Motivation	Antenna pattern	BDMPS-Z	Interference	Back up

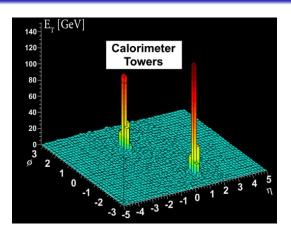
 $An\ introduction\ to\ medium-induced\ gluon\ radiation$

Edmond Iancu IPhT Saclay & CNRS

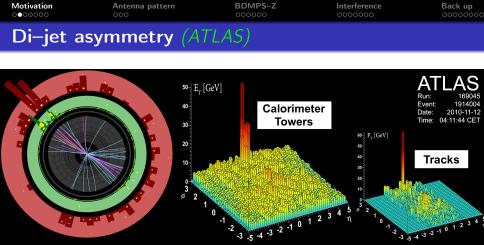
a review of some relatively old stuff (BDMPS-Z, ~ 1995) & original work with J. Casalderrey-Solana (arXiv:1106.3864)

June 24th, 2011

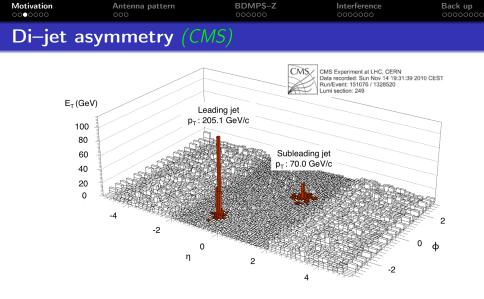
Rencontres Ions Lourds, IPN Orsay 2011


Motivation	Antenna pattern	BDMPS–Z 000000	Interference	Back up 00000000

 Motivation
 Antenna pattern
 BDMPS-Z
 Interference
 Back up


 •000000
 000
 0000000
 00000000
 00000000

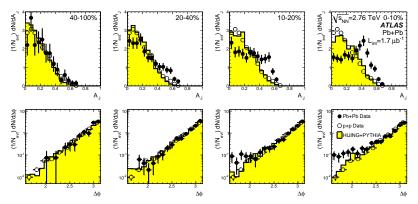
 Di-jet production at the LHC (cf. talk by A. Baldisseri)



- p+p collisions, or peripheral Pb+Pb collisions
- A pair of well collimated, back to back, jets

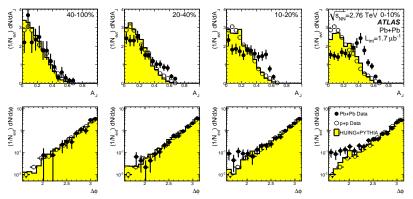
Rencontres Ions Lourds, IPN Orsay 2011

- Central Pb+Pb: mono-jet events
- The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV



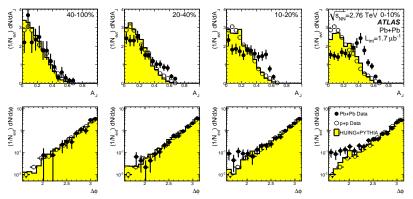
- Central Pb+Pb: the secondary jet is barely visible
- The jet energy has been redistributed in the transverse plane

Rencontres Ions Lourds, IPN Orsay 2011

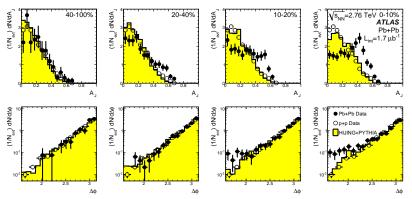

• Event fraction as a function of the di-jet energy imbalance

$$A_{\rm J} = \frac{E_{T1} - E_{T2}}{E_{T1} + E_{T1}}$$

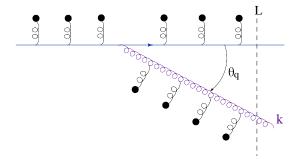
• ...and of the azimuthal angle $\Delta \phi$, for different centralities.



- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets

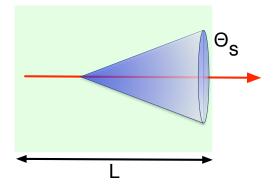


- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets
- The secondary jet loses energy without being deflected

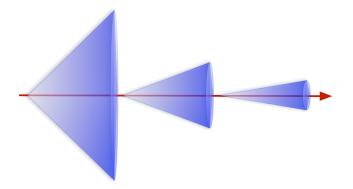


- Additional energy loss of 20 to 30 GeV due to the medium
- Typical event topology: still a pair of back-to-back jets
- The secondary jet loses energy without being deflected
- Medium-induced emissions of soft gluons at large angles

Rencontres Ions Lourds, IPN Orsay 2011



• Additional radiation triggered by interactions in the medium Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov ~ 1995

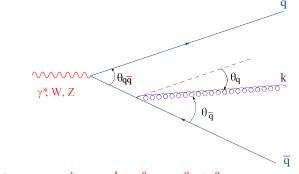

 Additional radiation triggered by interactions in the medium Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov ~ 1995

 This could naturally explain the data in the framework of perturbative QCD (soft gluons, large emission angles)

• Additional radiation triggered by interactions in the medium Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov ~ 1995

• ... unless it is spoilt by angular ordering of successive emissions

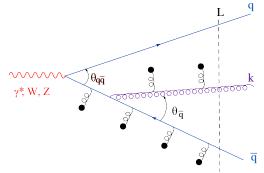
- Destructive interference between different sources
- The only surviving emissions are those inside the antenna



- Destructive interference between different sources
- The only surviving emissions are those inside the antenna
- What about medium-induced radiation ?
 - J. Casalderrey–Solana & E.I., arXiv:1106.3864 (JHEP)

- The simplest device to study interferences: the two sources (q and q

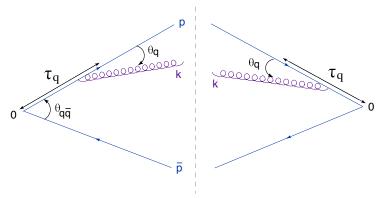
) exist from the very beginning
- Color singlet ('dipole') : decay of a photon or of a heavy boson



• Antenna opening angle : $heta_{qar q} = heta_{ar q} + heta_q$

- The simplest device to study interferences: the two sources (q and q

) exist from the very beginning
- Color singlet ('dipole') : decay of a photon or of a heavy boson

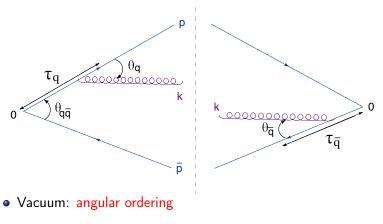


- Antenna opening angle : $heta_{qar q} \,=\, heta_{ar q} + heta_q$
- The interactions with the medium are not explicitly represented

Motivation	Antenna pattern	BDMPS–Z	Interference	Back up	
0000000	○●○	000000	0000000	00000000	
Direct emissions					

• Emission probability:

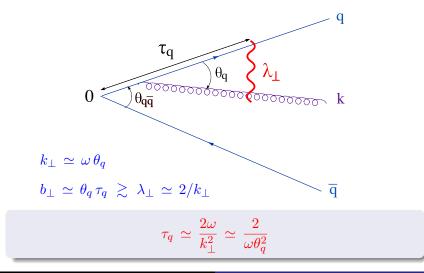
amplitude \times complex conjugate amplitude



- Vacuum : the bremsstrahlung spectrum
- Medium : the BDMPS-Z spectrum

Rencontres Ions Lourds, IPN Orsay 2011

• Emission by the quark \times absorption by the antiquark

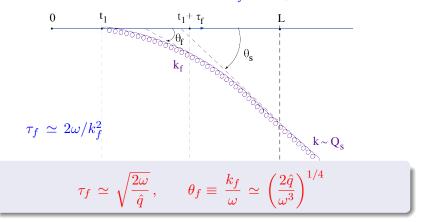


• Medium : ???

Rencontres Ions Lourds, IPN Orsay 2011

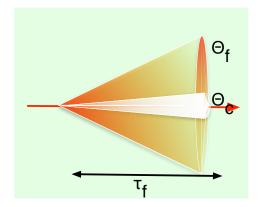
• The gluon must lose coherence with respect to its source

Rencontres Ions Lourds, IPN Orsay 2011



- The gluon decorrelates from its source via medium rescattering
- Radiative energy loss \longleftrightarrow transverse momentum broadening
 - parton mean free path : ℓ
 - average (momentum) 2 transfer per scattering : μ_D^2

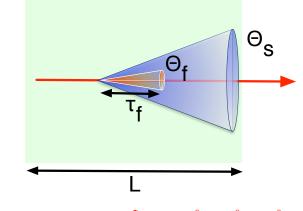
• The gluon acquires a momentum $k_f^2 \simeq \hat{q} \, au_f$ during formation


• The smaller the energy ω , the shorter τ_f and the larger the formation angle θ_f : prompt & soft gluons, large angles ! \checkmark

Rencontres Ions Lourds, IPN Orsay 2011

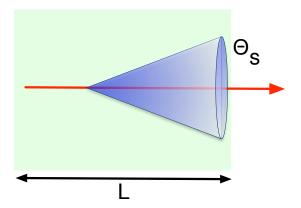
• The in-medium formation time cannot be larger than L :

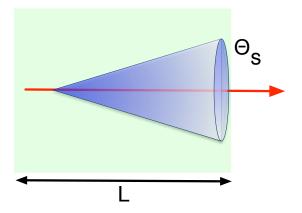
 $\tau_f^{max} = L \implies \text{maximal energy } (\omega_c) \& \text{minimal angle } (\theta_c)$



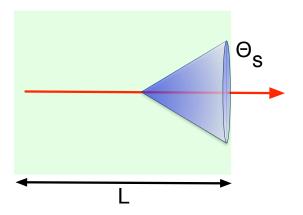
•
$$\omega_c = \hat{q}L^2/2$$
 & $\theta_c = 2/\sqrt{\hat{q}L^3}$

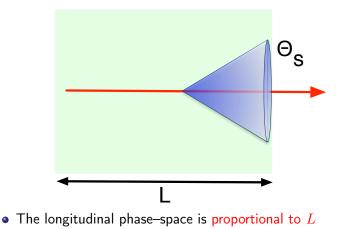
After formation, the gluon can still acquire momentum:

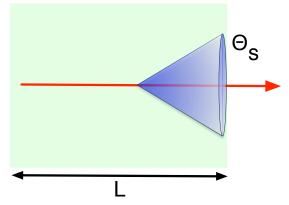

final momentum $Q_s^2\,=\,\hat{q}L$ & final angle $\theta_s\,=\,Q_s/\omega$

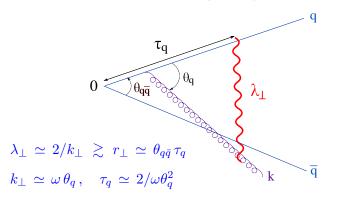

• $\omega \ll \omega_c \implies \tau_f \ll L \implies \theta_s \gg \theta_f \gg \theta_c$

Rencontres Ions Lourds, IPN Orsay 2011



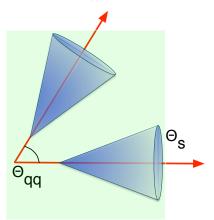






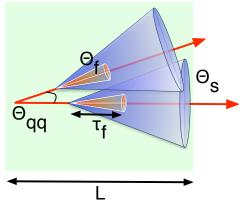
- The longitudinal phase-space is proportional to L
- What about the corresponding interference terms ?

• The gluon must be coherent (overlap) with both sources

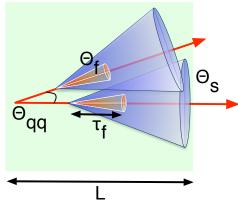


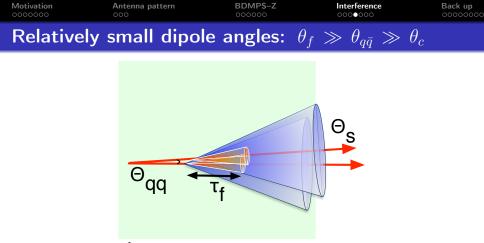
$| heta_q|\gtrsim heta_{qar q}$: large angle emission (out of cone)

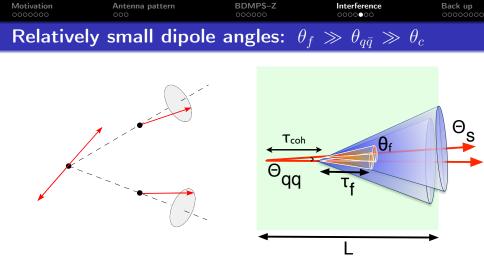
• Large angle gluons see only the total color charge (here, zero)


• Very large dipole angle : $heta_{qar q} \gg heta_s$

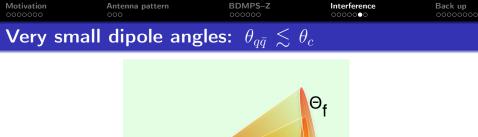
 No overlap between the BDMPS-Z spectrum by one parton and the other parton ⇒ no interference

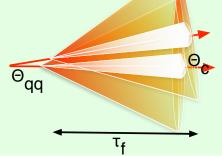

Rencontres Ions Lourds, IPN Orsay 2011


• The two BDMPS-Z spectra overlap with both sources but can they interfere ?


- The two BDMPS-Z spectra overlap with both sources ...
 - ... but can they interfere ?
- No, they cannot ! (no overlap during formation)

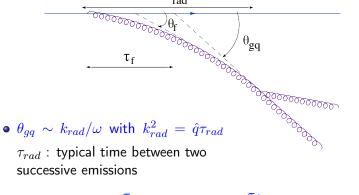
Rencontres Ions Lourds, IPN Orsay 2011


- The spectra overlap with both partons during formation.
- Naively : "The typical emission angles being much larger than $\theta_{q\bar{q}}$, there should be destructive interference."


Rencontres Ions Lourds, IPN Orsay 2011

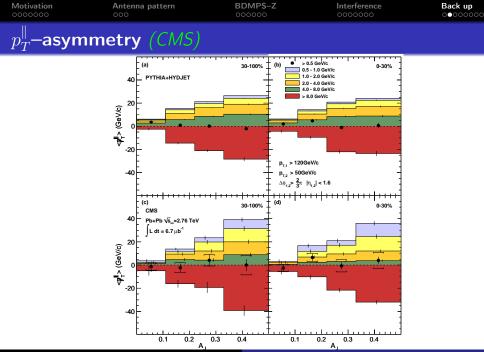
• But this is spoilt by color rotations which wash out the color coherence of the $q\bar{q}$ pair over a time $\tau_{coh}\ll L$

$$au_{coh} \simeq \left(\frac{\theta_c}{\theta_{q\bar{q}}}\right)^{2/3} L \ll L$$

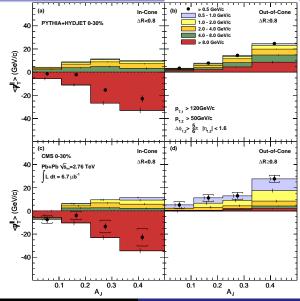

- Color coherence is preserved throughout the medium.
- Quantum coherence is ensured during formation.
- Destructive interference \Rightarrow total contribution is zero

Rencontres Ions Lourds, IPN Orsay 2011

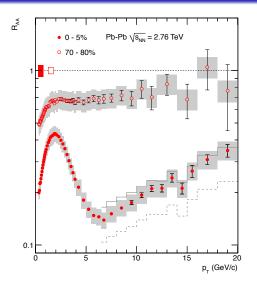
Motivation	Antenna pattern	BDMPS–Z 000000	Interference ○○○○○●	Back up 00000000
Summary				


- Medium-induced gluon radiation à la BDMPS-Z : a natural mechanism for jet decollimation in perturbative QCD
- Interference effects are negligible (no angular ordering) the associated phase–space is parametrically suppressed as compared to direct emissions
- The total medium-induced radiation by the dipole \simeq the incoherent sum of the 2 contributions by the q and the \bar{q}
 - preserves large-angle emissions during the jet evolution
 - opens the way for Monte-Carlo generators (J. Stachel, U. Wiedemann, C. Zapp, 2011, w.i.p.)
- Can pQCD describe the di-jet asymmetry seen at the LHC ?

$$\mathcal{P}_{rad}(\tau) \sim \alpha_s C_R \frac{\tau}{\tau_f} \quad \Rightarrow \quad \tau_{rad} \sim \frac{\tau_f}{\alpha_s C_R} \quad \Rightarrow \quad \theta_{gq} \sim \frac{\theta_f}{g}$$


In-medium jet evolution proceeds via independent emissions

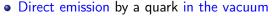
Rencontres Ions Lourds, IPN Orsay 2011

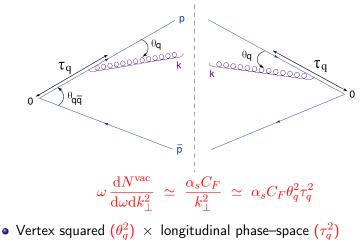


In–out asymmetry (CMS)

Rencontres Ions Lourds, IPN Orsay 2011

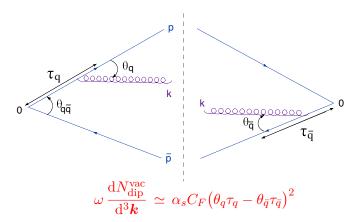
An introduction to medium-induced gluon radiation




• Nuclear modification factor

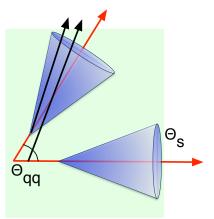
 $R_{AA}(p_{\perp}) \equiv \frac{\text{Yield}(A+A)}{\text{Yield}(p+p) \times A^2}$

- Strong suppression at moderate p_T
- Rapid increase for larger p_T
- Current models do not account for all these features

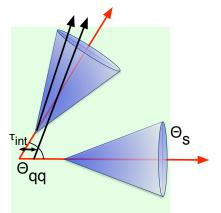


• Mostly soft ($\omega \rightarrow 0$) and collinear gluons ($\theta_q \rightarrow 0$)

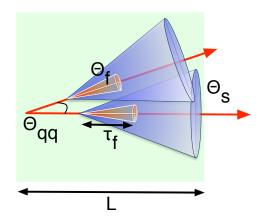
Rencontres Ions Lourds, IPN Orsay 2011


• Direct emissions plus interferences in the vacuum

• The interference term $(-2\theta_q\theta_{\bar{q}}\tau_q\tau_{\bar{q}})$ cancels direct emissions when θ_q , $\theta_{\bar{q}} \gg \theta_{q\bar{q}} \implies$ angular ordering


• A vacuum-like gluon emitted at a large angle $\geq \theta_{q\bar{q}}$ by one of the partons can interfere with the other parton.

• This provides a BDMPS-Z-like contribution to the spectrum.



• A vacuum–like gluon emitted at a large angle $\geq \theta_{q\bar{q}}$ w.r.t. one parton can interfere with the second parton

• ... but this has a very small phase–space: $\tau_{int} = \frac{1}{\omega \theta_{\pi\pi}^2} \ll L$

• 'Vacuum-medium' interference is still possible ... but it is again suppressed by its small phase-space ($\tau_{int} \ll L$)

Rencontres Ions Lourds, IPN Orsay 2011

Motivation	Antenna pattern	BDMPS–Z 000000	Interference 0000000	Back up
Summary				

- So long as $heta_{qar q} \gg heta_c$, interference is parametrically suppressed
 - ullet when $\theta_{q\bar{q}}\gtrsim \,\theta_f$, it is suppressed by quantum decoherence
 - when $heta_f > heta_{qar q} \gg heta_c$, it is suppressed by color decoherence
- When $\theta_{q\bar{q}} \ll \theta_c$, the total medium-induced radiation vanishes
- The total medium-induced radiation by the dipole \simeq the incoherent sum of the 2 contributions by the q and the \bar{q}
- This paves the way to Monte-Carlo generators (J. Stachel, U. Wiedemann, C. Zapp, 2011, w.i.p.)
- Can pQCD describe the di-jet asymmetry seen at the LHC ?