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WHY HEAVY ION COLLISIONS?

To investigate the high temperature regime of the strong
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CREATING A QUARK GLUON PLASMA

Can we make a QGP by colliding beams of heavy nuclei?
@ Relativistic Heavy lon Collider (RHIC) at BNL — Au+Au at
V/Snnv = 200 GeV
@ Large Hadron Collider (LHC) at CERN — Pb+Pb at
Vv/Snv = 5500 GeV
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Task: learn as much as possible from analyzing what comes out
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VISCOSITY

For example: what is the viscosity of a quark gluon plasma? ]
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ELLIPTIC FLOW

Single-particle momentum spectra:

aN
dY d2pr




RELATIVISTIC HEAVY ION COLLISIONS
[e]e]ele] }

ELLIPTIC FLOW

Single-particle momentum spectra:
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ELLIPTIC FLOW

Single-particle momentum spectra:

dN
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Elliptic flow: v» = (cos(2 ¢))
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IDEAL (RELATIVISTIC) HYDRODYNAMIC EQUATIONS

@ Assume isotropic energy-momentum tensor in rest frame:

TH = T¥ = (e + p) u*u” — p g"”
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@ Plug in to conservation equations = ideal hydrodynamics:
9, T" =0
@ Equation of state closes the set of equations:
p = p(e)

@ An additional relation for each additional conserved current
(assumed unimportant for the following)
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VIScoSITY AT RHIC

@ |deal hydrodynamic models surprisingly successful at
describing RHIC data:

RHIC Scientists Serve Up "Perfect" Liquid

New state of matter more remarkable than predicted -- raising many new questions

April 18, 2005

@ Kovtun, Son, Starinets (KSS) conjectured a universal lower
bound on shear viscosity 7.
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@ = Next step: add viscosity; use KSS bound as a yardstick
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Viscous HYDRODYNAMICS

@ Add dissipative (viscous) effects—derivative expansion:
T = T8 + v
@ To first order (Navier-Stokes):
e = pvu’) 4+ ¢ AWV 4u®

@ Acausal signal propagation = instabilities = difficult to
solve numerically.

@ Can be fixed by adding second-order term(s).
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CAUSAL RELATIVISTIC VISCOUS HYDRODYNAMICS

@ To start, set bulk viscosity to zero.

@ = most general form for a conformal fluid in flat space to
second order [BRSSS]:

4
M = pviu”) — 7 | ALAL DO + §|_|MV(vaua)

M A2 A3
— 2 e 2 Z2nle, o 28 e A
212 A + o AW > W w
@ (Simulations insensitive to second-order transport
coefficients = can isolate effect of shear viscosity 7.)
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ANATOMY OF A HEAVY ION COLLISION

free streaming
freeze-out
phase transition hydrodynamics

thermalization
pre-equilibrium

>

z




THEORY
0000080

INITIAL CONDITIONS

Two models are typically used for hydro initial conditions
@ Glauber
@ Color Glass Condensate (CGC)
(y?)=(x?)

Most important difference: initial eccentricity ex = T
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FREEZE OUT

Cooper-Frye freeze out prescription:

temperature T;, where it instantaneously “freezes out” into

e Fluid cell behaves hydrodynamically until it reaches
free hadrons J

Or, operationally:

O Allow system to evolve hydrodynamically indefinitely.

@ Go back and identify freeze out surface of constant
temperature T; and integrate over surface
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ANALYSIS PROCEDURE/FREE PARAMETERS

THE PROCEDURE USED IS AS FOLLOWS:

@ Choose model for initial conditions (Glauber or CGC)

© Choose value of 7/s to study (set to a constant throughout
the evolution)

© Use muliplicity data to fix the energy density normalization
(7o) and thermalization time (1)

© Use (pr) data to fix the freezeout temperature (Tr)

@ With all the parameters now fixed, compare v» to RHIC
data
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RHIC RESULTS: MOMENTUM INTEGRATED Vs

Glauber CGC
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HOW TO PREDICT RESULTS AT THE LHC

Using the knowledge gained from RHIC, we can make a
prediction for Pb-Pb collisions at top LHC energies.

@ Assume Ty, I, 79 do not change much = use best RHIC
values for each initial condition (Glauber and CGC)

@ Choose Ty to match predicted multiplicity dg’Yh ~ 1800.

(Can instead fix % ~ 7.85%n)

© Make appropriate changes to the initial conditions (Pb
instead of Au and increased collision energy)

Q@ = v, prediction!
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MOMENTUM INTEGRATED V> AT RHIC AND LHC
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SUMMARY/CONCLUSIONS

e Viscous hydrodynamic simulations of heavy ion collisions
work well to describe single-particle observables at RHIC.
o AtRHIC: 1 <0.5

e At LHC: v, is predicted to be ~ 10% larger than measured
at RHIC
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UNIVERSAL CURVES
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PP COLLISIONS AT LHC

One can perform the same procedure for proton-proton
collisions at LHC:

@ Assume dNg,/dY =~ 6 for "central” collisions

@ Glauber initial conditions, using the charge density of the
proton.
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INTEGRATED ELLIPTIC FLOW
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PARAMETER VALUES

Beam Initialcond. & T;[GeV] /s[GeV] 1o [fm/c]
Gold Glauber 800 0.34 200 1
Gold CGC 800 0.31 200 1
Lead Glauber 1800 0.42 5500 1
Lead CGC 1800 0.39 5500 1

TaBLE: Central collision parameters used for the viscous
hydrodynamics simulations (T; = 0.14 GeV for all).
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NOTATION

« o 2 «
AuB,y = <AMA,€’ +ATAL - 3A 5AW) A.Bs
A = g/“/ — utur
VE = AFeD,
D = u,D
1
W = 5 [Voty — V]

e.g. Navier Stokes term:

Vg = vy - VP Ut — APV U
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