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⇒ The saturation scale marks the onset of non-linear effects:

ln
1
x
∼ ln s ∼ Y

Dilute hadron 
at moderate energy

Dense hadron at 
high energy

Saturation:  At high energies (small Bjorken-x) the number of gluons in a hadron’s 
wavefunction is large and recombination effects become important
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Nuclear enhancement: large number of 
gluons in the nuclear wave function 
even at moderates energies
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exp(± yh)2 →1 kinematics in hadronic collisions: 

RHIC and LHC collisions provide access to  the saturated region of the wavefunctions

The abundant small-x gluons in the colliding nuclei feed the formation of a QGP



⇒ Non-linear QCD evolution: The Balitsky-Kovchegov (BK) equation 
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Evolution rapidity:

MV Initial conditions:

Evolution kernel including running coupling corrections:
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Dipole scattering amplitude ⇔ unintegrated gluon distribution 

⇒ ∂ ϕ(x, kt)
∂ Y

≈ K̃ ⊗ ϕ− ϕ2

radiation recombination



⇒ Particle Production in forward p-A and p-p collisions
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Previous work need rapidity dependent K-factors to account for the normalization

We use CTEQ6 pdf’s and de Florian-Sassot ff ’s

x1 ≥ x0 x0 ≈ 0.01In order to ensure                    ,                 with                     yh ≥ 2

(Dumitru, Jalilian-Marian)

x2 ≤ x0
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proton-proton

0.005 ≤ x0 ≤ 0.01 Q2
s0 = 0.2 GeV2

- Very good descriptions of forward yields!

- No K-factor needed for negative charged hadrons!

- Rapidity independent K=0.4 for neutral pions
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Comparison with RHIC d-Au data

0.01 ≤ x0 ≤ 0.025
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- K=1 for negative charged hadrons and K=0.3 for neutral pions

- This is minimum bias data. Qs is larger in the center of the nucleus
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Predictions for the LHC are now entirely driven by the small-dynamics. 

Nuclear modification factor:
in p+Pb collisions

RpPb =
1

Ncoll
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A similar suppression is expected at y=0

π0′s π0′s
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- Our results agree with the expectation that forward suppression at RHIC should be 
similar to mid and mid-forward suppression at the LHC.

BRAHMS, 
PRL93, 242303

- We get similar results for charged hadrons:



What about Pb-Pb collisions??

yh=0

- Small-x effects in both projectile and system

x1(2) ∼
mt√

s
exp(± yh)

- At midrapidity it is a symmetric system. Hybrid formalism not well-suited

The suppression predicted for pPb collisions is rooted in the nuclear wavefunction.
At a qualitative level, one expects a suppression which is, roughly, the one in pPb collisions squared

dNAB→gX

dη d2pt
=

CF

π

αs

p2
t

∫
d2bd2q ϕA(xA, q, b) ϕB(xB , pt − q, Bt − b)
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d2r e−ik·r∇2
rN (r, Y =ln(x0/x), b) = k2 Ñ(x, k, b)

Phenomenological approach: Use of kt-factorization

- It is valid when x is small in projectile and target, but has only been proven for p(e)-A 
  collisions (dilute-dense scattering)

- However, phenomenologically it seems to work rather well...
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We predict a large suppression of gluon production in PbPB collisions originating purely 
from initial state effects. 

Our results should are valid at t=0+. They should be convoluted with final state (QGP) 
and hadronization effects to get the total RPbPb

Pb+Pb
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 The wavefunctions used here also yield a very good description of other observables

Multiplicities in RHIC Au+Au F2, FL and FD in e+p HERA collisions
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Also two-particle correlations in forward d+Au at RHIC (Cyrille will tell us about that)

Q2
0,A

Q2
0proton

= 2÷ 2.5 = c A1/3 compatible with e+A data. Francois Gelis et al



Conclusions

A very good description of forward hadron yields in d+Au collisions at RHIC is possible 
within the CGC

We use the most up-to-date theoretical tools to describe the x-dependence (energy and 
rapidity) of the nuclear wavefunctions: BK including running coupling corrections.   

We predict a large suppression (~1/2) of forward hadron yields in p+Pb collisions  @ LHC
and an even larger suppression for mid-rapidity initial gluon production on Pb+Pb collisions  

Together with the study of other observables, 

We should (and shall) extend these studies to more differential observables (correlations, 
photons...)


