Gluon saturation in high energy hadrons

SPhN, April 2010

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

François Gelis CEA, IPhT

Outline

æ

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings

DIS and CGC

Leading Order

NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

IS

1 Deep Inelastic Scattering

2 Gluon saturation at small x

3 DIS in the CGC framework

A Connection to Nucleus-Nucleus collisions

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions
Energy-Momentum tensor
Correlations in rapidity

François Gelis

טוט

Inclusive DIS

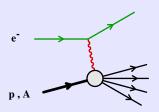
Experimental results (I) Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project


AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Introduction to DIS

Basic idea: smash a well known probe on a nucleon or nucleus in order to try to figure out what is inside...

- Photons are very well suited for that purpose because their interactions are well understood
- Deep Inelastic Scattering: collision between an electron and a nucleon or nucleus, by exchange of a virtual photon

• Variant : collision with a neutrino, by exchange of Z^0 , W^{\pm}

François Gelis

DIS

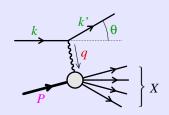
Inclusive DIS

Experimental results (I) Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Kinematical variables

• Note: the virtual photon is space-like: $q^2 \le 0$

Other invariants of the reaction:

$$\begin{array}{rcl}
\nu & \equiv & P \cdot q \\
s & \equiv & (P+k)^2 \\
M_{\chi}^2 & \equiv & (P+q)^2 = m_{_N}^2 + 2\nu + q^2
\end{array}$$

- One uses commonly : $Q^2 \equiv -q^2$ and $x \equiv Q^2/2\nu$
- In general $M_x^2 \ge m_N^2$, and we have : $0 \le x \le 1$ (x = 1 corresponds to the case of elastic scattering)

François Gelis

DIS

Inclusive DIS

Experimental results (I) Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Structure functions

Inclusive cross-section:

$$\begin{split} E'\frac{d\sigma}{\sigma^3\vec{k}'} &= \frac{1}{32\pi^3(s-m_N^2)}\frac{e^2}{q^4}4\pi L^{\mu\nu}W_{\mu\nu} \\ 4\pi W_{\mu\nu} &= \int d^4y \; e^{iq\cdot y} \; \left\langle \left\langle N \middle| J_\nu^\dagger(y) J_\mu(0) \middle| N \right\rangle \right\rangle_{\text{spin}} \end{split}$$

For DIS via photon exchange, the hadronic tensor reads

$$W_{\mu
u} = -F_1 \left(g_{\mu
u} - rac{q_\mu q_
u}{q^2}
ight) + rac{F_2}{
u} \left(P_\mu - q_\mu rac{P \cdot q}{q^2}
ight) \left(P_
u - q_
u rac{P \cdot q}{q^2}
ight)$$

Inclusive DIS cross-section in the nucleon rest frame

$$\frac{d\sigma_{\rm e^-N}}{dE'd\Omega} = \frac{\alpha_{\rm em}^2}{4m_{_{\!N}}E^2\sin^4(\theta/2)} \left[2\sin^2(\theta/2) {\it F}_1 + \cos^2(\theta/2) \frac{m_{_{\!N}}^2}{\nu} {\it F}_2 \right]$$

where Ω is the solid angle of the scattered electron

François Gelis

DIS

Inclusive DIS

Experimental results (I) Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

DIS: highlights on QCD

œ

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

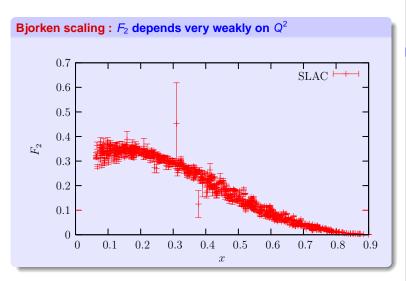
Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions


Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Bjorken scaling

- Asymptotic freedom
- Scaling violations

Bjorken scaling

Bjorken scaling implies that the constituents are quasi-free

François Gelis

DIS

Inclusive DIS

Experimental results (I)
Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution

Saturation domain Multiple scatterings Color Glass Condensate

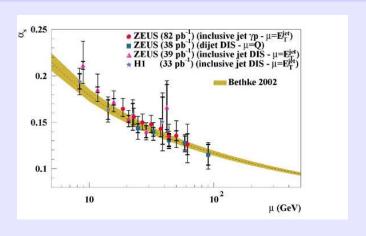
DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project

AA collisions

Stages of AA collisions


Energy-Momentum tensor Correlations in rapidity

Asymptotic freedom

François Gelis

DIS

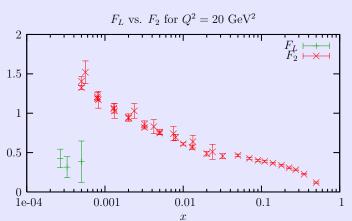
Inclusive DIS

Experimental results (I)
Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Longitudinal structure function

• The smallness of $F_{\scriptscriptstyle L}$ implies that the struck partons are spin 1/2 point-like particles

François Gelis

DIS

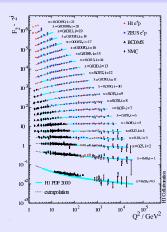
Inclusive DIS

Experimental results (I)
Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Scaling violations

Scaling violations

Scaling violations probe the interactions among quark and gluons

François Gelis

DIS

Inclusive DIS

Experimental results (I)
Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings

Color Glass Condensate DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

DIS: open issues at small *x*

- Gluon growth at small x
- · Geometric scaling
- F, at small x and small Q²

François Gelis

DIS

Inclusive DIS Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Growth of the gluon distribution at small *x*

François Gelis

DIS

Inclusive DIS

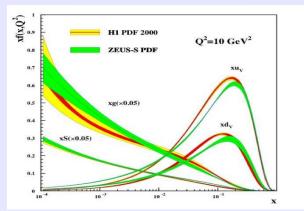
Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Gluon distribution at small x

Geometric scaling

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

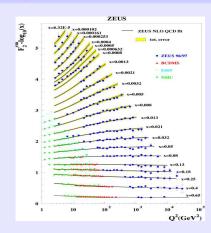
Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project


EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

Geometric scaling : $\tau \sim Q^2 x^{0.3}$

Geometric scaling

François Gelis

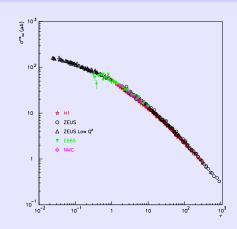
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

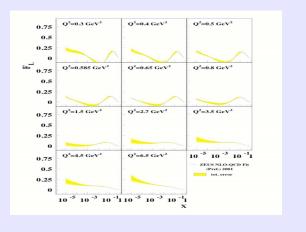
Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity



Some trouble with F_i at small Q^2

François Gelis

F, from DIS fits

DIS

Inclusive DIS Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS Experimental result

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions
Energy-Momentum tensor
Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturati

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

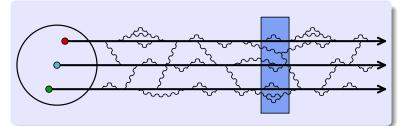
Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Nucleon partonic structure

At low energy:

- Fluctuations at all space-time scales smaller than its size
- Only the fluctuations that are longer lived than the external probe participate in the interaction process
- Interactions are very complicated if the constituents of the nucleon have a non trivial dynamics over time-scales comparable to those of the probe

François Gelis

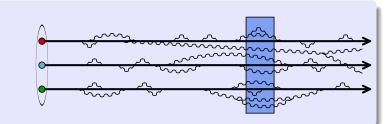
DIS

Inclusive DIS Experimental results (I) Experimental results (II)

Gluon saturation Gluon evolution

Structure of a nucleon

Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Nucleon partonic structure

At high energy:

- Dilation of all internal time-scales of the nucleon
- Interactions among constituents now take place over time-scales that are longer than the characteristic time-scale of the probe > the constituents behave as if they were free
- Many fluctuations live long enough to be seen by the probe by the nucleon appears denser at small x
- Pre-existing fluctuations are frozen over the time-scale of the probe, and act as static sources of new partons

François Gelis

Inclusive DIS Experimental results (I) Experimental results (II)

Gluon saturation Gluon evolution

Structure of a nucleon

Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon

Gluon evolution

Saturation domain

Multiple scatterings

Color Glass Condensate offective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

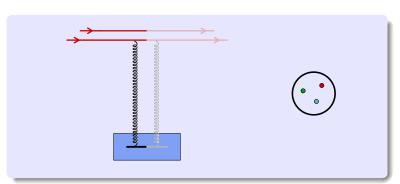
DIS

Inclusive DIS Experimental results (I) Experimental results (II)

Gluon saturation

Structure of a nucleon

Saturation domain


Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

at low energy, the probe sees mostly the valence quarks

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

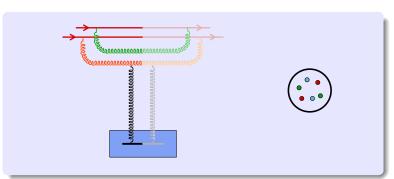
Gluon saturation

Structure of a nucleon

Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order


NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

- when energy increases, new partons are emitted
- the emission probability goes like $\alpha_s \int \frac{dx}{x} \sim \alpha_s \ln(\frac{1}{x})$, with x the longitudinal momentum fraction of the gluon
- at small-x (i.e. high energy), these logs need to be resummed

François Gelis

DIS

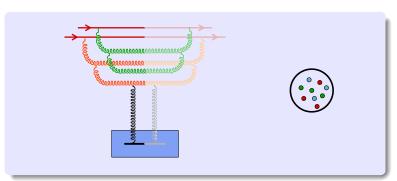
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon


Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

 as long as the density of constituents remains small, the evolution is linear: the number of partons produced at a given step is proportional to the number of partons at the previous step (BFKL)

François Gelis

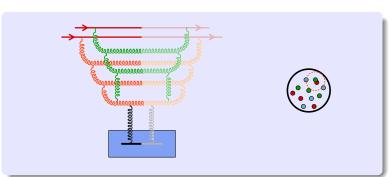
DIS

Inclusive DIS
Experimental results (I)

Experimental results (II) Gluon saturation

Structure of a nucleon

Gluon evolution Saturation domain


Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

- eventually, the partons start overlapping in phase-space
- · parton recombination becomes favorable
- after this point, the evolution is non-linear: the number of new partons depends non-linearly on the number of partons at the previous step

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon

Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon

Saturation domain

Multiple scatterings

Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution

Saturation domain

Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Criterion for gluon recombination

Gribov, Levin, Ryskin (1983)

Number of gluons per unit area:

$$\rho \sim \frac{\mathsf{x} \mathsf{G}_{\scriptscriptstyle{A}}(\mathsf{x}, \frac{\mathsf{Q}^2}{\mathsf{Q}})}{\pi \mathsf{R}_{\scriptscriptstyle{A}}^2}$$

Recombination cross-section:

$$\sigma_{gg o g}\simrac{lpha_{ extsf{S}}}{ extsf{Q}^2}$$

Recombination happens if $\rho\sigma_{gg\to g}\gtrsim$ 1, i.e. $Q^2\lesssim Q_s^2$, with :

$$Q_s^2 \sim \frac{\alpha_s x G_a(x, Q_s^2)}{\pi R_a^2} \sim A^{1/3} \frac{1}{x^{0.3}}$$

Note: At a given energy, the saturation scale is larger for a nucleus (for $A=200,\,A^{1/3}\approx 6$)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

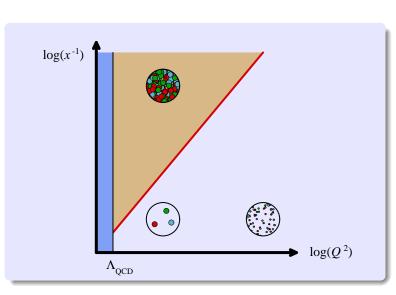
Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution

Saturation domain

Multiple scatterings


Color Glass Condensate

DIS and CGC Leading Order NLO and Leading Logs Inclusive DIS

Exclusive processes EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Saturation domain

François Gelis

DIS

Inclusive DIS

Experimental results (I)
Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution

Saturation domain

Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

2 Gluon saturation at small x

Multiple scatterings

3 DIS in the CGC framework

Connection to Nucleus-Nucleus collisions

François Gelis

Inclusive DIS Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain

Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Multiple scatterings

Power counting :

$$\frac{\text{2 scatterings}}{\text{1 scattering}} \sim \frac{\textit{Q}_{\text{s}}^2}{\textit{P}_{\text{i}}^2} \quad \text{with} \quad \textit{Q}_{\text{s}}^2 \sim \alpha_{\text{s}} \frac{\textit{xG}(\textit{x},\textit{Q}_{\text{s}}^2)}{\pi R^2}$$

- \bullet When this ratio becomes \sim 1, all the rescattering corrections become important
 - ightharpoonup one must resum all $\left[Q_s/P_\perp\right]^n$
- These effects are not accounted for in DGLAP or BFKL

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain

Multiple scatterings Color Glass Condensate

DIS and CGC

DIS and CGC Leading Order

NLO and Leading Logs Inclusive DIS Exclusive processes

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

EIC project

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings

Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

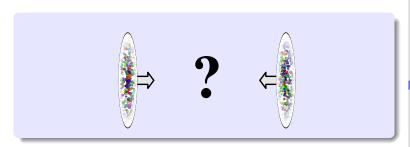
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Implications for a QCD approach

 Main difficulty: How to treat collisions involving a large number of partons?

François Gelis

DIS

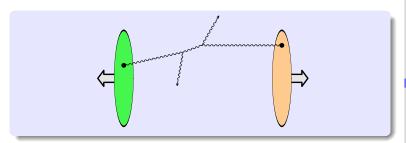
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Implications for a QCD approach

- Main difficulty: How to treat collisions involving a large number of partons?
- Dilute regime: one parton in each projectile interact (what the standard perturbative techniques are made for)

François Gelis

DIS

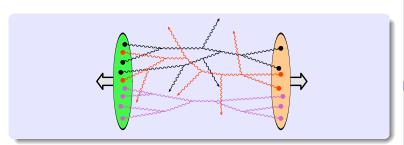
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Implications for a QCD approach

- Main difficulty: How to treat collisions involving a large number of partons?
- Dense regime : multiparton processes become crucial
 new techniques are required

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Color Glass Condensate: Degrees of freedom

CGC = effective theory of small x gluons

The fast partons (k⁺ > Λ⁺) are frozen by time dilation
 ▷ described as static color sources on the light-cone :

$$J^{\mu} = \delta^{\mu +} \rho(\mathbf{x}^{-}, \vec{\mathbf{x}}_{\perp}) \qquad (0 < \mathbf{x}^{-} < 1/\Lambda^{+})$$

- Slow partons (k⁺ < Λ⁺) cannot be considered static over the time-scales of the collision process
 b they must be treated as standard gauge fields
 Eikonal coupling to the current J^µ : A_µJ^µ
- The color sources ρ are random, and described by a distribution functional $W_{\Lambda^+}[\rho]$, with Λ^+ the longitudinal momentum that separates "soft" and "hard"

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Color Glass Condensate: RG evolution

Evolution equation (JIMWLK):

$$\begin{split} \frac{\partial \textit{W}_{\Lambda^{+}}}{\partial \ln(\Lambda^{+})} &= \mathcal{H} \;\; \textit{W}_{\Lambda^{+}} \\ \mathcal{H} &= \frac{1}{2} \int\limits_{\vec{\textbf{x}}_{\perp}, \vec{\textbf{y}}_{\perp}} \frac{\delta}{\delta \alpha(\vec{\textbf{y}}_{\perp})} \eta(\vec{\textbf{x}}_{\perp}, \vec{\textbf{y}}_{\perp}) \frac{\delta}{\delta \alpha(\vec{\textbf{x}}_{\perp})} \end{split}$$

where
$$\alpha(\vec{\boldsymbol{x}}_{\perp}) = \frac{1}{\nabla_{\perp}^2} \rho(1/\Lambda^+, \vec{\boldsymbol{x}}_{\perp})$$

- $\eta(\vec{x}_{\perp}, \vec{y}_{\perp})$ is a non-linear functional of ρ
- This evolution equation resums all the powers of α_s ln(1/x) and of Q_s/p_⊥ that arise in loop corrections
- This equation simplifies into the BFKL equation when the source ρ is small (one can expand η in powers of ρ)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS Experimental result

$oldsymbol{\Omega}$ Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

Occupancy Connection to Nucleus-Nucleus collisions

Stages of AA collisions
Energy-Momentum tensor
Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CG0

Leading Order NLO and Leading Logs Inclusive DIS Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order

NLO and Leading Logs Inclusive DIS Exclusive processes EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

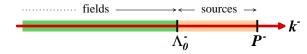
Experimental results (II)

Gluon saturation

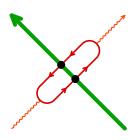
Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order


NLO and Leading Logs Inclusive DIS Exclusive processes EIC project

AA collisions


Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS at Leading Order

CGC effective theory with cutoff at the scale Λ₀⁻:

• At Leading Order, DIS is an interaction between the target and a $q\bar{q}$ fluctuation of the virtual photon :

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order

NLO and Leading Logs Inclusive DIS Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS at Leading Order

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order

NLO and Leading Logs Inclusive DIS Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

• Forward dipole amplitude at leading order:

$$T_{\text{LO}}(\vec{\mathbf{x}}_{\perp}, \vec{\mathbf{y}}_{\perp}) = 1 - \frac{1}{N_c} \operatorname{tr}(\underbrace{U(\vec{\mathbf{x}}_{\perp})U^{\dagger}(\vec{\mathbf{y}}_{\perp})}_{\text{Wilson lines}})$$

$$U(\vec{\mathbf{x}}_{\perp}) = \operatorname{P} \exp ig \int^{1/xP^{-}}_{dz^{+}} dz^{+} A^{-}(z^{+}, \vec{\mathbf{x}}_{\perp})$$

$$[\mathcal{D}_{\mu}, \mathcal{F}^{\mu\nu}] = \delta^{\nu-} \rho(x^{+}, \vec{\mathbf{x}}_{\perp})$$

⊳ at LO, the scattering amplitude on a saturated target is entirely given by classical fields

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order

NLO and Leading Logs

Inclusive DIS Exclusive process

EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

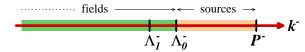
Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

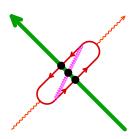
DIS and CGC

Leading Order

NLO and Leading Logs


Inclusive DIS Exclusive processes EIC project

AA collisions


Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS at NLO

• Consider now quantum corrections to the previous result, restricted to field modes with $\Lambda_1^- < k^- < \Lambda_0^-$ (the upper bound prevents double-counting with the sources):

• At NLO, the $q\bar{q}$ dipole must be corrected by a gluon, e.g. :

François Gelis

DIS

Inclusive DIS

Experimental results (I)

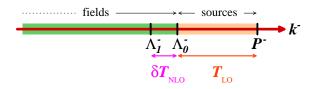
Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order


NLO and Leading Logs

Inclusive DIS Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS at NLO

 At leading log accuracy, the contribution of the quantum modes in that strip is:

$$\delta \mathbf{T}_{\scriptscriptstyle \mathrm{NLO}}(\vec{\mathbf{x}}_{\perp}, \vec{\mathbf{y}}_{\perp}) = \ln \left(\frac{\Lambda_0^-}{\Lambda_1^-} \right) \, \mathcal{H} \, \mathbf{T}_{\scriptscriptstyle \mathrm{LO}}(\vec{\mathbf{x}}_{\perp}, \vec{\mathbf{y}}_{\perp})$$

 \mathcal{H} = Hamiltonian of the JIMWLK evolution equation

 These NLO corrections can be absorbed in the LO result by a redefinition of the distribution of sources

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order

NLO and Leading Logs

Inclusive DIS Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS at Leading Log

œ

François Gelis

 By iterating the previous process to integrate out all the slow field modes at leading log accuracy:

Inclusive DIS at Leading Log accuracy

$$\sigma_{\gamma^*T} = \int_0^1 dz \int d^2 \vec{r}_{\perp} |\psi(q|z, \vec{r}_{\perp})|^2 \sigma_{\text{dipole}}(x, \vec{r}_{\perp})$$

$$\sigma_{\text{dipole}}(x, \vec{r}_{\perp}) = 2 \int d^2 \vec{X}_{\perp} \int [D\rho] W_{xP-}[\rho] T_{LO}(\vec{x}_{\perp}, \vec{y}_{\perp})$$

be the x dependence of the dipole cross-section can be predicted from the JIMWLK evolution equation

 \triangleright one needs an initial condition at some x_0

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order

NLO and Leading Logs

Inclusive DIS

Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs

Inclusive DIS

Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Geometric scaling

• In the saturated regime, the dipole cross-section depends on x and \vec{r}_{\perp} only through the combination

$$Q_s(x)|\vec{r}_{\perp}|$$

 If one neglects the light quark masses, the photon wavefunction depends only on

$$Q|\vec{r}_{\perp}|$$

 \triangleright the γ^*p cross-section depends only on

$$Q^2/Q_s^2(x)$$

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

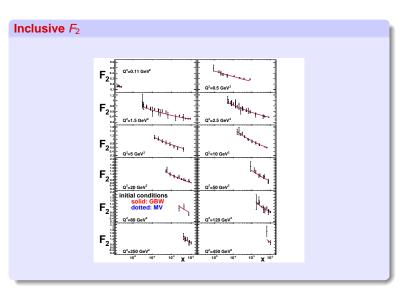
Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order NLO and Leading Logs

Inclusive DIS Exclusive processes


EIC project

AA collisions Stages of AA collis

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

DIS fit at small x based on the CGC

Albacete, Armesto, Milhano, Salgado (2009)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

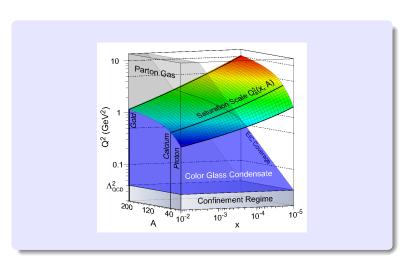
Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes


EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Extraction of $Q_s(x)$

Kowalski, Lappi, Venugopalan (2007)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS

Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

(figure from T. Ullrich)

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Exclusive processes

Kowalski, Motyka, Watt (2006)

- So far, we have only considered the total DIS cross-section, obtained from the forward dipole amplitude via the optical theorem
- In order to study more exclusive processes, one needs non-forward amplitudes. They read:

$$\left\langle \Omega \big| \gamma^* \right\rangle = \int d^2 \vec{\boldsymbol{r}}_\perp \int_0^1 \! dz \; \Psi_\Omega^* \psi \; \underbrace{\int d^2 \vec{\boldsymbol{b}} \; \mathrm{e}^{i \vec{\boldsymbol{q}}_\perp \cdot \vec{\boldsymbol{b}}} \left\langle \boldsymbol{T} (\vec{\boldsymbol{b}} - \frac{\vec{\boldsymbol{r}}_\perp}{2}, \vec{\boldsymbol{b}} + \frac{\vec{\boldsymbol{r}}_\perp}{2}) \right\rangle}_{\text{non-forward dipole cross-section}}$$

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Exclusive processes

• By squaring this amplitude, one gets the diffractive cross-section for the production of the state Ω with momentum transfer \boldsymbol{q}_{\perp}

$$\frac{\textit{d}\sigma_{\gamma^*p\to\Omega p}^{\text{diff}}}{\textit{d}^2\vec{\boldsymbol{q}}_{\perp}} = \left|\left\langle\Omega\right|\gamma^*\right\rangle\right|^2$$

The relationship to the inclusive DIS cross-section is

$$\frac{\sigma_{\gamma^*p}^{\text{tot}}(Y, Q^2)}{\sigma_{\gamma^*p}^{\text{tot}}(Y, Q^2)} = 2 \operatorname{Im} \left\langle \gamma^* \middle| \gamma^* \right\rangle_{\vec{q}_{\perp} = 0}$$

Note: inclusive DIS only constrains the dipole amplitude averaged over impact parameter. However, if one measures the ${m q}_\perp$ dependence in exclusive reactions, one obtains informations about the ${m b}$ dependence of the dipole amplitude

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

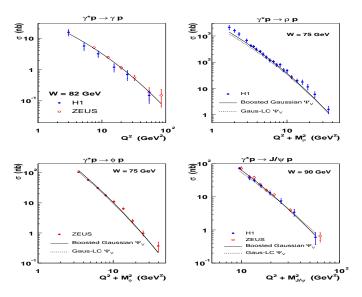
Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs

Exclusive processes


EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Exclusive reactions

Exclusive photon and vector meson production :

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

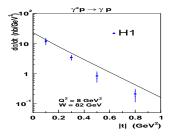
Gluon saturation

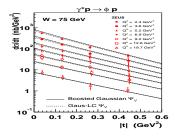
Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

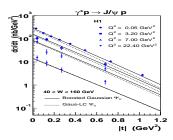
DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS

Exclusive processes


EIC project


AA collisions


Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Exclusive reactions

Exclusive photon and vector meson production :

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS

Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

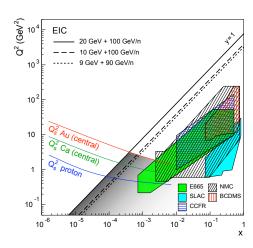
Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Kinematical coverage

François Gelis

DIS

Inclusive DIS

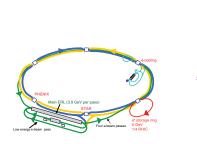
Experimental results (I)

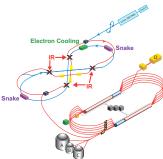
Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes


EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

EIC designs: BNL, JLab

Note: An EIC project is also being discussed at CERN (LHeC)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (II)

② Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

A collis

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

NLO and Leading Logs Inclusive DIS Exclusive processes EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions

Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

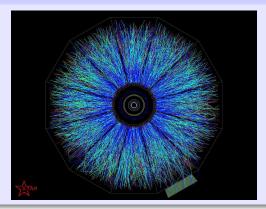
Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Longitudinal momentum fraction in AA collisions

Nucleus-Nucleus collision

- 99% of the multiplicity below p_⊥ ~ 2 GeV
- $x \sim 10^{-2}$ at RHIC ($\sqrt{s} = 200 \text{ GeV}$)
- $x \sim 4.10^{-4}$ at the LHC ($\sqrt{s} = 5.5$ TeV) > partons at small x are the most important

François Gelis

DIS

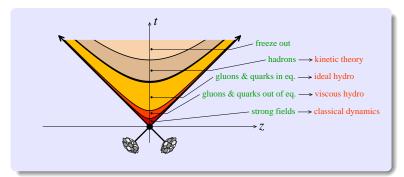
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions Stages of AA collisions

Energy-Momentum tensor Correlations in rapidity

Stages of a nucleus-nucleus collision

- The Color Glass Condensate provides a framework to describe nucleus-nucleus collisions up to a time $\tau \sim Q_s^{-1}$
- Subsequent stages are usually described as fluid dynamics

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions Stages of AA collisions

Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions

Energy-Momentum tensor

Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor

Correlations in rapidity

Reminder on hydrodynamics

Equations of hydrodynamics = energy-momentum conservation:

$$\partial_{\mu} T^{\mu \nu} = 0$$

Inputs from the underlying microscopic theory:

EoS: $p = f(\epsilon)$, Transport coefficients: η, ζ, \cdots

• Required initial conditions : $T^{\mu\nu}(\tau=\tau_0,\eta,\vec{x}_\perp)$

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

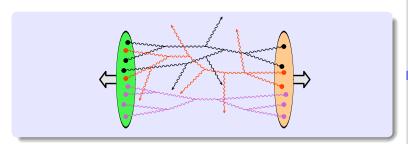
Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

AA collisions Stages of AA collisions

Energy-Momentum tensor Correlations in rapidity


Summary

EIC project

Power counting

$$J^{\mu} \equiv \delta^{\mu +} \rho_{1}(\mathbf{x}^{-}, \mathbf{\vec{x}}_{\perp}) + \delta^{\mu -} \rho_{2}(\mathbf{x}^{+}, \mathbf{\vec{x}}_{\perp})$$

$$S = \underbrace{-\frac{1}{2} \int d^{4}x \operatorname{tr} F_{\mu\nu} F^{\mu\nu}}_{\text{gluon interactions}} + \int d^{4}x J^{\mu} \mathbf{A}_{\mu}$$

Note: the dots denote insertions of the color current J^{μ}

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor

Correlations in rapidity

Initial conditions from CGC: Leading Order

François Gelis

• Small coupling expansion for $T^{\mu
u}$:

$$T^{\mu
u} = rac{\mathsf{Q}_{\mathrm{S}}^4}{g^2} \left[c_0 + c_1 \, g^2 + c_2 \, g^4 + \cdots
ight]$$

The Leading Order contribution is given by classical fields:

$$egin{align*} \mathcal{T}_{ ext{\tiny LO}}^{\mu
u} &\equiv c_0 rac{Q_s^4}{g^2} = rac{1}{4} g^{\mu
u} \, \mathcal{F}^{\lambda\sigma} \mathcal{F}_{\lambda\sigma} - \mathcal{F}^{\mu\lambda} \mathcal{F}^{
u}_{\lambda} \ & ext{with} \quad \left[rac{\mathcal{D}_{\mu}, \mathcal{F}^{\mu
u}}{Y_{ ext{ang-Mills equation}}}
ight] = J^{
u} \quad , \quad \lim_{t o -\infty} \mathcal{A}^{\mu}(t, ec{\mathbf{x}}) = 0 \ & ext{} \end{aligned}$$

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions

Energy-Momentum tensor

Correlations in rapidity

Initial conditions from CGC: Leading Log resummation

- The previous power counting implicitly assumes that the coefficients c_n are numbers of order one. However, large logarithms of the CGC cutoffs appear at NLO
- Like in DIS, the coefficients of the logs are given by the action of the JIMWLK Hamiltonian on the LO observable:

$$\delta T_{\scriptscriptstyle \rm NLO}^{\mu\nu} = \left[\ln \left(\frac{\Lambda_0^-}{\Lambda_1^-} \right) \, \mathcal{H}_1 + \ln \left(\frac{\Lambda_0^+}{\Lambda_1^+} \right) \, \mathcal{H}_2 \right] \, T_{\scriptscriptstyle \rm LO}^{\mu\nu}$$

By resumming the leading logs, one obtains:

$$\left\langle \boldsymbol{T}^{\mu\nu}(\tau, \boldsymbol{\eta}, \vec{\boldsymbol{x}}_{\perp}) \right\rangle_{\text{LLog}} = \int \left[\boldsymbol{D} \rho_{_{1}} \; \boldsymbol{D} \underline{\rho_{_{2}}} \right] \; \boldsymbol{W}_{1} \left[\rho_{_{1}} \right] \; \underline{\boldsymbol{W}_{2} \left[\boldsymbol{\rho}_{_{2}} \right]} \; \underbrace{\boldsymbol{T}_{\text{LO}}^{\mu\nu}(\tau, \vec{\boldsymbol{x}}_{\perp})}_{\text{for fixed } \rho_{1,2}}$$

(FG, Lappi, Venugopalan (2008))

François Gelis

DIS

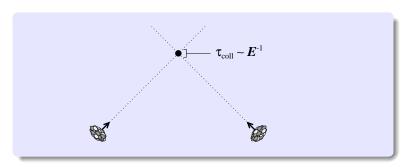
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Factorization and causality

• The duration of the collision is very short: $au_{
m coll} \sim E^{-1}$

François Gelis

DIS

Inclusive DIS

Experimental results (I)

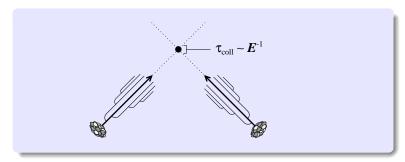
Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project


AA collisions

Stages of AA collisions

Energy-Momentum tensor

Correlations in rapidity

Factorization and causality

- The duration of the collision is very short: $au_{
 m coll} \sim E^{-1}$
- The logarithms we need to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision

François Gelis

DIS

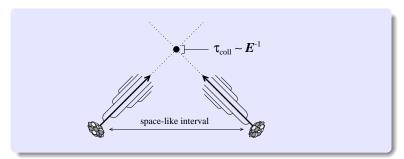
Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate


DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Factorization and causality

- The duration of the collision is very short: $au_{
 m coll} \sim E^{-1}$
- The logarithms we need to resum arise from the radiation of soft gluons, which takes a long time
 it must happen (long) before the collision
- The projectiles are not in causal contact before the impact
 the logarithms are intrinsic properties of the projectiles, independent of the measured observable

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Inclusive DIS

Experimental results (I)

Experimental results (II)

2 Gluon saturation at small x

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate effective theory

3 DIS in the CGC framework

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
FIC project

4 Connection to Nucleus-Nucleus collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Correlations in η and \vec{x}_{\perp}

• The factorization valid for $\langle T^{\mu\nu} \rangle$ can be extended to multi-point correlations :

$$\begin{split} \left\langle T^{\mu_1\nu_1}(\tau, \eta_1, \vec{\boldsymbol{x}}_{1\perp}) \cdots T^{\mu_n\nu_n}(\tau, \eta_n, \vec{\boldsymbol{x}}_{n\perp}) \right\rangle_{\text{LLog}} = \\ = \int \left[D\rho_1 \ D\rho_2 \right] \ W_1 \left[\rho_1 \right] \ W_2 \left[\rho_2 \right] \\ \times T^{\mu_1\nu_1}_{\text{LO}}(\tau, \vec{\boldsymbol{x}}_{1\perp}) \cdots T^{\mu_n\nu_n}_{\text{LO}}(\tau, \vec{\boldsymbol{x}}_{n\perp}) \end{split}$$

ightharpoonup at leading log accuracy, all the correlations come from the distributions $W_{1,2}[\rho_{1,2}]$ (i.e. they pre-exist in the wavefunctions of the incoming projectiles)

François Gelis

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

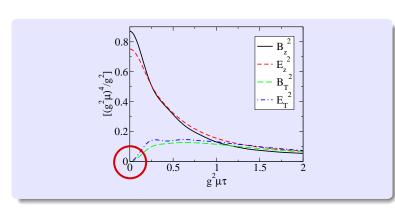
Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order

NLO and Leading Logs
Inclusive DIS

Exclusive processes


EIC project AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Initial classical fields

Lappi, McLerran (2006)

• Immediately after the collision, the chromo- \vec{E} and \vec{B} fields are purely longitudinal and boost invariant :

François Gelis

DIS

Inclusive DIS

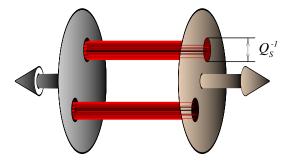
Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes

EIC project AA collisions

Stages of AA collisions
Energy-Momentum tensor
Correlations in rapidity

Color flux tubes

• The initial chromo- \vec{E} and \vec{B} fields form longitudinal "flux tubes" extending between the projectiles:

- The color correlation length in the transverse plane is Q_s⁻¹
 ⊳ flux tubes of diameter Q_s⁻¹, filling up the transverse area
- The correlation length in the η direction is $\Delta \eta \sim \alpha_s^{-1}$ \rhd long range rapidity correlations expected in the data

François Gelis

DIS

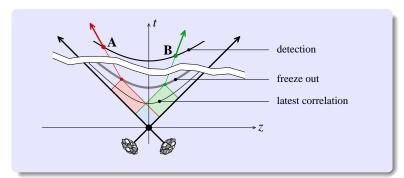
Inclusive DIS Experimental results (I) Experimental results (II)

Gluon saturation

Structure of a nucleon Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project


AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity

Summary

88

Importance of initial rapidity correlations

Long range rapidity correlations must be created early

$$t_{\text{correlation}} \leq t_{\text{freeze out}} e^{-\frac{1}{2}|\eta_A - \eta_B|}$$

ightharpoonup the near η -independence of the initial color fields should induce a long range correlation in rapidity among the produced particles

François Gelis

DIS

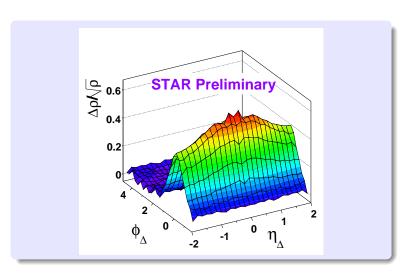
Inclusive DIS

Experimental results (I) Experimental results (II)

Gluon saturation

Structure of a nucleon
Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC


Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor

Correlations in rapidity

2-hadron correlations at RHIC

- Long range correlation in $\Delta \eta$ (rapidity)
- Narrow correlation in $\Delta \varphi$ (azimuthal angle)

François Gelis

DIS

Inclusive DIS Experimental results (I)

Experimental results (II) Gluon saturation Structure of a nucleon

Gluon evolution Saturation domain Multiple scatterings Color Glass Condensate

DIS and CGC

Leading Order NLO and Leading Logs Inclusive DIS Exclusive processes EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor

Correlations in rapidity

Summary

François Gelis

- At a given energy, gluon saturation is more important for nuclei
- Saturation plays an important role in DIS at small x and in the description of nucleus-nucleus collisions
- A factorization theorem relates DIS and AA collisions in the saturated regime
- Design goals of an eA collider for saturation studies :
 - Energy comparable to that of HERA
 - Much higher luminosity than HERA
 - Variable \sqrt{s} for direct measurement of F_{L}
 - Detector with good η coverage

DIS

Inclusive DIS

Experimental results (I)

Experimental results (II)

Gluon saturation Structure of a nucleon

Gluon evolution
Saturation domain
Multiple scatterings
Color Glass Condensate

DIS and CGC

Leading Order
NLO and Leading Logs
Inclusive DIS
Exclusive processes
EIC project

AA collisions

Stages of AA collisions Energy-Momentum tensor Correlations in rapidity