

Diffractive and photon-induced physics at ALICE

Daniel Tapia Takaki

IPN Orsay (CNRS/IN2P3) - Paris XI

Heavy-ion physics meeting - Paris region 29 April 2011

Plan of this talk

- The ALICE experiment
- Exclusive resonance production in p+p collisions at 7 TeV
- Exclusive resonance production in ultra-peripheral Pb+Pb at 2.76 TeV
 - Summary of J. Nystrand presentation at DIS 2011
 - New results on J/ψ production in UPC Pb+Pb
- Summary and outlook

A Large Ion Collider Experiment

ALICE 2010

- ITS, TPC, TOF, HMPID, MUON, V0, T0, FMD, PMD, ZDC (100%)
- TRD* (7/18)
- EMCAL* (4/12)
- PHOS (3/5)

7

Rapidity gaps

ALICE is well suited to construct **rapidity gaps**

In p+p, ALICE is unique as pile-up is kept small. Excellent particle ID

MB triggers during the p+p runs <u>this year</u> 2010

at least 1 charged particle in 8 rapidity units

Aat least 2 pixels in coincidence with beams

- **V0A** 2.8 < η < 5.1
- **VOC** $-1.7 < \eta < -3.7$

Global Fast Or (GFO) is the trigger from the Silicon Pixel Detector (SPD)

Exclusive resonance production in p+p collisions at 7 TeV

- 361 M events with the MB trigger
- 32.3 M events selected with primary vertex and exactly 2 TPC+ITS tracks
- 29.2 M events with no gap
 - 1.6 M events with gap on A-side
 - 1.4 M events with gap on C-side
 - 0.15 M events with gaps on both sides
- Investigate particle production in events with exactly 2 tracks and gaps on both sides

Exclusive resonance production in p+p collisions at 7 TeV

M_{inv} distribution for 2-track events without gaps. Like-sign contribution subtracted. M_{inv} distribution for 2-track events with gaps on both sides. Like-sign contribution subtracted.

Exclusive resonance production in p+p collisions at 7 TeV

Ratio of M_{inv} distribution for 2-track events with gaps on both sides to events without gaps.

- \Rightarrow Some structure appears indicating IP+IP production of f₀ and f₂
- ⇒ Purity and backgrounds have to be investigated further Daniel Tapia Takaki

Ultra-peripheral heavy-ion collisions

Two ions (or protons) pass by each other with impact parameters b > 2R

Only Electromagnetic interactions are possible

Number of photons scales like Z^2 for a single source \Rightarrow exclusive particle production in heavy-ion collisions dominated by electromagnetic interactions.

First heavy-ion collisions at the LHC on 8 Nov 2010

About 12 M min. bias collisions collected by ALICE between Nov and Dec 2010

Tracks in the ALICE TPC in a central Pb+Pb collision

Daniel Tapia Takaki

Exclusive resonance production in UPC Pb+Pb collisions at 2.76 TeV

- <u>3 UPC triggers were active:</u>
- OM2: TOF only trigger >= 2 hits in TOF
- CCUP2: TOF + SPD + V0 trigger: >= 2 hits in TOF
 + >= 2 hits in SPD + veto on V0A and V0C
- CMUP1: Muon arm + V0 trigger: at least one muon candidate + veto on V0A
- OM2 applied during the early, low-luminosity part of the run, CMUP1 and CCUP2 applied during the later parts, CCUP2 scaled down by factor 5-30

The UPC triggers sensitive to a variety of final states: $\gamma\gamma \rightarrow e^+e^-, \gamma\gamma \rightarrow \mu^+\mu^-, \gamma\gamma \rightarrow f_2(1270) \rightarrow \pi^+\pi^-,$ $\gamma IP \rightarrow J/\Psi \rightarrow e^+e^-$ etc.

But the dominant channel will be exclusive photoproduction of $\rho^0 \rightarrow \pi^+\pi^-$. Total cross section: 3.9 b. S.R. Klein, J. Nystrand Phys. Rev. C 60 (1999) 014903

ALICE Acceptance: $\approx 9\%$.

- Coherent production characterised by low transverse momentum of the final state, determined by the nuclear form factor, $p_T < \approx 100$ MeV/c.

Analysis of the events with UPC triggers: Start with OM2 trigger (TOF only). Select events with 2 reconstructed tracks. Plot m_{inv} and total p_T for these events

Coherent peak at low p_T seen in unlike-sign combinations, absent in like-sign combinations.

Uncorrected M_{inv} distribution of events in the low p_T peak indicates ρ^0 production. The peak may be distorted by experimental effects

Analysis of the events with UPC triggers: Similar analysis for the CCUP2 trigger

Coherent peak at low p_{τ} seen in unlike-sign combinations, absent in like-sign combinations.

Uncorrected M_{inv} distribution of events in the low p_T peak indicates ρ^0 production. The peak may be distorted by experimental effects

Both trigger samples show coherent photoproduction of ρ^{0} .

Ultra-peripheral Pb+Pb Collisions – First Results

Outlook for the ρ^0 analysis

Data from 2010

Determine the ρ⁰ photoproduction cross section

Mid-rapidity \leftrightarrow y-nucleon CM energy W_{yp} = 45 GeV.

Earlier measurements with fixed target electron beams $W_{yp} = 3 - 4$ GeV and by STAR at RHIC $W_{yp} = 12.5$ GeV.

Use ZDC information to study production with and without nuclear break up

For 2011

Develop triggers to reduce background rates and avoid down scaling

Both SPD and TOF have the possibility to apply cuts on "topology" at Level-0. Coherent production of high-mass particles have two tracks back-to-back in TOF.

Physics motivation:

 $\gamma p \rightarrow Qp \rightarrow \mu^{\dagger} \mu^{\dagger} p$ in p+p is proportional to the generalised gluon density of the proton

•<u>Two processes</u>

- Coherent: $\gamma + A \rightarrow J/\psi + A$
- Incoherent: $\gamma + A \rightarrow J/\psi + X$, dominated by $\gamma + N \rightarrow J/\psi + N$

Predicted cross sections

- Models differ by the way shadowing is taken into account
- Should provide a measure of the nuclear gluon shadowing

Daniel Tapia Takaki

PHENIX paper: Physics Letters B, Volume 679, Issue 4, p. 321-329

Photoproduction of J/ψ and of high mass $e^+e^$ in ultra-peripheral Au+Au collisions at $\sqrt{s_{_{NN}}} = 200 \text{ GeV}$

Abstract

We present the first measurement of photoproduction of J/ψ and of two-photon production of high-mass e^+e^- -pairs in electromagnetic (or ultra-peripheral) nucleusnucleus interactions, using Au+Au data at $\sqrt{s_{NN}} = 200$ GeV. The events are tagged with forward neutrons emitted following Coulomb excitation of one or both Au^* nuclei. The event sample consists of 28 events with $m_{e^+e^-} > 2$ GeV/ c^2 with zero like-sign background. The measured cross sections at midrapidity of $d\sigma/dy (J/\psi +$ $Xn, y = 0) = 76 \pm 33$ (stat) ± 11 (syst) μ b and $d^2\sigma/dmdy (e^+e^- + Xn, y = 0) =$ 86 ± 23 (stat) ± 16 (syst) μ b/(GeV/c²) for $m_{e^+e^-} \in [2.0, 2.8]$ GeV/c² are consistent with various theoretical predictions.

~ 10 J/ψ candidates
 27% statistical error
 19% systematic error

Such a large <u>statistical error</u> made impossible to distinguish between coherent and incoherent components

Comparing with RHIC results

Total J/ψ cross sections in Pb+Pb at 2.76 TeV

Total J/ Ψ cross section: 10.2 mb.

Starlight: 23 mb. J. Nystrand, et al.

Two models

M. Zhalov, et al.

11

Inclusive reaction in Pb+Pb collisions at 2.76 TeV

Exclusive reaction in UPC Pb+Pb collisions at 2.76 TeV

Additional selection to define exclusive reaction, offline

No ITS and TPC tracks at mid-rapidity Veto on the two outer rings of V0C (-2.7 < η <-1.7) No more than one FMD hits in 1.7< η < 5.0 and -2.4 < η <-1.7 Allow hits in -3.4 < η < -2.4. Daniel Tapia Takaki No like-sign background

Exclusive events!

Already more J/ψ candidates than at RHIC

Results shown for the first time!

A typical P_{τ} shape below 200 MeV/c

No like-sign background

Exclusive events!

Daniel Tapia Takaki

PWG3-MUON-057

It will be possible to study both coherent and incoherent components

 \rightarrow Next step: measure the absolute cross section

Summary and outlook

- Study of central diffraction, by measuring resonance production in p+p collisions at 7 TeV, is ongoing
- Photoproduction of ρ^0 observed. Cross section to be determined
- Search ongoing for J/ Ψ and heavier states. Candidates have been found. Study at both central and forward rapidity. Very promising results. Cross section to be determined
- Improved UPC triggers and higher luminosities in future heavy-ion runs will enable rarer final states to be measured

BACKUP

4 stations of scintillator detectors

