CONFINEMENT FROM CORRELATION FUNCTIONS

Leonard Fister IPhT, CEA Saclay

LF, Pawlowski, Phys. Rev. D88 (2013). Fischer, LF, Luecker, Pawlowski, 1306.6022.

> heavy-ion meeting, IPN Orsay, February 20, 2014

Motivation: QCD Phase Diagram

characteristic features at low energies

- confinement
- dynamical chiral symmetry breaking

non-perturbative computation of physical observables from microscopic dynamics

here: study aspects of the phase diagram with

non-perturbative functional continuum methods

→ quark confinement via the Polyakov loop potential

phase transition order / temperature / density, confinement criterion via (infrared) behaviour of propagators

OUTLOOK

- Yang–Mills Theory
- Non-Perturbative Functional Methods
- Quark Confinement

(PURE) YANG-MILLSTHEORY

FUNCTIONAL METHODS

functional renormalisation group, Dyson-Schwinger equations, n-PI functionals, ...

pros

- continuum methods
- exact description via <u>correlation functions</u> (capture non-perturbative effects)
- no (conceptual) problem with fermions (chiral symmetry, no sign problem, ...)

cons

- approximations are inevitable
- pure gauge sector of QCD is difficult

- → links to
 - confinement
 - $D\chi SB$
 - hadron phenomenology

... complementary to lattice QCD

- discretised space-time
- no approximations
- fermions are difficult
- pure gauge theory easy

FUNCTIONAL METHODS

? compute the **Gibbs free energy** Γ (= effective action)

$$\Gamma \left[\phi\right] = \sup_{J} \left(\int_{x} J \cdot \phi - \log \left\{ \int \mathcal{D}\varphi \ e^{-S[\varphi] + \int_{x} J \cdot \varphi} \right\} \right)$$

classical action, microscopic dynamics

integrate all fluctuations at once Dyson–Schwinger eqs. (DSEs)

$$\int \mathcal{D}\phi \frac{\delta}{\delta\phi} e^{-S[\phi] + J \cdot \phi} = 0$$

Dyson, Phys. Rev. 75, 1736 (1949). Schwinger, Proc. Nat. Acad. Sci. 37 (1951). integrate fluctuations momentum-shell-wise functional renormalisation group

Wetterich, Phys. Lett. B301 (1993).

FUNCTIONAL RENORMALISATION GROUP (FRG)

YANG-MILLS PROPAGATORS

 $G_{A/c}$... gluon / ghost propagator

Quark Confinement

ORDER PARAMETER FOR CONFINEMENT

The expectation value of the **Polyakov loop**, $\langle L[A_0] \rangle$, relates to the free energy, F_q , of a single quark.

→ order parameter for static quark confinement

$$e^{-F_q/T}$$
 $\begin{cases} = 0 \dots \text{confinement} \\ > 0 \dots \text{deconfinement} \end{cases}$

ORDER PARAMETER FOR CONFINEMENT

$$L\left[\left\langle A_{0}\right\rangle\right] \sim \mathcal{P} e^{ig\int_{0}^{1/T} dt} \langle A_{0}\rangle$$
Braun, Gies, Pawlowski,
Phys. Lett. B684 (2010).
Marhauser, Pawlowski, 0812.1144.

$$L\left[\left\langle A_{0}\right\rangle = A_{0}^{\operatorname{confining}}\right] = 0$$

$$\langle A_{0}\rangle$$
minimum of effective potential
$$V[A_{0}] \sim \Gamma[A_{0}; 0]$$
const. (temporal) background
fluctutation about background
fluctutation about background

$$\langle A_{0}\rangle = A_{0}^{\operatorname{confining}}$$

$$\langle A_{0}\rangle = A_{0}^{\operatorname{confining}}$$

$$T_{c}$$

ORDER PARAMETER FOR CONFINEMENT

'Polyakov loop' potential: $\left(V[A_0] \sim \Gamma[A_0; 0] \right)$

Confinement, if **minima of** $V[A_0]$ at confining values.

FRG:	Braun, Gies, Pawlowski, Phys. Lett. B684 (2010).
	Braun, Eichhorn, Gies, Pawlowski, Eur. Phys. J. C70 (2010).
FRG, DSE, 2PI:	LF, Pawlowski, Phys. Rev. D88 (2013).
	Fischer, LF, Luecker, Pawlowski, 1306.6022.

Leonard Fister, IPhT, CEA Saclay

POLYAKOV POTENTIAL - SU(2) PURE YANG-MILLS

LF, Pawlowski, Phys. Rev. D88 (2013).

 $\begin{array}{l} T_c^{\rm DSE/FRG}/\sqrt{\sigma}\approx .55\\ T_c^{\rm lattice}/\sqrt{\sigma} &\approx .71 \end{array}$

lattice: Lucini, Teper, Wenger, JHEP 01 (2004).

minimum moves smoothly

 \leftrightarrow second order phase transition for SU(2)

CONFINEMENT CRITERION

perturbation theory → Weiss potential Weiss '1981. Gross, Pisarski, Yaffe '1981.

ghost confine, gluons deconfine, two (transversal) gluonic modes remain, others cancel exactly

 \rightarrow no confinement in perturbation theory

LF, Pawlowski, Phys. Rev. D88 (2013).

CONFINEMENT CRITERION

LF, Pawlowski, Phys. Rev. D88 (2013).

CONFINEMENT CRITERION

perturbation theory → Weiss potential Weiss '1981. Gross, Pisarski, Yaffe '1981.

ghost confine, gluons deconfine, two (transversal) gluonic modes remain, others cancel exactly

 \rightarrow no confinement in perturbation theory

LF, Pawlowski, Phys. Rev. D88 (2013).

non-perturbatively

no exact cancellation of modes, ghosts dominate at small temperatures

 \rightarrow confinement

infrared suppressed gluons but non-suppressed ghosts -> confinement

... applicable to Higgs–YM, adjoint quark-YM (, QCD)

POLYAKOV POTENTIAL - SU(3) PURE YANG-MILLS

LF, Pawlowski, Phys. Rev. D88 (2013).

$$\begin{array}{l} T_c^{\rm DSE/FRG}/\sqrt{\sigma}\approx .65\\ T_c^{\rm lattice}/\sqrt{\sigma} &\approx .643 \end{array}$$

lattice: Lucini, Teper, Wenger, JHEP 01 (2004).

POLYAKOV POTENTIAL - QCD

POLYAKOV POTENTIAL - QCD

POLYAKOV POTENTIAL - QCD $N_f = 2 + 1$

CONCLUSIONS

Functional methods allow to study the confinement (quantitatively) via the **Polyakov loop potential** in terms of propagators.

- 2nd/1st order phase transition for SU(2)/SU(3), correct QCD pattern
- Criterion for confinement: gluons must be IR suppressed, while ghosts must *not*.
- critical temperatures for pure Yang–Mills $\frac{T_c^{SU(2)|SU(3)}}{\sqrt{\sigma}} \approx \begin{cases} .55 \\ .709 \end{cases} \frac{.65}{.646}$ functional methods lattice gauge theory
- QCD, N_f=2+1, critical end-point at $(T^*, \mu^*) = (101, 174)$ MeV

