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Motivation: QCD Phase Diagram

characteristic features at low energies	

• confinement 	

• dynamical chiral symmetry breaking

non-perturbative computation of physical 
observables from microscopic dynamics

here:   study aspects of the phase diagram with 	

  non-perturbative functional continuum methods	


GSI Darmstadt

quark confinement via the Polyakov loop potential
phase transition order / temperature / density, 	

confinement criterion via (infrared) behaviour of propagators
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OUTLOOK

• Yang–Mills Theory	


• Non-Perturbative Functional Methods	


• Quark Confinement
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(PURE) YANG–MILLS THEORY
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FUNCTIONAL METHODS

• continuum methods 	


• exact description via correlation functions	


    (capture non-perturbative effects)	


• no (conceptual) problem with fermions 	


    (chiral symmetry,  no sign problem, ...)

• approximations are inevitable	


• pure gauge sector of QCD is difficult

pros

cons

functional renormalisation group,  Dyson–Schwinger equations,  n-PI functionals, ...

… complementary to lattice QCD	

• discretised space-time	

• no approximations	

• fermions are difficult	

• pure gauge theory easy

links to 	

• confinement	

•   	

• hadron phenomenology
D�SB
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?   compute the Gibbs free energy     ( = effective action)�
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FUNCTIONAL METHODS

classical action, microscopic dynamics

integrate fluctuations
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Dyson, Phys. Rev. 75, 1736 (1949).!
Schwinger, Proc. Nat. Acad. Sci. 37 (1951).

Dyson–Schwinger eqs. (DSEs) functional renormalisation group
integrate all fluctuations at once integrate fluctuations momentum-shell-wise

Wetterich, Phys. Lett. B301 (1993).
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O1

UV: classical action S

from            to k=0k=⇤

introduce energy scale    ,	

fluctuations 

k

p2 ⇠ k2

effective action �
�=�k=0

O2

{Oi}

S = �k=⇤

...couplings   

all fluctuations included

 FUNCTIONAL RENORMALISATION GROUP (FRG)

∂tΓ[A, c̄, c] =
−

1
2

− FRG equation depends on full propagatorsk



figures: Fischer, Maas, Pawlowski, Annals Phys. 324 (2009).
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we have discussed the equivalence and consistency of the
renormalization procedure for both, DSEs and FRGs.
Moreover, the FRG provides a consistent momentum cut-
off regularization of the corresponding DSE equation via
(44) and thus allows to deduce the modified STIs for the
DSE in the presence of an ultraviolet momentum cut-off,
see [22, 60]. A crucial difference in the present truncation
is the tadpole diagram in the gluon FRG-equation that
depends on the full four-gluon vertex. This incorporates
two-loop contributions of the sunset diagram in the gluon
DSE, see Fig. 3.

VI. COMPARISON WITH LATTICE RESULTS

In the previous two sections we obtained two different
types of solutions for the ghost and gluon propagators in
the DSE and FRG approaches. It is certainly instructive
to compare these results to the ones from lattice calcu-
lations. As became apparent from a number of works in
the past years such a comparison is not unambiguous.
Ideally one strives for a situation where exactly the same
quantities are calculated in the continuum and on the lat-
tice. However, this is currently not the case for a number
of reasons. First, lattice calculations are necessarily done
in a finite volume. It is therefore mandatory to take into
account finite volume effects and zero mode contributions
absent in the infinite volume/continuum limit. Second,
one encounters finite size contributions due to the non-
vanishing lattice spacing. Third, artefacts due to the
gauge fixing procedure are different from the ones in a
continuum formulation.

Before we discuss these issues further let us com-
pare the continuum solutions with the lattice results of
refs. [41, 75] in minimal Landau gauge. In the top dia-
gram of fig. 9 we display the gluon dressing function from
different approaches. At large momenta, where pertur-
bation theory sets in, all results are in excellent agree-
ment with each other. The DSE results as well as the
FRG results in the intermediate regime show only a mild
dependence of the type of solution, i.e. scaling or de-
coupling does not really matter here, as expected. As
compared to the standard DSE results the dressing func-
tion from the functional RG approach is closer to the
lattice data. From the discussion of the last section this
was to be expected, since the FRG truncation included
effects from the gluonic two-loop diagrams neglected in
the DSE-truncation. Note that such contributions can be
either included directly or phenomenologically by modi-
fying the three-gluon interaction in the one-loop diagram
also into the DSE framework, see e.g. [76].

The infrared behavior of the propagator functions for
the gluon, D(p2) = Z(p2)/p2, of both solutions are com-
pared in the second panel of fig. 9. Clearly, the scal-
ing solution comprises an infrared vanishing propaga-
tor, whereas the decoupling solutions are infrared finite.
Changing the boundary condition G−1(0, µ2) from zero
to finite values first leads to a finite but small value for
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FIG. 9: Both type of solutions of sections IV and V compared
to lattice results in minimal Landau gauge from [41, 75].

D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

gluon dressing function	

         … IR-suppressed

ghost dressing function	

           … IR-enhanced
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D(0) with the corresponding gluon propagator still be-
ing non-monotonous. From a certain minimal value of
G−1(0, µ2) on, this behavior changes and the gluon be-
comes a monotonously decreasing function of momen-
tum. Such a monotonous behavior is also seen in the
lattice data, which therefore clearly represent a decou-
pling type of solution for the gluon.

YANG–MILLS PROPAGATORS
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...  gluon / ghost propagatorGA/c

p2Gcp2GA



Quark Confinement
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The expectation value of the Polyakov loop,                , 	

relates to the free energy,      , of a single quark.	

   →  order parameter for static quark confinement

hL[A0]i
Fq

Leonard Fister, IPhT, CEA Saclay

ORDER PARAMETER FOR CONFINEMENT

(
= 0 . . . confinement

> 0 . . . deconfinement
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T

e�1 e� finite

q

q̄ 1

order parameter SU(2)

e�Fq/T ⇠ hLi

confinement deconfinement
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        minimum of effective potential            hA0i

L
hD
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ORDER PARAMETER FOR CONFINEMENT
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fluctutation about background
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= 0

Braun, Gies, Pawlowski, !
     Phys. Lett. B684 (2010).!
Marhauser, Pawlowski, 0812.1144.
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FRG: DSEs:

FRG:            Braun, Gies, Pawlowski, Phys. Lett. B684 (2010).!
                Braun, Eichhorn, Gies, Pawlowski, Eur. Phys. J. C70 (2010).!
FRG, DSE, 2PI:  LF, Pawlowski, Phys. Rev. D88 (2013).!
                Fischer, LF, Luecker, Pawlowski, 1306.6022.
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Confinement, if minima of            at confining values.V [A0]
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V [A0] ⇠ � [A0; 0]

Z
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e�S[�]+J·� = 0

ORDER PARAMETER FOR CONFINEMENT

'Polyakov loop' potential:
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LF, Pawlowski, Phys. Rev. D88 (2013).

POLYAKOV POTENTIAL - SU(2) PURE  YANG–MILLS

lattice: Lucini, Teper, Wenger, JHEP 01 (2004).
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ghost confine, gluons deconfine,	

two (transversal) gluonic modes remain,	

others cancel exactly
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CONFINEMENT CRITERION

!
→ no confinement in perturbation theory

LF, Pawlowski, Phys. Rev. D88 (2013).

➝ Weiss potential 
Weiss '1981. Gross, Pisarski, Yaffe '1981.

perturbation theory                                          
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!
→ no confinement in perturbation theory
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CONFINEMENT CRITERION
LF, Pawlowski, Phys. Rev. D88 (2013).
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non-perturbatively➝ Weiss potential 
Weiss '1981. Gross, Pisarski, Yaffe '1981.

perturbation theory                                          

ghost confine, gluons deconfine,	

two (transversal) gluonic modes remain,	

others cancel exactly
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infrared suppressed gluons but non-suppressed ghosts    ➝     confinement

… applicable to Higgs–YM, adjoint quark-YM (, QCD)
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→ no confinement in perturbation theory
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2 ghosts

no exact cancellation of modes,	

ghosts dominate at small temperatures	

               → confinement

gluon suppression, ghost enhancement

➝ Weiss potential 
Weiss '1981. Gross, Pisarski, Yaffe '1981.

perturbation theory                                          non-perturbatively

ghost confine, gluons deconfine,	

two (transversal) gluonic modes remain,	

others cancel exactly



DSE / 2PI

   minimum jumps	

                first order phase transition for SU(3)
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POLYAKOV POTENTIAL - SU(3) PURE  YANG–MILLS

lattice: Lucini, Teper, Wenger, JHEP 01 (2004).
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POLYAKOV POTENTIAL - QCD
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POLYAKOV POTENTIAL - QCD
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… smooth crossover transition 	

     (quarks break centre symmetry)

DSE

QCD

quarks

'
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= 2/3

µ = 0
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… quark chemical potential 	
µ



0 50 100 150 200
µ [MeV]

0

50

100

150

200

T
 [

M
eV

]

Chiral crossover
Chiral first order
From Polyakov-loop potential
From dressed Polyakov loop
Critical end-point

Leonard Fister, IPhT, CEA Saclay

POLYAKOV POTENTIAL - QCD
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‣ 2nd/1st order phase transition for SU(2)/SU(3), correct QCD pattern	

‣ Criterion for confinement: gluons must be IR suppressed, while ghosts must not.	

‣ critical temperatures for pure Yang–Mills 	

!
‣ QCD, Nf = 2+1, critical end-point at	


T SU(2)|SU(3)
c p

�
⇡

(
.55 .65 functional methods

.709 .646 lattice gauge theory

CONCLUSIONS
Functional methods allow to study the confinement (quantitatively)	


via the Polyakov loop potential in terms of propagators.
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