Introduction

- The effective Lagrangian of NRQCD
 - expansion in 1/m and $\alpha_s(m)$

•
$$d\sigma_{A+B\to H+X} = \sum_{n} d\sigma_{A+B\to Q\bar{Q}(n)+X} \times \langle \mathcal{O}^{H}(n) \rangle$$

- Factorisation assumption
 - $c\bar{c}$ pair production at $E \sim m_Q$ (treated perturbatively)
 - independent hadronisation at $E \sim m_Q v$ guided by long-distance matrix elements (LDME)
- Two production mechanisms:
 - colour-singlet (CS)
 - colour-octet (CO)

Spin symmetry relations:

$$\langle \mathcal{O}_{1}^{\eta_{c}}({}^{1}S_{0})\rangle = 1/3 \langle \mathcal{O}_{1}^{J/\psi}({}^{3}S_{1})\rangle$$

$$\langle \mathcal{O}_{8}^{\eta_{c}}({}^{1}S_{0})\rangle = 1/3 \langle \mathcal{O}_{8}^{J/\psi}({}^{3}S_{1})\rangle$$

$$\langle \mathcal{O}_{8}^{\eta_{c}}({}^{3}S_{1})\rangle = \langle \mathcal{O}_{8}^{J/\psi}({}^{1}S_{0})\rangle$$

$$\langle \mathcal{O}_{8}^{\eta_{c}}({}^{1}P_{1})\rangle = 3 \langle \mathcal{O}_{8}^{J/\psi}({}^{3}P_{0})\rangle$$

[N. Brambilla et al. [Quarkonium Working Group Collaboration], hep-ph/0412158.]

$J\!/\!\psi\,$ production studies at the LHCb experiment

• J/ψ production measurements by LHCb					
\sqrt{s} , TeV	data set	$\sigma_{J\!/\!\psi}$	$\sigma_{b\bar{b}} imes \mathcal{B}_{b o J/\psi X}$		
2.76	$71~{ m nb}^{-1}$	$5.6 \pm 0.1 \pm 0.4 \ \mu b$	$400 \pm 35 \pm 49$ nb		
7	$5.2~{ m pb}^{-1}$	$10.52 \pm 0.04 \pm 1.40^{+1.64}_{-2.20} \ \mu \mathrm{b}$	$1.14 \pm 0.01 \pm 0.16 \ \mu b$		
8	$18 \ pb^{-1}$	$10.94 \pm 0.02 \pm 0.79 \ \mu { m b}$	$1.28 \pm 0.01 \pm 0.11 \ \mu b$		

 Differential J/ψ production at LHCb [LHCb, EPJC 71 (2011) 1645]:

 Result comparison with other experiments (by H. K. Wöhri)

J/ψ polarisation puzzle

- CO predicts strong polarisation
- NLO NRQCD calculations, different selections of experimental data to determine non-perturbative matrix elements
 - ▶ NLO CS and NLO NRQCD(1) [M. Butenschoen and B. A. Kniehl, PRL 108 (2012) 172002]
 - NLO NRQCD(2) [B. Gong et al., PRL 110 (2013) 042002]
 - NLO NRQCD(3) [K.-T. Chao et al., PRL 108 (2012) 242004]

[Eur. Phys. J. C 73 (2013) 2631]

Polarisation measurements are in agreement between experiments

J/ψ differential cross-section

- Differential J/ψ production at LHCb [LHCb, EPJC 71 (2011) 1645] is consistent with theoretical prediction [Phys. Rev. Lett. 106 (2011) 042002]
- At the NLO: arXiv:1411.7350 [hep-ph]

 Results from Tevatron and CMS are fitted with pure octet model

[Phys. Rev. Lett. **113** (2014) 2, 022001]

$J\!/\psi$ polarization puzzle

- CS predicts strong polarisation
- NLO NRQCD calculations

 Polarization plots from CMS and CDF Tevatron (a) 0.5 λ_{θ} 🛉 CDF data, Run I -0.5↓ CDF data, Run II LP+NLO, |y| < 0.6-1.010 1520 p_T (GeV) 1.0LHC ($\sqrt{s} = 7$ TeV) (b) 0.5 λ_{θ} 0 • CMS data, |y| < 0.6-0.5 \oint CMS data, 0.6 < |y| < 1.2LP+NLO, |y| < 0.9-1.020 40 30 50 p_T (GeV)

• $\langle \mathcal{O}_8^{J/\psi}({}^1S_0) \rangle$ can be obtained from $\langle \mathcal{O}_8^{J/\psi}({}^1S_0) \rangle = \langle \mathcal{O}_8^{\eta_c}({}^3S_1) \rangle$ η_c measurements: $\langle \mathcal{O}_8^{J/\psi}({}^1S_0) \rangle = \langle \mathcal{O}_8^{\eta_c}({}^3S_1) \rangle$

4/9

Fitting $\mathcal{O}_1^{\eta_c}({}^1S_0)$ and $\mathcal{O}_8^{\eta_c}({}^3S_1)$ from LHCb data

- $\mathcal{O}_1^{\eta_c}({}^1S_0)$ and $\mathcal{O}_8^{\eta_c}({}^3S_1)$ are fitted from prompt η_c differential cross-section
- ${\ensuremath{\, \circ }}$ other LDME contribute < 2%

 $\mathcal{O}_1^{\eta_c}({}^1S_0) = (0.20 \pm 0.10) \,\text{GeV}^3$ $\mathcal{O}_8^{\eta_c}({}^3S_1) = (0.86 \pm 0.27) \times 10^{-2} \,\text{GeV}^3$ $\frac{10^{-1}}{10^{-1}} \frac{\sqrt{S}}{10^{-1}} \frac{7 \text{ TeV and } 2 \text{ y } 4.5 \frac{15_0^{-1} \text{ H}}{15_0^{-1} \text{ H}}}{15_0^{-1} \text{ H}} \frac{10^{-1}}{15_0^{-1} \text{ H}} \frac{10^{-1}}{15_0^{-$

arXiv:1411.7350 [hep-ph]

• CS component is fixed to $\mathcal{O}_{1}^{\eta_{c}}({}^{1}S_{0}) = 1/3\mathcal{O}_{1}^{J/\psi}({}^{3}S_{1}) = 0.39 \,\text{GeV}^{3}$

• CO LDME from fit: $0 < \mathcal{O}_8^{\eta_c}({}^3S_1) < 1.46 \times 10^{-2} \,\text{GeV}^2$

Obtained $\mathcal{O}_8^{\eta_c}({}^3S_1)$ values are ~ 10 times smaller than was predicted before

Description of the η_c differential cross-section

LDME from references below. $\langle \mathcal{O}_{1,8}^{\eta_c}(n) \rangle$ obtained with spin relations.

- [M. Butenschoen and B. A. Kniehl, PRL 108 (2012) 172002]
- [K.-T. Chao et al., PRL 108 (2012) 242004]
- B. Gong et al., PRL 110 (2013) 042002]
- [G. T. Bodwin at al., Phys. Rev. Lett. 113 (2014) 2, 022001]

- $\langle \mathcal{O}_8^{J/\psi}({}^1S_0)
 angle$ is too large
- $\langle \mathcal{O}_8^{J/\psi}({}^1S_0) \rangle = \langle \mathcal{O}_8^{\eta_c}({}^3S_1) \rangle$ can be fixed from η_c fit

Charmonia decays to the $p\bar{p}$ final state

- ${\ensuremath{\, \circ }}$ Many charmonium states decay to the $p\bar{p}$ final state
- Experimental data on charmonia mass, natural width and branching fraction of their decay to the $p\bar{p}$ final state

	mass, MeV	Γ , ${ m MeV}$	$\mathcal{B}_{c\bar{c}\to p\bar{p}} \times 10^{-3}$
$\eta_c(1S)$	2983.6 ± 0.9	32.2 ± 0.9	1.52 ± 0.16
$J/\psi(1S)$	3096.916 ± 0.011	negligible	2.120 ± 0.029
$\chi_{c0}(1S)$	3414.75 ± 0.31	10.4 ± 0.6	0.213 ± 0.012
$\chi_{c1}(1P)$	3510.66 ± 0.07	0.86 ± 0.5	0.073 ± 0.004
$h_c(1P)$	3525.67 ± 0.32	< 1	not seen
$\chi_{c2}(1P)$	3556.20 ± 0.09	1.98 ± 0.11	0.071 ± 0.004
$\eta_c(2S)$	3638.9 ± 1.3	10 ± 4	< 0.29 @ 90%
ψ (2S)	3686.09 ± 0.04	negligible	0.275 ± 0.012
$\psi(3770)$	3773.15 ± 0.33	27.2 ± 1.0	not seen
X(3872)	3871.68 ± 0.17	< 1.2 @ $90%$	not seen
X(3915)	3917.5 ± 2.7	27 ± 10	not seen

• The h_c meson branching fraction predicted by E. Kou [Phys. Rev. D 86 (2012) 034011]

 $\mathcal{B}_{h_c \to p\bar{p}} = (3.2 \pm 0.5) \times 10^{-3}$