Effect of fluctuations and partial thermalization on v₄

Clément Gombeaud IPhT-CEA/Saclay Heavy-ion meeting November 2009

Outline

- Introduction: Anisotropic flow
- v₄ in hydrodynamics
- Flow Fluctuations
 - From eccentricity fluctuations
- Effects of partial thermalization
- Comparison with data
- Conclusion

Anisotropic flow

Values observed for v_4 not explained

PHENIX Results

A>1/2 Discrepancy data-hydro

Centrality dependence

Small discrepancy between STAR and PHENIX data

Experimental errors

Difference between STAR and PHENIX data compatible with non-flow error

Non-Flow effects on v₂ not included

Flow fluctuations from initial eccentricity

v₂ created by initial eccentricity $\epsilon_{PP} = \frac{\langle y_{PP} - x_{PP} \rangle}{\langle y_{PP} + x_{PP} \rangle}$

Depending on where the participant nucleons are located within the nucleus at the time of the collision, the actual shape of the overlap area may vary.

From one event to another, ϵ_{PP} may fluctuate

eccentricity fluctuates \rightarrow v₂ and v₄ fluctuate

Why ε fluctuations change v_4/v_2^2

Experimentally, no direct measure of v_2 and v_4

 v_2 and v_4 are measured via azimuthal correlations

 v_2 from 2 particle correlations (

$$\langle \cos(2\phi_1 - 2\phi_2) \rangle = \langle (v_2)^2 \rangle$$

 v_4 from 3 particle correlations $\langle cos(4\phi_1 - 2\phi_2 - 2\phi_3) \rangle = \langle v_4(v_2)^2 \rangle$

Similar results obtained using Event Plane method

Data versus eccentricity fluctuations

Eccentricity fluctuations can be modelled using a Monte-Carlo program provided by the PHOBOS collaboration: Alver & al, arXiv:08054411

Fluctuations explain most of the discrepancy between data and hydro

Partial thermalization effects(1)

Quantitatively: We use a numerical solution of the relativistic 2+1 d Boltzmann equation to extract the behavior of v_4/v_2^2 .

System of massless particles with arbitrary mean free path (λ)

$$K = \frac{\lambda}{R} = \frac{1}{n_{coll}}$$
 degree of thermalization

Partial thermalization effects (2)

Implementation and initial conditions

Initial conditions based on a Monte-Carlo sampling

•Gaussian density profile (~ Glauber)

✓ Aspect ratio
$$\frac{\sigma_Y}{\sigma_X} = \frac{3}{2}$$

•Thermal Boltzmann momentum distribution (with $T=n^{1/2}$)

Allow comparison between transport and hydro simulations

Ideal gas EOS

Partial thermalization effects (3)

Transverse momentum dependence of v_4/v_2^2

Small effect of the deviation from local equilibrium
Transport with small K agrees with hydro
As expected, increasing K leads to an increase of v₄/v₂²

Effects of thermalization are small

Comparison with data

Hydro + fluctuations + partial thermalization explains data except for the most central collisions

CG and Ollitrault, arXiv:0907.4664v1

Conclusion

- v_4 is mainly induced from v_2
- Partial thermalization has a small effect on $v_4^{}/v_2^{\,2}$
- Fluctuations+partial thermalization explain the observations except for the most central collisions.

Gaussian fit on MC glauber

Problem of fluctuations model

Toy model for fluctuations

Gaussian distribution of v_2 at fixed impact parameter

$$\frac{dN}{dv_2} = \frac{1}{\sigma_v \sqrt{2\pi}} \left(-\frac{(v_2 - \kappa \epsilon_s(b))^2}{2\sigma_v^2} \right) \quad \text{with} \quad \sigma_v \propto \frac{k}{\sqrt{N_{part}}}$$
Parameters adjusted to match $v_2\{2\} - v_2\{4\}$
Agreement with previous results for mid-central region

1 dimensional gaussian statistics
$$\rightarrow \frac{\langle v_2^4 \rangle}{\langle v_2^2 \rangle^2} = 3$$
 for central collisions $\frac{v_4}{v_2^2} \simeq 1.5$

Comparison with data

Good match for the central and mid-central collisions

Limitations of the Toy Model

No underlying microscopic physical processes

More information needed

To compute the correct statistics for flow fluctuations

Measure of v_2 {4} for most central bins (not yet available for $N_{part} > 300$)

$$v_2{4}^4 = 2\langle (v_2)^2 \rangle^2 - \langle (v_2)^4 \rangle$$

May be negative if fluctuations are large enough

Other observables sensitive to the fluctuation statistics for central collisions

Hydrodynamic predictions

Pressure gradient

Initial eccentricity

For each event: -The Reaction Plane eccentricity (or standard eccentricity) is defined as

 $\epsilon_s(b) = \frac{\langle y_{RP} - x_{RP} \rangle}{\langle y_{RP} + x_{RP} \rangle}$

-Distribution of participating nucleons defines the Participant plane eccentricity

$$\epsilon_{PP} = \frac{\langle y_{PP} - x_{PP} \rangle}{\langle y_{PP} + x_{PP} \rangle}$$

Gaussian model of eccentricity fluctuations

Flow fluctuations

Fluctuations from v₂ analyses

•Difference between flow analysis methods

 $v_{\rm 2}$ available from 2 and 4 particle cumulants

2-particles $v_2\{2\}^2 = \langle (v_2)^2 \rangle$

4-particles (STAR) $v_2{4}^4 = 2\langle (v_2)^2 \rangle^2 - \langle (v_2)^4 \rangle$

Inverting these relations we obtain

$$\frac{v_4}{v_2^2} = \frac{1}{2} \frac{\langle (v_2)^4 \rangle}{\langle (v_2)^2 \rangle^2} = \frac{1}{2} \left(2 - \left(\frac{v_2\{4\}}{v_2\{2\}}\right)^4\right)$$

Data versus v₂ fluctuations

Good agreement with eccentricity fluctuations for the mid-central region

Residual discrepancy between fluctuation models and v_4 data

Dimensionless quantities

We define 2 dimensionless quantities

- •Dilution $D=d/\lambda$
- •Knudsen K= λ /R~1/n_{coll}

Boltzmann requires D<<1 Ideal hydro requires K<<1

Previous study of v_2 for Au-Au At RHIC gives Central collisions \Leftrightarrow K=0.3

Drescher & al, Phys. Rev. C76, 024905 (2007)

Elliptic flow versus Kn

 $v_2 = v_2^{hydro} / (1 + 1.4 \text{ Kn})$

Smooth convergence to ideal hydro as $Kn \rightarrow 0$

Centrality dependence of v₂

Relating K with measured quantities

Drescher, Dumitru, CG, Ollitrault, Phys. Rev; C76: 024905, 2007

 α extracted from the centrality dependence of v₂

Viscosity and partial thermalization

Non relativistic case

$$\frac{\eta}{\rho} \approx \lambda \upsilon_{therm}$$

 Israel-Stewart corresponds to an expansion in power of Knudsen number