Theory 0000000

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

VISCOSITY AND THE QUARK GLUON PLASMA VISCOUS HYDRODYNAMIC SIMULATIONS OF RELATIVISTIC HEAVY ION COLLISIONS

Matthew Luzum

Institut de Physique Théorique CEA/Saclay

9 December 2009

OUTLINE

RELATIVISTIC HEAVY ION COLLISIONS

- Motivation / Background
- Soft Observables: Elliptic Flow

2 THEORY

- Hydrodynamics
- Viscous Hydrodynamic Simulations

3 ANALYSIS/RESULTS

- η/s from Elliptic Flow at RHIC
- Elliptic Flow at LHC

OUTLINE

RELATIVISTIC HEAVY ION COLLISIONS

- Motivation / Background
- Soft Observables: Elliptic Flow

THEORY

- Hydrodynamics
- Viscous Hydrodynamic Simulations
- **3** ANALYSIS/RESULTS
 - η/s from Elliptic Flow at RHIC
 - Elliptic Flow at LHC

WHY HEAVY ION COLLISIONS?

GOAL:

To investigate the high temperature regime of the strong interactions

CREATING A QUARK GLUON PLASMA

Can we make a QGP by colliding beams of heavy nuclei?

- Relativistic Heavy Ion Collider (RHIC) at BNL \rightarrow Au+Au at $\sqrt{s_{NN}}=$ 200 GeV
- Large Hadron Collider (LHC) at CERN \rightarrow Pb+Pb at $\sqrt{s_{NN}} = 5500~\text{GeV}$

THEORY 0000000 Analysis/Result

Task: learn as much as possible from analyzing what comes out

▲ロト▲舂▶▲恵▶▲恵▶ 恵 のなぐ

THEORY 000000C ANALYSIS/RESULTS

VISCOSITY

For example: what is the viscosity of a quark gluon plasma?

RELATIVISTIC	HEAVY	ION	COLLISIONS
00000			

Theory 0000000 ANALYSIS/RESULT

Elliptic Flow

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

RELATIVISTIC HEAVY ION COLLISIONS	Theory	ANALYSIS/RESULTS	
00000			

Elliptic Flow

Single-particle momentum spectra:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $\frac{dN}{dY\,d^2p_T}$

RELATIVISTIC HEAVY ION COLLISIONS	Theory	ANALYSIS/RESULTS
00000	0000000	00000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ELLIPTIC FLOW

Single-particle momentum spectra:

$$\frac{dN}{dY\,d^2p_T} = v_0 \left[1 + \sum_n 2v_n\,\cos(n\,\phi)\right]$$

RELATIVISTIC HEAVY ION COLLISIONS	Theory	ANALYSIS/RESULTS	
00000			

Elliptic Flow

Single-particle momentum spectra:

OUTLINE

1 Relativistic Heavy Ion Collisions

- Motivation / Background
- Soft Observables: Elliptic Flow

2 THEORY

- Hydrodynamics
- Viscous Hydrodynamic Simulations

ANALYSIS/RESULTS

- η/s from Elliptic Flow at RHIC
- Elliptic Flow at LHC

 Relativistic Heavy Ion Collisions
 Theory
 Analysis/Results
 Extra Slides

 00000
 00000
 00000

IDEAL (RELATIVISTIC) HYDRODYNAMIC EQUATIONS

Assume isotropic energy-momentum tensor in rest frame:

$$\mathcal{T}^{\mu\nu} = T_0^{\mu\nu} = (\epsilon + p) u^{\mu} u^{\nu} - p g^{\mu\nu}$$

 $\Rightarrow T_{0_{rest}}^{\mu\nu} = \begin{pmatrix} \epsilon & 0 & 0 & 0 \\ 0 & p & 0 & 0 \\ 0 & 0 & p & 0 \\ 0 & 0 & 0 & p \end{pmatrix}$

• Plug in to conservation equations \Rightarrow ideal hydrodynamics:

$$\partial_{\mu}T^{\mu
u}=0$$

• Equation of state closes the set of equations:

Т

$$p = p(\epsilon)$$

 An additional relation for each additional conserved current (assumed unimportant for the following)

VISCOSITY AT RHIC

Ideal hydrodynamic models surprisingly successful at describing RHIC data:

```
RHIC Scientists Serve Up "Perfect" Liquid
New state of matter more remarkable than predicted -- raising many new questions
April 18, 2005
```

 Kovtun, Son, Starinets (KSS) conjectured a universal lower bound on shear viscosity η.

$$rac{\eta}{s} \geq rac{1}{4\pi} \simeq 0.08$$

• \Rightarrow Next step: add viscosity; use KSS bound as a yardstick

VISCOUS HYDRODYNAMICS

• Add dissipative (viscous) effects—derivative expansion:

THEORY

$$T^{\mu\nu}=T_0^{\mu\nu}+\Pi^{\mu\nu}$$

• To first order (Navier-Stokes):

$$\Pi^{\mu\nu} = \eta \nabla^{\langle \mu} u^{\nu \rangle} + \zeta \, \Delta^{\mu\nu} \nabla_{\alpha} u^{\alpha}$$

- Acausal signal propagation ⇒ instabilities ⇒ difficult to solve numerically.
- Can be fixed by adding second-order term(s).

CAUSAL RELATIVISTIC VISCOUS HYDRODYNAMICS

- To start, set bulk viscosity to zero.
- → most general form for a conformal fluid in flat space to second order [BRSSS]:

$$\Pi^{\mu\nu} = \eta \nabla^{\langle \mu} u^{\nu \rangle} - \tau_{\pi} \left[\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} D \Pi^{\alpha\beta} + \frac{4}{3} \Pi^{\mu\nu} (\nabla_{\alpha} u^{\alpha}) \right] \\ - \frac{\lambda_{1}}{2\eta^{2}} \Pi^{\langle \mu}_{\lambda} \Pi^{\nu \rangle \lambda} + \frac{\lambda_{2}}{2\eta} \Pi^{\langle \mu}_{\lambda} \omega^{\nu \rangle \lambda} - \frac{\lambda_{3}}{2} \omega^{\langle \mu}_{\lambda} \omega^{\nu \rangle \lambda}$$

 (Simulations insensitive to second-order transport coefficients ⇒ can isolate effect of shear viscosity η.)
 Relativistic Heavy Ion Collisions
 Theory
 Analysis/Results
 Extra Slides

 00000
 000000
 00000

ANATOMY OF A HEAVY ION COLLISION

INITIAL CONDITIONS

Two models are typically used for hydro initial conditions

- Glauber
- Color Glass Condensate (CGC)

Most important difference: initial eccentricity $e_x \equiv \frac{\langle y^2 \rangle - \langle x^2 \rangle}{\langle y^2 \rangle + \langle x^2 \rangle}$

FREEZE OUT

Cooper-Frye freeze out prescription:

 Fluid cell behaves hydrodynamically until it reaches temperature *T_f*, where it instantaneously "freezes out" into free hadrons

Or, operationally:

- Allow system to evolve hydrodynamically indefinitely.
- Go back and identify freeze out surface of constant temperature T_f and integrate over surface

OUTLINE

1 RELATIVISTIC HEAVY ION COLLISIONS

- Motivation / Background
- Soft Observables: Elliptic Flow

2 THEORY

- Hydrodynamics
- Viscous Hydrodynamic Simulations

3 ANALYSIS/RESULTS

- η/s from Elliptic Flow at RHIC
- Elliptic Flow at LHC

ANALYSIS PROCEDURE/FREE PARAMETERS

The procedure used is as follows:

- Choose model for initial conditions (Glauber or CGC)
- Choose value of η/s to study (set to a constant throughout the evolution)
- Use muliplicity data to fix the energy density normalization (*T*₀) and thermalization time (*τ*₀)
- Use $\langle p_T \rangle$ data to fix the freezeout temperature (T_F)
- With all the parameters now fixed, compare v₂ to RHIC data

RELATIVISTIC HEAVY ION COLLISIONS

RHIC RESULTS: MOMENTUM INTEGRATED V2

 $\Rightarrow \frac{\eta}{s} \le 0.5,$ Smaller than any other known substance!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ● ●

(日) (日) (日) (日) (日) (日) (日)

HOW TO PREDICT RESULTS AT THE LHC

Using the knowledge gained from RHIC, we can make a prediction for Pb-Pb collisions at top LHC energies.

- Assume T_f , $\frac{\eta}{s}$, τ_0 do not change much \Rightarrow use best RHIC values for each initial condition (Glauber and CGC)
- Choose T_0 to match predicted multiplicity $\frac{dN_{ch}}{dY} \approx 1800$. (Can instead fix $\frac{dS}{dY} \simeq 7.85 \frac{dN_{ch}}{dY}$)
- Make appropriate changes to the initial conditions (Pb instead of Au and increased collision energy)
- \Rightarrow v_2 prediction!

RELATIVISTIC HEAVY ION COLLISIONS

・ コット (雪) (小田) (コット 日)

MOMENTUM INTEGRATED V2 AT RHIC AND LHC

SUMMARY/CONCLUSIONS

- Viscous hydrodynamic simulations of heavy ion collisions work well to describe single-particle observables at RHIC.
- At RHIC: $\frac{\eta}{s} \leq 0.5$
- At LHC: \textit{v}_{2} is predicted to be \sim 10% larger than measured at RHIC

RELATIVISTIC HEAVY ION COLLISIONS

Theory 0000000 ANALYSIS/RESULTS

UNIVERSAL CURVES

 $\left(S_{overlap} \equiv \pi \sqrt{\langle x^2 \rangle \langle y^2 \rangle} \right)$

・ロト・西ト・ 山田・ 山田・

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PP COLLISIONS AT LHC

One can perform the same procedure for proton-proton collisions at LHC:

- Assume $dN_{ch}/dY \approx 6$ for "central" collisions
- Glauber initial conditions, using the charge density of the proton.

RELATIVISTIC HEAVY ION COLLISIONS

Theory 0000000 ANALYSIS/RESULTS

INTEGRATED ELLIPTIC FLOW

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Theory 0000000 ANALYSIS/RESULTS

▲□▶▲□▶▲□▶▲□▶ □ のQ@

PARAMETER VALUES

Beam	Initial cond.	$\frac{dN_{\rm ch}}{dY}$	T _i [GeV]	\sqrt{s} [GeV]	τ_0 [fm/c]
Gold	Glauber	800	0.34	200	1
Gold	CGC	800	0.31	200	1
Lead	Glauber	1800	0.42	5500	1
Lead	CGC	1800	0.39	5500	1

TABLE: Central collision parameters used for the viscous hydrodynamics simulations ($T_f = 0.14$ GeV for all).

	COLLISIONS

Theory 0000000 ANALYSIS/RESULTS

NOTATION

$$\begin{array}{lll} \mathsf{A}_{\langle\mu}\mathsf{B}_{\nu\rangle} &\equiv & \left(\Delta^{\alpha}_{\mu}\Delta^{\beta}_{\nu} + \Delta^{\alpha}_{\nu}\Delta^{\beta}_{\mu} - \frac{2}{3}\Delta^{\alpha\beta}\Delta_{\mu\nu}\right)\mathsf{A}_{\alpha}\mathsf{B}_{\beta} \\ \Delta^{\mu\nu} &\equiv & g^{\mu\nu} - u^{\mu}u^{\nu} \\ \nabla^{\mu} &\equiv & \Delta^{\mu\alpha}D_{\alpha} \\ D &\equiv & u_{\alpha}D^{\alpha} \\ \omega_{\mu\nu} &\equiv & \frac{1}{2}\left[\nabla_{\nu}u_{\mu} - \nabla_{\mu}u_{\nu}\right] \end{array}$$

e.g. Navier Stokes term:

$$abla^{\langle \mu} u^{
u
angle} =
abla^{\mu} u^{
u} +
abla^{
u} u^{\mu} - \Delta^{\mu
u}
abla_{lpha} u^{lpha}$$

