

Measurement Production and Suppression of J/Ψ and Υ states in PbPb collisions in CMS

Camelia Mironov LLR-Ecole polytechnique

On behalf of the CMS Collaboration

Outline

- Detection in CMS
 the CMS detector
 - Muon reconstruction
- Physics results (2010 PbPb data)
 J/ψ, prompt and non-prompt
 Upsilon

Summary

Detector: the CMS at the LHC

Muons

 \bigcirc Global muons = tracker + muon stations informations

need p ≥ 3 GeV to reach muon stations + 2-3 GeV to compensate for the en loss in the absorber

ID cuts at ana level:	Table 2: Minimum p and p_T to reach first Muon station				
	$\eta = -\ln \tan \frac{\theta}{2}$	R_T^{min}	$p_T^{min} = 0.3 B R_T^{min}$	$p^{min} = p_{\rm T}^{min} / \sin \theta$	
reco both inside-out and outside-in	$0 \le \eta \le 1.2$	4 m	4.8 GeV/c	4.8-8.7 GeV/c	
hits in the tracker, χ 2, DCA, etc	$1.2 \le n \le 1.5$	3 m	36 GeV/c	$65-85 \text{ GeV/c} \oplus 2 \overline{\text{GeV}} $ to $3 \overline{\text{GeV}}$	
			LAC W	Loss on ended	ps
	$1.5 \le \eta \le 2.4$	1 m	1.2 Gev/c	2.8-6.7 Ge V/c	2

Muon pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

J/ ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

 ${\small \textcircled{\bullet}}$ Separate prompt & non-prompt J/ψ

- Efficiencies from Monte Carlo
 - Simulate signal with "realistic" PYTHIA
 - Embed signal in min. bias event simulated with HYDJET (also in data)
 - Validated MC by comparing efficiencies measured with "Tag & Probe" in MC and data
- HI tracking algorithm uses vertex constraint
 - \odot Smaller efficiency for non-prompt than for prompt J/ψ
 - \odot Effect increases with p_{T}

Prompt vs. non-prompt J/ψ

CMS PAS HIN-10-006

Reconstruct $\mu^+\mu^-$ vertex and calculate the most probable transverse decay length, L_{xy}

Friday, October 7, 2011

R_{AA} : Prompt J/ψ

CMS PAS HIN-10-006

8

CMS: p_T > 6.5 GeV/c
 Factor 3 suppression
 STAR: p_T > 5.0 GeV/c
 no suppression at midrapidity

CMS: p_T > 6.5 GeV/c
 Trend to less suppression at forward rapidity
 PHENIX: p_T < 5.0 GeV/c
 opposite rapidity dependence

R_{AA} : Prompt J/ψ

CMS PAS HIN-10-006

- ◆ 0-10% suppressed by factor 5 with respect to pp
- 50-100% suppressed by factor \sim 1.6

RHIC PHENIX, low p_T (<5GeV/c): similar suppression STAR, high p_T, (>5GeV/c): less suppression

Non-prompt J/ ψ in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV _{CMS PAS HIN-10-006}

Figure 19: B-fraction of J/ ψ production in PbPb at 2.76 TeV as function of p_T for the rapidity bin |y| < 2.4 (*red circles*) and $1.6 \le |y| < 2.4$ (*black squares*). The data are compared to B-fractions measured by CDF in $p\overline{p}$ at $\sqrt{s} = 1.96$ TeV [15] and CMS in pp at $\sqrt{s} = 7$ TeV [21].

 \odot Careful when comparing R_{AA} of prompt J/ ψ (CMS) and inclusive J/ ψ (others)

PRL 106, 212301 (2011) CMS PAS HIN-10-006 CMS PAS HIN-11-002 CMS PAS HIN-10-005

R_{AA} : Non-prompt J/ψ

- Suppression of non-prompt J/ψ observed in min. bias and central PbPb collisions
 No centrality dependence
- First indications of high-pT b-quark quenching!

Muon pairs in PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

$\Upsilon(nS)$ in PbPb at $\sqrt{sNN} = 2.76$ TeV

CMS PAS HIN-10-006

 \bigcirc

- Acceptance to $p_T = 0 \text{ GeV/c}$
- Efficiencies from Monte Carlo
 - Validated with data driven method

$\Upsilon(nS)$ in PbPb at $\sqrt{sNN} = 2.76$ TeV

14

 R_{AA} : [Y(2S+3S)/Y(1S)]

• Measure $\Upsilon(2S+3S)$ production relative to $\Upsilon(1S)$ production

Simultaneous fit to pp and PbPb data at 2.76 TeV

$$\frac{\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}} = 0.31^{+0.19}_{-0.15} \pm 0.03$$

• Probability to obtain measured value, or lower, if the real double ratio is unity, has been calculated to be less than 1%

 R_{AA} : $\Upsilon(1S)$

CMS PAS HIN-10-006

• CMS: $\Upsilon(1S)$

- p_T: suppressed at low values
- \blacktriangleright rapidity: hint of a dependence of suppression (similar to J/ Ψ)
- centrality: suppressed by factor ~ 2.3 in 0-10%

Large feed down contribution from excited states (χ_b, Υ(2S), Υ(3S))
 Observed Υ(1S) suppression consistent with melting of excited states only

• CMS:
$$\Upsilon(1S+2S+3S) (0-100\%)$$
:
 $R_{AA}(\Upsilon(1S+2S+3S)) = R_{AA}(\Upsilon(1S)) \times \frac{1+\Upsilon(2S+3S)/\Upsilon(1S)|_{PbPb}}{1+\Upsilon(2S+3S)/\Upsilon(1S)|_{pp}}$
 $= 0.62 \times \frac{1+0.24}{1+0.78} \approx 0.43$

Summary

- In PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV: Onia:
 - Prompt J/ψ suppressed
 - $\Upsilon(1S)$ suppressed, and suppression consistent with melting of excited states only
 - $\Upsilon(2S+3S)$ suppressed relative to $\Upsilon(1S)$
 - **b**-quark:
 - J/ ψ from B decays suppressed

My thoughts on production and such ..

Reference crisis

➡ pp, pA, AA

• Stop staring at Raa