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✓ In medium single-gluon emission (BDMPS-Z)  

✓ Decoherence and resummation scheme 
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Motivation2 2 Experimental method

Figure 1: Example of an unbalanced dijet in a PbPb collision event at
√sNN = 2.76 TeV. Plot-

ted is the summed transverse energy in the electromagnetic and hadron calorimeters vs. η
and φ, with the identified jets highlighted in red, and labeled with the corrected jet transverse

momentum.

The data provide information on the evolution of the dijet imbalance as a function of both

collision centrality (i.e., the degree of overlap of the two colliding nuclei) and the energy of

the leading jet. By correlating the dijets detected in the calorimeters with charged hadrons

reconstructed in the high-resolution tracker system, the modification of the jet fragmentation

pattern can be studied in detail, thus providing a deeper insight into the dynamics of the jet

quenching phenomenon.

The paper is organized as follows: the experimental setup, event triggering, selection and char-

acterization, and jet reconstruction are described in Section 2. Section 3 presents the results and

a discussion of systematic uncertainties, followed by a summary in Section 4.

2 Experimental method
The CMS detector is described in detail elsewhere [20]. The calorimeters provide hermetic

coverage over a large range of pseudorapidity, |η| < 5.2, where η = −ln [ tan(θ/2)] and θ is

the polar angle relative to the particle beam. In this study, jets are identified primarily using

the energy deposited in the lead-tungstate crystal electromagnetic calorimeter (ECAL) and the

brass/scintillator hadron calorimeter (HCAL) covering |η| < 3. In addition, a steel/quartz-

fiber Cherenkov calorimeter, called Hadron Forward (HF), covers the forward rapidities 3 <
|η| < 5.2 and is used to determine the centrality of the PbPb collision. Calorimeter cells are

grouped in projective towers of granularity in pseudorapidity and azimuthal angle given by

∆η × ∆ϕ = 0.087× 0.087 at central rapidities, having a coarser segmentation at forward rapidi-

ties. The central calorimeters are embedded in a solenoid with 3.8 T central magnetic field. The

event display shown in Fig. 1 illustrates the projective calorimeter tower granularity over the

full pseudorapidity range. The CMS tracking system, located inside the calorimeter, consists

of pixel and silicon-strip layers covering |η| < 2.5, and provides track reconstruction down to

pT ≈ 100 MeV/c, with a track momentum resolution of about 1% at pT = 100 GeV/c. A set

of scintillator tiles, the Beam Scintillator Counters (BSC), are mounted on the inner side of the
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(I) Significant dijet energy asymmetry
(II) Soft particles at large angles
(III) Vacuum-like fragmentation



Jets in vacuum

• Originally a hard parton (quark/gluon) which 
fragments into many partons with virtuality down 
to a non-perturbative scale where it hadronizes

• LPHD: Hadronization does not affect inclusive 
observables (jet shape, energy distribution etc..)
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1-gluon emission
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N-gluon emissions

• Decoherence of 

successive splittings: 

Interferences are 

suppressed in a dense 

medium ⇒ No Angular 

Ordering!

• Ordering variable: 
emission time 
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E. Iancu, J. Casalderrey Solana (2011)
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Generating Functional Method

• n-gluon probability       Pn

Z(u = 1) = 1

�n� ≡ d

du
Z(u = 1)

• Probability conservation       

• Average gluon number

Z(u) =
∞�

n=1

Pn un

�n(n − 1)...(n − m + 1)� =
�

d

du

�m

Z(u = 1)

• Higher moments

• To compute differential distributions in k

u→ u(k)
δu(k)
δu(p)

= δ(3)(k − p)



Master Equation

+=Z(u)

Z(u)

Z(u)

KP
p p�

q

u(p�)P
pp p�

p� − q

tLt0 t0t0



Master Equation

+=Z(u)

Z(u)

Z(u)

KP
p p�

q

u(p�)P
pp p�

p� − q

tLt0 t0t0



Master Equation

+=Z(u)

Z(u)

Z(u)

KP
p p�

q

u(p�)P
pp p�

p� − q

tLt0 t0t0



Master Equation

+=Z(u)

Z(u)

Z(u)

KP
p p�

q

u(p�)P
pp p�

p� − q

tLt0 t0t0

• In-medium splitting function • Relative pT at branching time



Master Equation
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• In-medium splitting function • Relative pT at branching time

• Sudakov form factor:
Prob. not to emit 
(Unitarity)



Application 1: gluon distribution
• Integrating over  
transverse momenta:

+=Z(u)

Z(u)
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Ku(p)
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Application 1: gluon distribution
• Integrating over  
transverse momenta:

+=Z(u)

Z(u)

Z(u)

Ku(p)
z

1− z

�
d2k

(2π)2
P(k − q, L− t) = 1

D(x,E) ≡ x
dN

dx
= ω

δZ(E, u)
δu(ω)

���
u=1

• Gluon distribution 

x = ω/E

S. Jeon, G. D. Moore(2003)  
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Leading order BDMPS result
Exp increase of soft gluons (at large angles)
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• When   

D(ω) ∼ exp

�
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�
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ω
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Application I1: Correlations

D(x1, x2) ≡ ω1ω2
δ2Z(E, u)

δu(ω1)δu(ω2)

���
u=1

• 2-particle correlations inside the jet 

+= K
z
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2

1

2
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1− z
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Summary

✓In the limit of a dense medium, parton branchings are decoherent 

due to rapid color randomization. 

✓ A probabilistic description of in-medium jet evolution is 

formulated in terms of a Master Eq. for Generating Functional

✓ ⇒ Fully exclusive description of the jet including momentum 

broadening

✓ Possible implementation in a Monte Carlo generator  


