2 fm/c
 - + HE-LHC:
 - + PbPb with $L_{int} = 30 \text{ nb}^{-1}$ (5 months): 5.5 fm/c
 - + XeXe with Lint = $2-3 L_{int}$ from PbPb: 5-6 fm/c

Citron, LA, et al (2019)

Can other probes do QGP tomography?

Jets can provide a range of scales to probe the QGP!

In pp: jets develop in momentum/virtuality/... scale \bigstar

If θ_1 takes place place at τ_1 or not does not affect the final result

L. Apolinário

 $\theta_1 >> \theta_2 >> \theta_3 \dots$: angular-ordering $\left(\tau_{form} = \frac{1}{z(1-z)E\theta^2} \right) \quad \tau_1 \leq \tau_2 \leq \tau_3 \dots$

Experimentally accessible through unclustering with C/A (p = 0) $d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \quad d_{iB} = p_{t,i}^{2p}$

Can other probes do QGP tomography?

Jets can provide a range of scales to probe the QGP!

In pp: jets develop in momentum/virtuality/... scale \bigstar

In PbPb: jets propagate through a spatially extended medium. Jets will have a space-time picture!

If θ_1 takes place place at τ_1 will induce a different fragmentation pattern

 $\mathbf{+}$

 $\theta_1 >> \theta_2 >> \theta_3 \dots$: angular-ordering $\left(\tau_{form} = \frac{1}{z(1-z)E\theta^2} \right) \quad \tau_1 \leq \tau_2 \leq \tau_3 \dots$

Experimentally accessible through unclustering with C/A (p = 0)??

$$d_{ij} = \min(p_{t,i}^{2p}, p_{t,j}^{2p}) \frac{\Delta R_{ij}^2}{R^2} \qquad d_{iB} = p_{t,i}^{2p}$$

$$\mathbf{p} = \mathbf{0.5:} \ d_{ij} \sim p_{T,i} \frac{\Delta R_{ij}^2}{R^2} \sim p_T \theta^2 \sim \frac{1}{\tau_{form}}$$

Time structure with jets

Unclustering jet and selecting different τ_{form} : +

Is the energy fraction changed with respect to a vacuum parton shower? \blacklozenge

LA (EPS 2019)

Time structure with jets

Unclustering jet and selecting different τ_{form} :

Can we select jets that do not experienced energy loss? \blacklozenge

Collinear jets lose less energy (coherent emissions)

Time structure with jets

Unclustering jet and selecting different τ_{form} : $\mathbf{+}$

Can we select jets that do not experienced energy loss? \blacklozenge

Collinear jets lose less energy (coherent emissions)

LA, et al (in preparation)

JEWEL 5.02 TeV w/o recoils

Jets with a first splitting with $\tau_{form} \sim L$, will be more like vacuum-like jets

Summary

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - reconstruction efficiency, b-tagging efficiency,...), but no underlying event background or sophisticated energy loss model...
- Promising results: I. Kucher's talk!!
 - dominated regions from the inclusive top sample;

Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event

HL/HE-LHC: still able to distinguish broad range of medium-duration scenarios/quenching

Summary

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - reconstruction efficiency, b-tagging efficiency,...), but no underlying event background or sophisticated energy loss model...
- Promising results: I. Kucher's talk!!
 - dominated regions from the inclusive top sample;
- Next steps: building a space-time picture of a jet in PbPb! +

Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event

HL/HE-LHC: still able to distinguish broad range of medium-duration scenarios/quenching

Able to access different timescales of the QGP; What exactly are these timescales? On-going work...

Summary

- Top quarks and their decays has a unique potential to resolve the time evolution of the QGP
- A first attempt along this line of research (proof of concept):
 - reconstruction efficiency, b-tagging efficiency,...), but no underlying event background or sophisticated energy loss model...
- Promising results: I. Kucher's talk!!
 - dominated regions from the inclusive top sample;
- Next steps: building a space-time picture of a jet in PbPb! +

Energy loss fluctuations, statistical significance assessment based on a "true-sized" sample (event

HL/HE-LHC: still able to distinguish broad range of medium-duration scenarios/quenching

Thank you!

Able to access different timescales of the QGP; What exactly are these timescales? On-going work...

Acknowledgements

Backup Slides

.

- Energy Loss Fluctuations:
 - Gaussian at particle level
 - $150\%/\sqrt{(pT)} \equiv 15\%$ at 100GeV

Lighter lons

How about lighter nuclei?

Lighter nuclei can go higher in luminosity.

Large cross-sections for electromagnetic processes in ultraperipheral collisions:

Bound-free e-e+ pair production creates secondary beams of Pb81+ ions emerging from the collision point;

Easy to avoid the bound by going lighter! But lose nucleon-nucleon luminosity as A2.

L. Apolinário

J. Jowet, Initial Stages 2016

Energy Loss of lighter systems (Glauber):

N_p^{PbPb} ~ 356 [0-10]%: ΔE^{KrKr}/E^{KrKr} ~ 0.15

N_p^{XeXe} ~ 210 [0-10]%: ΔE^{XeXe}/E^{XeXe} ~ 0.13

N_p^{KrKr} ~ 110 [0-10]%: ΔE^{KrKr}/E^{KrKr} ~ 0.1 +

30% less than PbPb [0-10]%

Energy Loss of lighter systems (V+jet):

◆ PbPb [0-10]%: <x_{jz}> ~ 0.7;

PbPb [40-50]%: $\langle x_{jz} \rangle \sim 0.8 (N_p \sim 107 [0-10]\%);$ \bullet

15% less than PbPb [0-10]%

L. Apolinário

Light Systems

Simulation

- Monte Carlo Event Generator (POWHEG NLO ttbar production + pythia 8 showering with PDF4LHC15_nlo_30_PDF):
- Rescaling at parton level with Gaussian fluctuations like:
 - + Q (1 + r $\sigma_{pt}/p_{t,i}$ + 1 GeV)^{1/2},
 - + Q = Quenching factor (Q₀ or Q(τ_{tot}))
 - + r = random number from Gaussian with $\sigma = 1$

 $\mathbf{+}$

Particle Decay and Coherence Time

To get an event-by-event estimate of the interaction start time each component has associated a randomly distributed exponential distribution with a mean and dispersion:

 $\langle \gamma_{t,top} | \tau_{top} \rangle \simeq 0.18 \text{ fm/c}$, $\langle \gamma_{t,W} | \tau_W \rangle \simeq 0.14 \text{ fm/c}$, $\langle \tau_d \rangle \simeq 0.34 \text{ fm/c}$

Reconstruction of the event (at parton level) \diamond

• 1
$$\mu$$
 with p_T > 25 GeV and $|\eta| < 2.5$

- \blacklozenge with dcut = $(20 \text{GeV})^2$)
- $2 \text{ b-jets} + \geq 2 \text{ non-bjets}$ +
- Quenching + energy loss fluctuations at parton level

Jet reconstruction with anti-k_T R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$. (recluster with k_T , R = 1.0 and decluster

- W candidate reconstruction procedure:
 - $p_{T,\mu} > 25 \text{ GeV} + 2 \text{ bjets} + >= 2 \text{ non-bjets}$

Anti- $k_T R = 0.3$, $p_T > 30 \text{ GeV}$, $|\eta| < 2.5$. (recluster with $k_T R$) = 1.0 and decluster with dcut = $(20 \text{GeV})^2$)

- + W jets = 2 highest- p_T non-b jets.
- W candidate is reconstructed by considering all pairs of non-b jets with m_{ii} < 130 GeV; the highest scalar p_T sum pair is selected
- b-tagging efficiency of 70% (pPb events) +

Reconstruction procedures

- 1µ with $p_T > 25$ GeV and $|\eta| < 2.5$
- \blacklozenge with dcut = $(20 \text{GeV})^2$

 - the highest scalar pt sum pair is selected

Jet reconstruction with anti-k_T R = 0.3, $p_T > 30$ GeV, $|\eta| < 2.5$ (recluster with k_T, R = 1.0 and decluster

* "hadronic" W candidate is reconstructed by considering all pairs of non-b jets with m_{jj} < 130 GeV;</p>

Reconstructed W Mass

At Future Circular Collider (FCC) energies $(\sqrt{s_{NN}} = 39 \text{ TeV}):$

ottbar→qqbar+µv ~ 1 nb

 At Large Hadron Collider (LHC) energies (√s_{NN} = 5.5 TeV):

σ_{ttbar→qqbar+µv} ~ 10 pb

Functional form fit: +

$$N(m) = a \exp\left[-\frac{(m - m_W^{fit})^2}{2\sigma^2}\right] + b + c m$$

Gaussian on top of a linear background

pp event scaled by quenching factor (embedded in PbPb)

pp event (embedded in PbPb)

