Soft physics at

Jean-Yves Ollitrault, IPhT Saclay Heavy-ion seminar, IPN Orsay, July 26

Outline

- Multiplicity
- Hadron chemistry
- Particle spectra
- Correlations and flow

Outline

- Multiplicity
- Hadron chemistry
- Particle spectra
- Correlations and flow

7

Charged particle multiplicity

Pixel "tracklets" in solenoid-off data, to measure down to $p_T>0$

Yield per participant pair increases by factor of two relative to RHIC, in agreement with ALICE measurement

Similar centrality dependence to that found at RHIC (which itself was similar to top SPS energies):

Confirmation of what appears to be a robust scaling feature in HI

for details, see talk by Yujiao Chen (4pm Mon.)

Charged particle multiplicity

- Uses pixel tracker and two methods
- Data taken with no magnetic field, B=0T
- Trigger with 99% efficiency, 1% UPC contamination

• Central multiplicity $dN_{ch}/d\eta$ =1610 ± 55 for 0–5% centrality

K. Krajczar (TODAY), M. Malek (poster)

6

Outline

- Multiplicity
- Hadron chemistry
- Particle spectra
- Correlations and flow

Observation of the antimatter Helium-4 (anti-α) nucleus

Liang Xue^{a,b} for the STAR Collaboration

^aBrookhaven National Laboratory ^bShanghai Institute of Applied Physics

- Introduction & Motivation
- Evidence of the observation of ⁴He
- Quality check for ⁴He
- ⁴He invariant yields
- Summary

arXiv:1103.3312v2 DOI: 10.1038/nature10079 Nature Vol 473,(2011) 353-356

Shanghai Institute of Applied Physics, Chinese Academ

Quark Matter 2011@Annecy - France

SINAP

⁴He invariant yields

• An exponential trend is predicted by both coalescence and statistical model.

- Production rate reduce by 1.6×10³ (1.1×10³) for each additional anti-nucleon (nucleon) added to the anti-nucleus (nucleus).
- The yield of the stable antimatter nucleus next in line (B = -6) is predicted to be down by a factor of 2.6×10^6 compared to ⁴He and is beyond the reach of current accelerator technology.

Particle ratios: - Measured: ⁴He/³He ~ (3.0±1.3(stat))×10⁻³ ⁴He/³He ~ (3.2±2.3(stat))×10⁻³ - Statistical model:

⁴He/³He is ~ 3.1x10⁻³ ⁴He/³He is ~ 2.4x10⁻³

Andronic, A. et al., Phys. Lett. B 697, 203 (2011)

$$E_A \frac{d^3 N_A}{d^3 p_A} \propto B_A (E_p \frac{d^3 N_p}{d^3 p_p})^A$$
$$E_A \frac{d^3 N_A}{d^3 p_A} = \frac{gV}{(2\pi)^3} E e^{-m_p A/T}$$

- R. Scheibl. PRC 59:1585, (1999)
- E. Schnedermann. PRC 48, (1999), 2462

Liang Xue, SINAP/BNL

Quark Matter 2011@Annecy - France

the (anti)proton anomaly

pp: Thermus thermal fit rather poor (wasn't this better for pp at lower energies ??) **K**/π grows slightly from pp value

the (anti)proton anomaly

- **pp:** Thermus thermal fit rather poor (wasn't this better for pp at lower energies ??)

- K/ π grows slightly from pp value
- **p/**π ≈ like pp

the (anti)proton anomaly

- **pp:** Thermus thermal fit rather poor (wasn't this better for pp at lower energies ??)

- K/ π grows slightly from pp value

- **p/**π ≈ like pp

Pb: p/π off by factor > 1.5 from predictions !

but very compatible with RHIC !!

Before we can conclude anything we need more particle species..

Outline

- Multiplicity
- Hadron chemistry
- Particle spectra
- Correlations and flow

(Michele Floris, plenary)

At RHIC: STAR proton data generally not feed-down corrected.

Large feed down correction

Consistent picture with feed-down corrected spectra

At LHC: ALICE spectra are feed-down corrected

- Harder spectra, flatter p at low pt
- Strong push on the p due to radial flow?

STAR, PRL97, 152301 (2006) STAR, PRC 79 , 034909 (2009) PHENIX, PRC69, 03409 (2004)

(Michele Floris, plenary)

Mean p_T increases linearly with mass

Higher than at RHIC (harder spectra, more flow?)

For the same dN/d η higher mean p_T than at RHIC

Density increases by 2.15 from RHIC to LHC Mean pt of pions (~T) increases only by 10%: soft equation of state

Outline

- Multiplicity
- Hadron chemistry
- Particle spectra
- Correlations and flow

Dihadron correlation technique in CMS

Heavy-ion "ridge" at LHC

Flow vs. non-flow correlations

Collective effects

(Adare parallel)

Flow-related effects imply correlation through a plane of symmetry ψ_n .

Flow-dominated correlations should factorize:

```
\begin{aligned} <\!\!\cos n\Delta \phi\!\!> &= <\!\!\cos n(\phi_{trig} - \phi_{assoc})\!\!> \\ &= <\!\!\cos n(\phi_{trig} - \psi_n)\!\!> <\!\!\cos n(\phi_{assoc} - \psi_n)\!\!> \\ &= v_n(p_{Ttrig}) v_n(p_{Tassoc}) \end{aligned}
```

Pair coefficients are just products of familiar single-particle v_ns .

Jet-related effects

A few energetic particles are highly correlated by fragmentation, but not directly through ψ_n .

Caveat: there can be indirect correlations, i.e. length-dependent quenching. Would be largest w.r.t. ψ_2 since it reflects the collision geometry.

The collectivity relation

 $<\cos n\Delta \phi > = v_n(p_{Ttrig}) v_n(p_{Tassoc})$

is a quantitative hypothesis that can be tested!

Global fit of 2-particle Fourier moments

Find best $v_n(p_T)$ Fit <cos $n\Delta \phi$ > for all p_T bins simultaneously Fit function: $V_{n\Delta} = v_n^t v_n^a$.

Fit breaks at high p_T , where jets dominate.

Key idea If fit matches data suggests flow-type correlations

If fit diverges collective description less appropriate.

Transition between cases follows clear trends.

The full harmonic spectrum

- v_n vs N_{part} shows different trends:
 - even harmonics have similar centrality dependence:
 - decreasing \rightarrow 0 with increasing N_{part}
 - v₃ has weak centrality dependence, finite for central collisions

Other Harmonics

see presentations J-F. Grosse-Oetringhaus and A. Adare

$$C(\Delta\phi) \equiv \frac{N_{\text{mixed}}}{N_{\text{same}}} \frac{\mathrm{d}N_{\text{same}}/\mathrm{d}\Delta\phi}{\mathrm{d}N_{\text{mixed}}/\mathrm{d}\Delta\phi}$$

We observe a doubly-peaked structure in the azimuthal correlation function opposite to the trigger particle before the subtraction of v_2

The red line shows the sum of the measured anisotropic flow Fourier coefficients. Those flow coefficients give a natural description of the observed correlation structure

(J. Jia @ ATLAS, plenary)

8

v_n(n=2-6) vs p_T (0.5-12 GeV)

Similar p_T dependence for all n: rise to 3-4 GeV, then falls

Triangular Flow

We observe significant v_3 which compared to v_2 has a different centrality dependence

The centrality dependence and magnitude are similar to predictions for MC Glauber with $\eta/s=0.08$ but above MC-KLN CGC with $\eta/s=0.16$

ALICE Collaboration, arXiv:1105.3865

The v_3 with respect to the reaction plane determined in the ZDC and with the v_2 participant plane is consistent with zero as expected if v_3 is due to fluctuations of the initial eccentricity

The $v_3{2}$ is about two times larger than $v_3{4}$ which is also consistent with expectations based on initial eccentricity fluctuations

v_2 and v_3 vs N_{part} : Comparison to hydro

Qualitative agreement with the data Further tuning/studies are needed for quantitative comparison On the experiment side: better control of non-flow effects will be explored

CMS Flow results, Quark Matter 2011

v_3 disentangles initial state and η/s

29

Other Harmonics

The overall dependence of v_2 and v_3 is described However there is no simultaneous description with a single η /s of v_2 and v_3 for Glauber initial conditions

Triangular Flow

see presentation M. Krzewicki

The behavior of v_3 as function of p_t for pions, Kaons and protons shows the same features as we already observed for v_2

(we observe the mass splitting and, in addition, the crossing of the pions with protons at intermediate p_t , which for v_2 was considered as a signature for coalescence/recombination)

Theory Comparison: Direct Photon v₂

Theory calculation: Holopainen, Räsänen, Eskola arXiv:1104.5371v1

- Models under-predict direct photon v₂
- Measurement further constrains T_i and τ_i
- Challenge to theorists

Plenary: S. Esumi (flow), Tue Parallel: E. Kistenev (direct photons) Thu

p_T [GeV/c] Stefan Bathe for PHENIX, QM2011

13

Conclusions

- Correlations up to pt~5 GeV compatible with just initial fluctuations + flow: soft physics is gaining ground!
- Not only v₂, but also higher harmonics: v₃, v₄, v₅ measured
- v_1 from fluctuations not yet measured
- These new measurements constrain models of initial state: more theory needed.