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Paper to come soon in collaboration with Edmond lancu.
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o Infinite momentum frame : P ~ P3 — P* very large and
P~=P, =0

@ Parton with momentum p carries a fraction x of longitudinal
momentum : x = p* /PT.
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Bremsstrahlung :

P, > (1-x)P, > -kJ_
ky =xP, > kJ_
d?k, dx

dPorem ~ as(ki) ki

Collinear (k; — 0) and soft (x — 0) divergences.
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Saturation and experiments : knowledge and expectation

X4 <<

@ The emitted gluon can in turn emit another (softer) gluon.
@ The additional gluon brings a factor as In %

In1 =Y is known as the rapidity.
Requires a full resummation as oY ~ 1 (Balitsky, Fadin, Kuraev,

Lipatov, 75-78).
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Raise of the parton distribution at small x.
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Why double gluon production ?

Why saturation ?

Why di-hadron correlations ?
Saturation and experiments : knowledge and expectation

Saturation scale Qs

Y=1In1/x

JIMWLK

Saturation
In Q2 (Y)= %Y

Dilute system

DGLAP

2
InAgep

InQ?

High energy — perturbative description of saturation
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The Color Glass Condensate :
o Effective field theory

@ Semi-hard gluons = gluons with x’ > x considered = classical
field A radiated by classical sources p

Source configuration p randomly frozen during the process

CGC weight function Wy [p] = probability of occurrence of a
given source configuration

(]

Independance of physical observables on Y — renormalization
group equation known as the JIMWLK equation
(Jalilian-Marian, lancu, McLerran, Weigert, Leonidov, Kovner;
1997-2000) :
Wy
oY

= HymawrLk Wy
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CGC requires to perform averages over the classical field weighted
with the CGC weight function Wy [.A™] for observables :

©)y = [ Dl Wrlplop.
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CGC predicts that partons within a dense hadron typically carry
transverse momenta of order Q.
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source T. Lappi (numerical solution to JIMWLK)



Why double gluon production ? Why saturation ?
Why p-A ?

Why di-hadron correlations ?
Saturation and experiments : knowledge and expectation

Aim : clear probe of a saturated medium, the target, with a dilute
projectile.
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()
o LS
Single scattering :
Xlzpieyfv]. X2:P7iefy<<1

Vs Vs

One has to look at forward rapidities (Y > 0).
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dilute-dilute collision :

dilute-dense colision : we expect that multiple scattering broaden
the final state distribution in the transverse plane.
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At RHIC, saturation has been marginally reached in d-Au collisions.
Deuteron probed at x; ~ 1071,

H1 and ZEUS

xf

e Q=10 GeV?

HERAPDFL0
10 B e uncert.

[] model uncert.
[I] parametrization uncert. \ deuteron

.
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10°
gold nucleus

CGC-based predictions provide a good description for the
Aq — qgX inclusive cross-section (Albacete, Marquet, 2010 -
Stasto, Xiao, Yuan, 2012).
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Why double gluon production ?

Evidences of saturation
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Why double gluon production ? Why saturation ?

Why di-hadron correlations ?

Saturation and experiments : knowledge and expectation

At the LHC, the first p-Pb runs just occurred.

H1 and ZEUS
=
kxe Q*=10 GeV?
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lead nucleus

Proton probed at x; ~ 1072 — 10~3. Dominant process :
Ag — ggX.
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General results

Collinear factorization at the projectile (proton) level :

do(pA — ggX) :/dx G, u2)— 20 (8A — g8X)
dy1dy>d?k;  d?ks | D dyrdy»d?ks | d2ky |

= sy 601 (Me()A = g (e (k))?)

<|M\2>Y will be computed thank to the CGC effective theory.
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General results

Proton = dilute medium — collinear factorization ~ the gluon is an
in state.

Nucleus = dense medium = CGC. It is flat by Lorentz length
contraction in the lab frame (doted line). Referred to as a
shockwave.
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General results

| M2 receives 4 contributions :
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General results

The interaction with the background field is encoded into Wilson
lines (eikonal approximation) :

U(x1) =Pexp {ig/dx+A;(X+,xL)Ta} .

X1 AA~AA~AALAAAL - e
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General results

X1
i

X
i
00090000

<

—

0000

<
—

~ Tr[U(x ) T2UN(y ) U(y L) T2 U (x1))]
4 points intersecting the shockwave — four adjoint Wilson lines —
quadrupole operator
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General results
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with b | :ZXJ_+(1—Z)yJ_.
3 points intersecting the shockwave — three adjoint Wilson lines
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General results
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2 points intersecting the shockwave — two adjoint Wilson lines —
dipole operator
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General results

The squared averaged M-matrix for the gA — ggX process reads :

2
<|./\/l(g(p)A — g(k1)g(k2))|2>y = 4gT2I\IC (p1)z(1 — 2)Pgg(2)
(xe—yi) (XL —¥1)

(xL —y1)* (XL —¥1)?

w e k1L (xL—%1) ke, 1 (y1 1) < 5@(b,,b,)

X /d2XJ_d2yJ_d2)_(J_d2)_/L

—5C) (b, ,x.,5.)- 5@, ,x,y. )+ 3(4)(XL,YLJ_(L7)_’L)>Y

Julien Laidet Di-gluon production at the LHC.



Hard transverse gluons

© Hard transverse gluons

Julien Laidet Di-gluon production at the LHC.



Hard transverse gluons

12
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Transverse momenta of the two final gluons :

@ both very large w.r.t. Qs — hard process

@ both smaller or of order Qs — semi-hard process
cannot get one > @5 and one < Qs.
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Hard transverse gluons

Hard regime :

k1=>>Q.s k1

kK1+k2~0Qs
—_— -
% <k Lk2

k2>>0Qs k2

@ The transverse momentum distribution of the final gluons is
centered around a relative angle A¢p = 7.

@ One nevertheless has to consider multiple scatterings, i.e. non
linear effects, since |k, | +ko || ~ Qs.

This is the back-to-back regime.
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Hard transverse gluons

@ The fine detail of the A¢ distribution is still sensitive to
saturation.

@ The back-to-back limit allows generalizations of unintegrated
distribution functions in presence of non-linear effects —
effective gluon distributions that take saturation into account.
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Hard transverse gluons

fgip is the ordinary unintegrated distribution function associated to
the dipole but including non linear effects :

. K2 _ . B
Slf\c/hp(KJ_) = . IJ\'/ /dzbj_d2bJ_e_lKJ-'(bJ._bJ_)
C

2
x <§(2)(bl,BL)>Y

This already appears in the single gluon production.
f;}uad is a new distribution function associated with the quadrupole

gzc

X <8)’(8l’,§(4)(xl, bJ_, uj, BJ_)

SJ_f\(,luad(KJ_) = ]-N /d2de2EleiKJ_-(bJ_BJ_)

bJ_bJ_BJ_BJ_>Y.
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Hard transverse gluons

The semi-hard regime : we expect a broadening of the A¢p =«
peak as the momenta of final gluons approach Qs. This has been
shown by T. Lappi for gg production.

P =2GeV, pi* = 1GeV, y1 = yo = 3.4

—  d+Au, Q% = 0.72GeV?

1.00

We have the master formula, the gg case is right now a matter of
programming.
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Summary and outlook

@ We obtained a general formula for the di-gluon production
cross-section that stands for a large range of kinematics
encountered at the LHC.

@ The back-to-back limit is interesting in the sense it is expected
for hard processes : hard transverse gluons are strongly
correlated up to ~ Qs momentum imbalance that is very small
w.r.t their intrinsic transverse momentum. We now have a
quantitative description of this regime.

@ The semi-hard regime is the signature of saturation but its
quantitative predictions requires numerical devices for
computing the averages of color operators (mean field
approximation to JIMWLK : lancu, Triantafyllopoulos - 2011).
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Summary and outlook

Thanks for your attention.
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Summary and outlook

X1 — pa,J_ eyl + pb,J_ ey2
NG NG
paJ_ —yl + pr_ —yz'

=5 NG
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Summary and outlook

In the back-to-back limit, the squared averaged M-matrix reads :

2\ 472 (p1)?z(1 - 2)
<‘M p)A — g(ki)g(k2))| >y =16g"NcS. (1 —2)ki, . — zko 1 )*

X Pgg(2) [f;l“ac‘(kl,L ko) —2z(1—2)FoP(ky o + ko 1)l -
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