

Update on Hard Probes with CMS

Matt Nguyen Rencontres Ions Lourds March 16th, 2012

CMS Public Results: <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN11012</u>

Since Last Time ...

- Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in PbPb collisions <u>arXiv:1201.3158v1</u>
- Measurement of isolated photon production in pp and PbPb collisions <u>arXiv:1201.3093v1</u>
- Suppression of non-prompt J/ψ, prompt J/ψ, and Υ(1S) in PbPb collisions <u>arXiv:1201.5069v1</u>
- Study of high-p_T charged particle suppression in PbPb compared to pp collisions <u>arXiv:1202.2554v1</u>
- Jet momentum dependence of jet quenching in PbPb collisions <u>arXiv:1202.5022v1</u>
- Azimuthal anisotropy of charged particles at high p_T in PbPb collisions (<u>In preparation</u>)

2011 Data!

Performance in 2011

- Data rate and volume pushed CMS nearly to current limits
- Planning to upgrade develop triggers, firmware, etc. for future higher lumi.

The CMS Detector

Jet-Triggered Spectra

Jet triggered data extend the p_T reach of charged hadrons

- Improved statistical precision compared to results shown at Quark Matter 2011
- Now pp comparison data is the limitation

The Emerging CMS R_{AA} Picture

7

LIC Jet Results From 2010 Data

LM Jet Reconstruction in CMS

- CMS has excellent tracking, but a relatively poor resolution hadronic calorimeter (w.r.t. to ATLAS)
- Makes sense to try to combine tracking and calorimeter information (without double counting!)
- Particle Flow Algorithm combines information from all sub-detectors
- Jets are reconstructed from particle candidates rather than calorimeter towers

PF in pp CMS-PAS-PFT-09-001

Particle Flow in HI: M.N. for CMS J.Phys.G38 (2011) 124151

Underlying Event Subtraction

To estimate background E_{T} density PF candidates are clustered into "pseudo-towers" according to the granularity of the HCAL

O. Kodolova et al., EPJC 50 (2007) 117

Re-run jet finder on 4. towers with $E_T > 0$

each η strip

with $E_T > 0$

Background subtraction algorithm improves resolution at the cost removing some soft fragments from jet reconstruction

1.

2.

3.

Jet Response and Resolution

Jet Energy Corrections are evaluated from PYTHIA

The corrected energy scale closes to unity validating subtraction procedure

L*R***Dijet Azimuthal Correlations**

12

arXiv:1202.5022v1

L𝑘_⊤ **Dependence of Dijet Balance**

Anomalous asymmetry persists to largest values of p_T

L𝑘¬ **Dependence of Dijet Balance**

No clear fractional E-loss dependence of leading jet p_T^*

* Results not corrected for p_T -dependent resolution

16/3/12

16/3/12

\mathbb{I} Reaction Plane for High $p_T v_2$

- v₂ is measured in |η| < 2 from charged tracks
- Reaction plane measured in the forward calorimeters (HF) in 3 < |η| < 5
- To avoid auto-correlations from jets only the opposite side HF is used
- Gives a minimum gap of 3 units

Not probing flow \rightarrow path-length dependence of jet quenching

v_2 at High p_T

- At high p_T hydronamic flow dies out as expected
- Small, but non-zero v_2 out to ~ 40 GeV/c, only weak centrality dependence

- CMS has some new results using 2011 data!

 Charged hadron R_{AA} to p_T > 100 GeV/c
 Dijet imbalance to leading jet p_T > 300 GeV/c
 Charged hadron v₂ to p_T > 40 GeV/c
- We're working on more results for the summer conferences!

Backup

Multi-Jet Events

Quark Vs Gluon Jets

Quenching Effects

- A valid criticism:
 If fragmentation was very modified by quenching, subtraction could cause a bias
- Systematics were evaluated by using jet-track correlations to study the soft modes of the jet
- Bottom line: Modification of soft component of quenched jets
 < few GeV inside jet cone

Jet-Track Correlations

http://lokhtin.web.cern.ch/lokhtin/hydro/plots

Efficiency, Fake/Mismatch Rate

<u>CMS-PAS-HIN-11-004</u>

At low p_T jets may not exceed threshold to be excluded from background calculation Rate of away-side jets from background fluctuations and secondary hard scatterings

Charged Hadron R_{AA}

