

# Scrutinizing ALICE data on pair correlations

Jean-Yves Ollitrault, IPhT Heavy-ion seminar, December 21, 2012

Fernando Gardim, Frédérique Grassi, Matt Luzum, JYO, arXiv:1211.0989

# Nuclear collisions at the LHC



- A central Pb-Pb collision at the LHC produces ~25000 particles, mostly pions.
- The best description we have of this strongly-coupled system is: a small lump of fluid expanding into the vacuum.

# Motivations

- Relativistic hydrodynamics: the only theory for the strongly-coupled quarkgluon plasma out of equilibrium.
- An important question for LHC heavyion physics is therefore: how far can we go in interpreting data with hydro?
- Over the last 12 years, the scope of hydrodynamics has broadened.

# Outline

- Modeling a collision with hydro
- A close look at pair correlations
- Conclusions and perspectives

# Modeling a collision with hydro

- Initial conditions: typically from a Monte-Carlo event generator
- Thermalization transforms the single event into a thermal ensemble, aka hydro event
- Solve for expansion using equations of relativistic hydrodynamics
- Transform the fluid into independent particles
- The fluid is continuous: in every event, we can compute accurately single-particle spectra, i.e., the probability distribution of transverse momentum  $p_t$ , pseudorapidity  $\eta$ , azimuthal angle  $\phi$

# Anisotropic flow in hydro

Fourier expansion of  $\phi$  probability distribution at fixed  $p_t$  and  $\eta$ 

 $2\pi dN/d\phi = I + 2 \sum v_n(p_t, \eta) \cos(n(\phi - \psi_n(p_t, \eta)))$ 

also written as:  $V_n(p_t,\eta) \equiv v_n(p_t,\eta)e^{in\psi n(pt,\eta)} = \{e^{in\varphi}\}$ 

V<sub>n</sub> is well defined in hydro (only)

With initial state fluctuations:

- Odd harmonics at midrapidity:  $V_1$  (directed flow) and  $V_3$  (triangular flow) in addition to  $V_2$  (elliptic flow).
- Each harmonic has its own phase  $\psi_n$  which may depend on  $p_t$  and  $\eta$



### Flow in data

- Anisotropic flow is not an observable
- The number of particles in a single event is too small to measure  $V_n(p_t, \eta)$ , or even the integrated  $v_n$  statistical error is typically 50% for event-by-event  $v_2$ , 100% for event-by-event  $v_3$ .
- Anisotropic flow can only be measured through eventaveraged azimuthal correlations between particles.

# Observing the small fluid: correlations



Number of pairs of particles versus relative azimuthal angle and pseudorapidity (~polar angle) in central Pb-Pb collisions at LHC

• Long-range azimuthal correlation ~ ripple in a pond

### New data at the LHC ALICE 109.2501

ALICE has measured for the first time the full
2-particle correlation matrix

$$V_{n\Delta}(t,a) = \langle \cos n(\varphi_t - \varphi_a) \rangle = \langle e^{in(\varphi_t - \varphi_a)} \rangle$$

versus pt of trigger and associated particles.

- A simple, transparent analysis, yet containing a lot of new, non-trivial information.
- Double-differential analysis: requires much more statistics than other flow analyses

### Correlation matrix in hydro

• In a single event, particles are emitted independently:

$$V_{n\Delta}(t,a) = \{e^{in(\varphi t - \varphi a)}\} = \{e^{in\varphi t}\} \{e^{-in\varphi a}\} = V_n(t)V_n^*(a)$$

• The correlation matrix factorizes, which implies

$$V_{n\Delta}(t,a) = \sqrt{V_{n\Delta}(t,t)}V_{n\Delta}(a,a)$$

### Correlation matrix in hydro

• After averaging over hydro events,

 $V_{n\Delta}(t,a) = \langle V_n(t)V_n^*(a) \rangle$ 

• The correlation matrix no longer factorizes, but

Diagonal elements are positive:  $V_{n\Delta}(t,t) = \langle |V_n(t)|^2 \rangle$ 

Non-diagonal elements measure the linear correlation between  $V_n(t)$  and  $V_n(a)$  and satisfy a triangular inequality, (instead of equality implied by factorization)

$$|V_{n\Delta}(t,a)| \leq \sqrt{V_{n\Delta}(t,t)}V_{n\Delta}(a,a)$$

11

Gardim, Grassi, Luzum, JYO, 1211.0989

### Are data compatible with flow?

Do data for  $V_{n\Delta}$  show

- Factorization?
- Strict inequality, i.e. flow fluctuations?
- Breaking of inequalities (i.e. nonflow)?

# Is $V_{2\Delta}$ compatible with elliptic flow?

1.1

0.9

0.8

0.7

0.25

1 1.5

1



Colors mean: Factorization OK Strict inequality Nonflow Data everywhere compatible with flow, with evidence of flow fluctuations

2.5

trigger  $p_{\pi}$ 

3

4

5

 $V_{2\Lambda}(t,a) / \sqrt{V_{2\Lambda}(t,t)} V_{2\Lambda}(a,a)$ 

••••

2

# Is $V_{3\Delta}$ compatible with triangular flow?



Colors mean: Factorization OK Strict inequality Nonflow

Evidence for nonflow at high  $p_t$ . Can be explained by away-side jet

# Can hydro reproduce the observed breaking of factorization?

Gardim, Grassi, Luzum, JYO, 1211.0989



- Yes. Fluctuations induce decoherence of angular correlations
- This ideal hydro calculation (for RHIC) seems to overpredict breaking of factorization

### Conclusions

- The old picture of elliptic flow in the reaction plane is not wrong, but there is **much more** we can do with flow
- The price to pay is that we must move the boundary between theory and experiment.
- Experiments measure correlations
- The separation of correlations into flow + nonflow is a model-dependent issue: belongs to theory.
- Flow = how much we can understand within hydro.

### Perspectives

- The physics of flow is now much richer than it used to be
- Not just elliptic flow but all harmonics
- Not just single particle flow, but the detailed structure of 2-particle correlations (studied as a function of pt but the rapidity structure is as important)
- And a large number of upcoming measurements of higher-order, mixed correlations
- Beyond independent particles: fluctuations and correlations in hydro

Kapusta, Müller, Stephanov, 1112.6405 Bozek & Broniowski 1204.3580 17

# Backup slides

# 2000



- Elliptic flow is created due to the almond shape of the overlap area of semi-central collisions. It develops in the reaction plane.
- Only hydro is able to reproduce elliptic flow quantitatively

STAR nucl-ex/0009011, 483 citations



The near-side peak is narrower than the awayside peak: there are other correlations than just flow

#### Initial fluctuations (PHOBOS)



Fluctuations of the initial geometry must be taken into account in order to describe the observed elliptic flow

# 2010

# If initial fluctuations are properly taken into account, then the soft ridge is just flow



Triangular flow breakthrough

Alver and Roland, 1003.0194

# 

#### Where are we now?

# Observing the small fluid: correlations



Number of pairs of particles versus relative azimuthal angle and pseudorapidity (~polar angle) in proton-proton collisions at LHC

(actually not real data, but PYTHIA simulation)

- A random central Au-Au collision at top RHIC energy, initial conditions from NeXus event generator
- These initial conditions are evolved through ideal hydrodynamics.
- Compute distribution of charged particles near midrapidity.
- See how the  $\phi$  distribution evolves with  $p_t.$



 $0.25 < p_t < 0.75 \text{ GeV/c}$ 1.4 1.2 1 dN/dφ 0.8 0.6 0.4 0.2 0 5 2 3 4 6 1 0 φ

Fourier decomposition → magnitude and directions of directed, elliptic and triangular flows, all at the % level at low pt.



φb/Nb



As  $p_t$  increases, anisotropic flow increases.  $\psi_2$  and  $\psi_3$  change mildly,  $\psi_1$  rotates more strongly















φb/Nb



 $\psi_{I}$  rotates by  $\pi$  between low  $p_{t}$  and high  $p_{t}$ , because the total transverse momentum  $\int p_{t} v_{I} e^{i\psi_{I}} \sim 0$ .

scale 1/4



# Single-particle anisotropic flow

- Most analyses so far: analyses of "single-particle" vn
- Theorists are often confused by this misleading terminology
- It is again a correlation: a single particle correlated with all particles in an "event-plane" detector.
- Amounts to averaging the correlation matrix over a line



# Factorization also breaks down in hydro



# Fit correlation matrix to $v_n^t v_n^a$ , then take ratio of correlation to fit

31 Gardim, Grassi, Luzum, JYO, 1211.0989