

Charm suppression and azimuthal anisotropy in Vs_{NN} = 2.76 TeV Pb-Pb collisions measured with the ALICE detector

Davide Caffarri Università degli Studi di Padova – INFN Sez. di Padova

Heavy Ion Meeting – 28th March 2013 IPN Orsay

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HIC

Charm suppression and azimuthal anisotropy in Vs_{NN} = 2.76 TeV Pb-Pb collisions measured with the ALICE detector via D meson reconstruction

Davide Caffarri Università degli Studi di Padova – INFN Sez. di Padova

Heavy Ion Meeting – 28th March 2013 IPN Orsay

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HIC

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy

 \diamond pp results

 \diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

 \diamond Charm azimuthal anisotropy

♦ Comparisons with theoretical models

 \diamond Summary and outlook

Outline

\diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy
 ♦ pp results

 \diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

♦ Charm azimuthal anisotropy

♦ Comparisons with theoretical models

 \diamond Summary and outlook.

Parton energy loss

"Hard probes" are produced:

- in hard partonic scatterings
- in a very short time scale

they can interact with the medium formed in heavy ion collisions and lose energy via:

- medium-induced gluon radiation
- elastic collisions with medium gluons

Parton energy loss effect

$$dN_{AA} / dp_t \ll \langle N_{coll} \rangle dN_{pp} / dp_t$$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

In-medium interaction

The total energy loss:

- dominating contribution radiative energy loss
- small fraction due to elastic collisions

M. Djordjevic, M. Gyulassy, Nucl. Phys. A 733 265 (2004)

Baier, Dokshitzer, Mueller, Peigné, Schiff, NPB 483 (1997) 291. Zakharov, JTEPL 63 (1996) 952. Salgado, Wiedemann, PRD 68(2003) 014008.

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Heavy quark energy loss

Energy loss colour charge dependence $\langle \Delta E \rangle \propto C_R = 3$ $gg C_R = 3$ $gg C_R = 4/3$

Gluon radiation of heavy quarks is suppressed due to the introduction of a mass term in the heavy quark propagator. **Dead cone effect**

Energy distribution of the radiated gluons

Y.L. Dokshitzer, V.A. Khoze and S.I. Troian, J. Phys. G 17, 1602 (1991); Y.L. Dokshitzer and D.E. Kharzeev, Phys. Lett. B 519, 199 (2001).

Energy loss quark mass dependence

$\Delta E(light) > \Delta E(c) > \Delta E(b) \rightarrow R_{AA}(\pi) < R_{AA}(D) < R_{AA}(B)$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Heavy quarks energy loss: some predictions

Energy loss based predictions ^(*): - factor 3-5 suppression for D mesons - smaller suppression for B mesons

Wicks, Gyulassy, "Last Call for LHC Predictions" workshop, 2007 Pb-Pb collisions at Vs = 5.5 TeV

Armesto, et al. PRD71 (2005) 014003

^(*) not up to date predictions. New predictions at the end...

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Azimuthal anisotropy: flow and energy loss

 \diamond Initial spatial anisotropy \rightarrow momentum anisotropy of particles

 \Rightarrow The anisotropy is quantified via a Fourier expansion in azimuthal angle (φ) with respect to the reaction plane (Ψ_{1,2})

$$\frac{dN}{d\varphi} = \frac{N_0}{2\pi} (1 + 2v_1 \cos(\varphi - \Psi_1) + 2v_2(p_T) \cos[2(\varphi - \Psi_2)] + \dots)$$

♦ Low $p_T v_2 \rightarrow$ pressure gradients in medium expansion

 \rightarrow measure of strength of collectivity (mean free path of outgoing partons)

- - ightarrow asymmetry in momentum space

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Heavy flavour v₂

- \Rightarrow Due to their large mass, c and b quarks should be less sensitive to the collective expansion
 - \rightarrow need frequent interaction with large coupling to build their v₂

 \rightarrow v₂^b < v₂^c

 \diamond Uniqueness of heavy quarks: cannot be "destroyed/created" in the medium \rightarrow transported through the full system evolution

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

0.2

0.18

D. Caffarri 8

J. Aichelin et al. in arXiv:1201:4192

PbPb sqrts = 2.76 TeV min bias

B-mesons

D-mesons

Heavy Flavour RHIC results

PHENIX and STAR experiments measured the inclusive spectrum of electrons coming from heavy flavor hadrons decay in Au-Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$. $\rightarrow R_{AA}$, v_2

STAR also measured the exclusive reconstruction of D⁰ in the hadronic channel $\rightarrow R_{AA}$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy
 ♦ pp results

 \diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

 \diamond Charm azimuthal anisotropy

♦ Comparisons with theoretical models

 \diamond Summary and outlook.

ALICE apparatus and datasets

 \diamond muon spectrometer, -4< η <-2.5 \diamond Crucial for HF:

Two main parts:

- \diamond vertexing, tracking
- \diamond hadron and lepton ID
- \diamond Triggers:

 \diamond

- \Leftrightarrow minimum-bias (MB)
 - \diamond or centrality, in Pb-Pb
- \Rightarrow single/di muon p_t
- \diamond EMCAL, high-mult., UPC
- Datasets used for the results shown:

system, √s _{NN} (TeV)	рр 7	pp 2.76	Pb-Pb 2.76	Pb-Pb 2.76
year	2010	2011	2010	2011
L _{int} MB/cent	5/nb	1.5/nb	2.5/μb	6.5/μb

Heavy Ion Meeting - D mesons in HI

ALICE triggers and Pb-Pb centrality

- Minimum-bias (MB): combinations of the following detectors Pixel Fast-Or (1 or 2 hits) VZERO scintillators (one or both sides)
 - \rightarrow pp: 87% of $\sigma_{\text{inelastic}}$
 - \rightarrow Pb-Pb: fully efficient in 0-88% of $\sigma_{hadronic}$
- Single muon: MB + a muon with $p_T > 0.5$ GeV/c and -4<n<-2.5

Pb-Pb centrality classes (percentiles of $\sigma_{hadronic}$) from the VZERO signal amplitude, which is well-described by the Glauber-model

VZERO amplitude used also online for centrality-based triggering

Heavy Ion Meeting - D meson

D meson reconstruction

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Secondary vertex reconstruction

Displaced vertex topology:

- tracking and vertexing precision crucial for heavy flavour analysis
- Inner Tracking System with 6 Si layers: two pixel layers at 3.9 cm and 7 cm

Primary vertex resolution important point for the selection of the secondary vertices

Track impact parameter resolution ~ 60μ m for p_t = 1 GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy
 ♦ pp results

 \diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

 \diamond Charm azimuthal anisotropy

♦ Comparisons with theoretical models

 \diamond Summary and outlook.

D mesons cross section in pp collisions at 7 TeV

[ALICE Collaboration], JHEP 1201, 128 (2012) [arXiv:1111.1553 [hep-ex]].

D mesons cross section measured in the range 1 < p_t < 24 GeV/c pQCD predictions (FONLL and GM-VFNS) compatible with our data

FONLL: Cacciari et al., arXiv:1205.6344 GM-VFNS: Kniehl et al., arXiv:1202.0439

IPN Orsay, 28/03/2013 Heav

Heavy Ion Meeting - D mesons in HI

D mesons cross section in pp collisions at 7 TeV

[ALICE Collaboration], JHEP 1201, 128 (2012) [arXiv:1111.1553 [hep-ex]].

D mesons cross section measured in the range $1 < p_t < 24$ GeV/c pQCD predictions (FONLL and GM-VFNS) compatible with our data

 D_{s}^{+} mesons cross section measured in the range 2 < p_{t} < 12 GeV/c

FONLL: Cacciari et al., arXiv:1205.6344 GM-VFNS: Kniehl et al., arXiv:1202.0439

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D. Caffarri 14

AL TCE

D mesons cross section in pp collisions at 2.76 TeV JHEP07(2012)191

 $\frac{d\sigma}{dt} \frac{d\rho}{dt} \frac{1}{|y| \leq 0.5} (\mu b/GeV/c)$ ALICE Limited statistics 10² (1.35/nb with MB trigger) D⁰ meson D⁺ meson D^{*+} meson collected in 3 days in 2011 __ Data at 2.76 TeV Svst. und ± 3.5% lumi (7 TeV scaling), ± 1.9% lumi (2.76 TeV data) Scaling from 7 TeV ± 1.3% BR norm. unc. (not shown 1.5% BB norm unc (not shown + 2.1% BR norm, unc. (not show Data / Scaled Data /scaled FONLL: Cacciari et al., arXiv:1205.6344 10 12 12 2 10 12 p (GeV/c) p (GeV/c) p, (GeV/c) GM-VFNS: Kniehl et al., arXiv:1202.0439 ALI-PUB-15081

Fair description by pQCD within uncertainties (FONLL, GM-VFNS) as for 7 TeV data (not shown here)

ALICE pp measurement at $\sqrt{s} = 7$ TeV scaled to $\sqrt{s} = 2.76$ TeV using FONLL predictions and compared with data.

R.Averbeck et al., arXiv:1107.3243

FONLL: Cacciari et al., arXiv:1205.6344 GM-VFNS: Kniehl et al., arXiv:1202.0439

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

LHC as heavy flavour factory

[ALICE Collaboration], JHEP 1201, 128 (2012) [arXiv:1111.1553 [hep-ex]].

ALICE D mesons measurements in pp collisions at 2.76 and 7 TeV used to compute the total charm production cross section

Good agreement with NLO calculation Increase of a factor ~7 with respect to RHIC

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

JHEP07(2012)191

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy
 ♦ pp results

\diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

 \diamond Charm azimuthal anisotropy

♦ Comparisons with theoretical models

 \diamond Summary and outlook.

D mesons reconstruction in Pb-Pb collisions

IPN Orsay, 28/03/2013

2010 : ~3M central collisions (0-20%):

- D⁰ : 7 *p*_t bins in 2-16 GeV/*c*
- $D^+: 3 p_t$ bins in 6-16 GeV/c
- D* : 4 p_t bins in 4-16 GeV/c

2011: ~17M central collisions (0-7.5%)

- D⁰ : 9 *p*_t bins in 1-24 GeV/*c*
- D⁺ : 8 *p*_t bins in 3-36 GeV/*c*
- D* : 8 *p*_t bins in 3-36 GeV/*c*

Reconstruction efficiency ~1-10% — evaluated from MC simulation

Feed-down from B decays ~10-15% after cuts – subtracted based on FONLL with hypothesis on R_{AA}^{B}

Heavy Ion Meeting - D mesons in HI

D meson dN/dp_t (2010 data)

pp scaled reference x <T_{AA}> Pb-Pb yield

ALICE Collaboration JHEP 1209 (2012) 112

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Indication of suppression

D meson suppression (2010 data)

pp scaled reference x $< T_{AA} >$

D⁰, D⁺, D^{*+} R_{AA} measured in the range **2-16 GeV/c with 2010 data**. For 0-20% CC suppression is a factor 3-4 for $p_t > 5$ GeV/c. For 40-80% CC suppression is about a factor 1.5 for $p_t > 5$ GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson suppression (2011 data)

$$R_{AA}(p_t) = \frac{1}{\langle N_{coll} \rangle} \frac{dN_{AA} / dp_t}{dN_{pp} / dp_t}$$

D⁰, D⁺, D^{*+} R_{AA} measured in the range **1-36 GeV/c with 2011 data**: Compatible within uncertainties between the three mesons and with 2010 results.

Suppression up to a factor 5 for D^0 , D^+ , D^{*+} at $p_T \sim 10$ GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D⁺_s meson dN/dp_t

$D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+}K^{-}\pi^{+} BR = (2.28 \pm 0.12)\%$ ct (D_{s}^{+}) = 150µm

Secondary vertex reconstruction + kaon identification with TPC and TOF.

ML1-PERF-35901

Analysis in three p_T intervals: 4-6, 6-8, 8-12 GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D⁺_s meson dN/dp_t

$D_{s}^{+} \rightarrow \phi \pi^{+} \rightarrow K^{+}K^{-}\pi^{+} BR = (2.28 \pm 0.12)\%$ ct (D_{s}^{+}) = 150µm

Analysis in three p_T intervals: 4-6, 6-8, 8-12 GeV/c

Indication of suppression at high p_T

Secondary vertex reconstruction + kaon identification with TPC and TOF.

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D⁺, R_{AA}

 D^0 , D^+ , $D^{*+} R_{AA}$ measured in the range 1-36 GeV/c $D_{s}^{+} R_{AA}$ measured in the range 4-12 GeV/c with 2011 data in central (0-7.5%) collisions

First Measurement of D⁺ R_{AA} in Heavy ion collisions

Strong suppression observed **~**3-5 for p_⊤ 8-12 GeV/c

 \Rightarrow R_{AA} seems to increase at low p_T but current data don't allow for a conclusive comparison.

ALI-DER-40544

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Mass effect (I) ?

ALICE

 $R_{AA}(\pi) > R_{AA}(D)$?

- D R_{AA} shows a similar
 trend as charged particles
 and π[±] in 0-10% at high-p_T.
- ♦ Indication of difference at low-p_T?? The current systematic and statistical uncertainties don't allow to conclude

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson R_{AA} vs. collision centrality

D mesons exclusive reconstruction $6 < p_T < 12 \text{ GeV/c}$ |y| < 0.5

5 centrality classes: 0-10%, 10-20%, 20-40%, 40-60%, 60-80%.

D mesons suppression
 shows a clear trend vs
 centrality.

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Mass effect (II) ?

 $R_{AA}(B) > R_{AA}(D)$?

CMS (CMS-HIN-12-014) $B \rightarrow J/\psi + X$ $6.5 < p_{T} (J/\psi) < 30 \text{ GeV/c}$ |y|<1.2

Compared with D mesons exclusive reconstruction $6 < p_{T} < 12 \text{ GeV/c}$ |y|< 0.5

ALICE Collaboration JHEP 1209 (2012) 112

Indication of mass effect? Different kinematics range for D and B mesons... Not clear how to conclude.

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Interesting observations...

Similar trend of D mesons and J/ ψ at low and high p_T. $\Rightarrow 2 < p_T < 5$ GeV/c D (|y|<0.5) vs inclusive J/ ψ (ALICE, 2.5<y<4) $\Rightarrow p_T > 6$ GeV/c D (|y| < 0.5) vs prompt J/ ψ (CMS, |y|<2.4)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Is it a medium effect?

- ALICE Collaboration JHEP 1209 (2012) 112 H_{AA} prompt [1.6 1.6 \diamond High parton density in high-energy ALICE 0-20% centrality nuclei leads to reduction/saturation/ Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ shadowing of the *PDFs* at small x (and Average D^{0} , D^{+} , D^{*+} , |y| < 0.5small Q^2) NLO(MNR) with EPS09 shad. 1.2 0.8 0.6 ♦ Small effect expected 0.4 from PDFs shadowing above 5 GeV/c 0.2 10 p, (GeV/c) ALI-PUB-14254
- \diamond Suggests that this is a hot medium effect
- $\diamond\,$ p-Pb run at LHC crucial to measure initial-state effects

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson in p-Pb to quantify the relevance of initial-state effects,

A preview...

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy

- \diamond pp results
- \diamond Pb-Pb measurements:
 - \diamond Heavy flavour suppression at high momentum (R_{AA})
 - \diamond Charm azimuthal anisotropy

♦ Comparison with theoretical models

 \diamond Summary and outlook.
Event Plane

♦ Event Plane determination with TPC tracks with 0 < η < 0.8 from the Q_n vector (n=2)

- $\diamond~\phi\text{-weights}$ applied to improve the TPC EP flatness
- ♦ Event Plane resolution computed with 2 random sub-events $(R_2)^*$ Also three sub-events method considered: used to estimate systematic uncertainties

 $R_{2} = 0.86 + 0.03 - 0.06$ for 30-50% obtained as the average of the resolution in finer centrality bins

* A. M. Poskanzer, S. A. Voloshin Phys. Rev. C 58 3 (1998)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

IPN Orsay, 28/03/2013

v₂ from yields In Plane and Out Of Plane

- ♦ Definition of the two regions:
 In Plane: |Δφ| < π/4
 Out Of Plane : π/4 < Δφ < 3π/4
- ♦ Fit the In Plane and Out Of Plane invariant mass distributions to extract the raw yields in the two regions
- v₂ computed from the azimuthal asymmetries after correction for EP resolution

$$v_{2} = \frac{1}{R_{2}} \frac{\pi}{4} \frac{N_{IN} - N_{OUT}}{N_{IN} + N_{OUT}}$$

Heavy Ion Meeting - D mesons in HI

D⁰ signal for EP method in 30-50%

Signal yield from invariant mass distribution for each p_T bin
 The gaussian σ of the signal fit is fixed to the value obtained from the mass distributions integrated over Δφ
 D⁰ 30

D⁰ 30-50% 2 < p_T < 16 GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

♦ Indication of non-zero D meson v_2 (3 σ effect in 2 < p_T < 6 GeV/c)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson v₂

Pb-Pb

√s_{NN}=2.76 TeV

Centrality 30-50%

2

0.4

0.3

0.2

0.1

 ♦ D meson v₂ comparable to charged hadron v₂ measured in ALICE in the same centrality class

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Outline

 \diamond Heavy quarks as probes of QCD matter at the LHC

♦ D mesons reconstruction in ALICE
 ♦ reconstruction strategy

 \diamond pp results

 \diamond Pb-Pb measurements:

 \diamond Heavy flavour suppression at high momentum (R_{AA})

 \diamond Charm azimuthal anisotropy

 \diamond Comparison with theoretical models

 \diamond Summary and outlook.

Simultaneous measurement/description of v_2 and R_{AA}

 \rightarrow understanding of heavy quark transport coefficients of the medium

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

BAMPS⁴ and Aichelin et al.⁵ can describe v_2 but they seem to underestimate R_{AA} .

BAMPS⁴: collisional energy loss in expanding medium Aichelin et al.⁵: collisional + LPM radiative energy loss

⁴ Uphoff et al. arXiv: 1112.1559, ⁵ Aichelin et al. Phys. Rev. C 79 (2009) 044906

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

WHDG⁶ and Beraudo et al.⁷ can describe R_{AA} but they seem to underestimate v_2

WHDG⁶: collisional + radiative energy loss in anisotropic medium
Beraudo et al.⁷: collisional energy loss (Langevin equation)
⁶ W. A. Horowitz et al. J. Phys. G38, 124064 (2011), ⁷ W. M. Alberico et al. Eur. Phyis J. C 71, 1666 (2011)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Rapp et al.⁸ seems to underestimate v_2 and it slightly overestimates R_{AA}

Rapp et al.⁸: collisional energy loss via D mesons resonances excitation + hydro evolution

⁸ M. He, R. J. Fries and R. Rapp, arXiv:1204.4442[nucl-th]

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Conclusions

 \diamond D mesons shows a suppressions in central heavy ion collisions:

 \diamond factor 5 to p_t ~ 10 GeV/c,

 \diamond indication of larger suppression for D mesons that for non-prompt J/ ψ

Non-zero v₂ for D mesons (3σ effect for D⁰ in 2-6 GeV/c) in 30-50%:
 D mesons "remember" the azimuthal asymmetry of the initial overlap
 v₂ comparable with that of the light-flavour hadrons
 Cannot conclude on possible difference due to larger c quark mass

♦ Consistent description of charm R_{AA} and v_2 very challenging for models: can bring insight on medium transport properties, also with more precise data from future LHC runs

Heavy Ion Meeting - D mesons in HI

... and outlook

ALICE

- ♦ Upgrade program endorsed by the LHCC
- ♦ Targeted for 2017-2018 LHC shutdown
- ♦ Conceptual Design Report CERN-LHCC-2012-013
 Letter of Intent CERN-LHCC-2012-012

Main points:

♦ New inner tracker
 → x3 precision
 ♦ Major read-out
 upgrade
 → x100 MB rate

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

... and outlook

- Investigate HF in-medium thermalization and hadronization
- ♦ Baryon/meson enhancement and v₂ splitting → most direct indication of light-quark hadronization in a partonic system
 - ♦ Measure this in the HF sector! Does it hold for charm?
 - ♦ Charm baryons: Λ_c
- Investigate transport
 coefficients for heavy quarks
 in the medium
- Sensitive to medium viscosity
- Pin down mass dependence

Heavy Ion Meeting - D mesons in HI

BACK UP

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Primary vertex resolution

Half Events Method: 2 sample of random tracks for each event \rightarrow two reconstructed vertices per event.

resolution is smaller than 10 μ m.

Peripheral and pp collisions need improved resolution on primary vertex: knowledge of the beam parameters

Study of the difference between these two vertices as a function of half multiplicity of the event.

Heavy Ion Meeting - D mesons in HI

Luminous region determination

Luminous region: convolution of the two particles distributions in the two colliding bunches.

It depends on the optical parameters of the beam (emittance and amplitude function)

For pp collisions primary vertex resolution improved from luminous region determination.

Heavy Ion Meeting - D mesons in HI

IPN Orsay, 28/03/2013

D. Caffarri b3

Fill 1373: Luminous size deconv. Y

Efficiencies are computed using HIJING PbPb Monte Carlo simulation with embedded PYTHIA cc events

ALICE Collaboration JHEP 1209 (2012) 112

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Feed down correction

Beauty feed down:

Monte Carlo method based on FONLL predictions. Subtraction to the D⁰ raw yield the expected secondary raw yields.

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Feed down correction and beauty energy loss hypothesis

ALICE

Beauty feed down:

Monte Carlo method based on FONLL predictions. Subtraction to the D⁰ raw yield the expected secondary raw yields.

Beauty energy loss:

Hypothesis on the energy loss of beauty quarks is adopted.

Systematic uncertainties: 0-20 % CC

Particle		D^0					
0–20% centrality	$p_{\rm t}$ interval (GeV/c)	2–3	12–16				
	Yield extraction	8%	10%				
	Tracking efficiency	10%	10%				
	Cut efficiency	13%	10%				
	PID efficiency	+15%	5%				
	MC p_t shape	4%	3%				
	FONLL feed-down corr.	$^{+2}_{-14}\%$	$^{+6}_{-8}\%$				
	$R_{AA}^{\text{feed}-\text{down}}/R_{AA}^{\text{prompt}}$ (Eq. (3))	$^{+4}_{-10}\%$	$^{+14}_{-27}\%$				
	BR 1.3%			Particle	D^0		
			0–20% centrality	$p_{\rm t}$ interval (GeV/c)	2–3	12–16	
				Data syst. pp and Pb–Pb	$^{+33}_{-41}\%$	$^{+28}_{-28}\%$	
				Data syst. in Pb-Pb	$^{+26}_{-22}\%$	$^{+22}_{-22}\%$	
				Data syst. in pp	17%	17%	
				\sqrt{s} -scaling of the pp ref.	$^{+10}_{-31}\%$	$^{+5}_{-6}\%$	
				Feed-down subtraction	$^{+15}_{-14}\%$	$^{+16}_{-29}\%$	
				FONLL feed-down corr.	$^{+12}_{-2}\%$	$^+_{-2}\%$	
ALICE Collaboration IHEP 1209 (2012) 112				$R_{AA}^{\text{feed}-\text{down}}/R_{AA}^{\text{prompt}}$ (Eq. (3))	$^{+4}_{-10}\%$	$^{+14}_{-27}\%$	

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

For 0-20% CC suppression is a factor 3-4 for $p_t > 5$ GeV/c. For 40-80% CC suppression is about a factor 1.5 for $p_t > 5$ GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Signal extraction with 2011 Pb-Pb data

In ~17M central collisions (0-7.5%):

 $D^0: 9 p_t$ bins in 1-24 GeV/c

- D^+ : 8 p_t bins in 3-36 GeV/c
- $D^*: 8 p_t$ bins in 3-36 GeV/c

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson dN/dp_t (2011 data)

pp scaled reference x <T_{AA}> Pb-Pb yield

Indication of suppression

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Charm and pions

The suppression of D mesons is comparable to that of pions

- Heavy-to-light ratio " $R_{D/p}$ ": a hint of $R_{AA}^{D} > R_{AA}^{p p_t} (GeV/c)$
- In the model calculations:
 - High- p_t : $R_{D/p} > 1$ due colour charge effects (c-quark vs gluon)
 - Low-p_t: additional increase to mass effects (c-quark mass)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Other HF measurement in ALICE: electrons

♦ HF electrons extracted with the cocktail method: background electrons subtracted for the inclusive spectra.

- \diamond Electron Identification with TPC + EMCAL
- \Rightarrow Background electrons: π⁰ + Dalitz + γ conversion (+ J/ψ cocktail)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Other HF measurement in ALICE: electrons

- ♦ HF electrons extracted with the cocktail method: background electrons subtracted for the inclusive spectra.
- \diamond Electron Identification with TPC + EMCAL
- \Rightarrow Background electrons: π⁰ + Dalitz + γ conversion (+ J/ψ cocktail)
- ♦ Clear suppression for 3 < p_T < 18 GeV/c
- Amounts to a factor of 1.5-3 for 3<pT<10 GeV/c</p>

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Other HF measurement in ALICE: electrons

- ALICE
- ♦ Data Sample 2010+2011 Pb-Pb runs TPC+TOF (MB + centr. tirgger), TPC+EMCAL analyses (EMCAL + centr. trigger)
- ♦ HF electrons extracted with the cocktail method: background electrons subtracted for the inclusive spectra.
- ♦ Electron Identification with TPC + EMCAL, TPC+TOF
- ↔ Background electrons: π⁰ + Dalitz + γ conversion (+ J/ψ cocktail) via cocktail with their measured v₂
- $\Rightarrow HF electron v₂ > 0 at low p_T$ (>3σ effect in 2-3 GeV/c)

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Other HF measurement in ALICE: muons

- \diamond Muons are reconstructed in the forward spectrometer -4 < y < -2.5
- ♦ Hadrons and low-p_T secondary muons are removed requiring a muon trigger signal.
- \diamond Subraction of π/K decays with PYTHIA and PHOJET in pp, with central rapidity measurement for Pb-Pb

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Indication of $R_{AA}(B) > R_{AA}(D) > R_{AA}(\pi)$? Different kinematics range for D and B

mesons... not clear how to conclude

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D. Caffarri b16

Non prompt J/ ψ from CMS

D mesons exclusive reconstruction

Compared with

 $6 < p_T < 12 \text{ GeV/c}$

|y|< 0.5

D meson v₂: 2 particle Q-Cumulants and Scalar Product methods

♦ Alternative methods based on 2-particle correlations²:
 Q-Cumulants and Scalar Product

- sensitive to the same non flow contribution as EP
- no η gap used in the analysis

♦ TPC tracks used as Reference Flow Particles

 $\diamond v_2$ obtained from a simultaneous fit of the counts and v_2 vs invariant mass

² Bilandzic, Snellings, Voloshin, Phys. Rev. C 83 (ALI-PERF-14529

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D meson v₂ comparison: EP, SC and QC methods

D⁰ 30-50% D^{*+} 30-50% EP, SP methods EP, QC methods ×.0 k 0.2 (prompt D) 2.0 k v₂ (prompt D) 18/05/2012 Pb-Pb √s_{NN}=2.76 TeV 29/07/2012 Pb-Pb √s_{NN}=2.76 TeV Centrality 30-50% ALICE ALICE Centrality 30-50% 0.4 0.2 0.1 0 -0.1 -0.2 D^0 , EP 2 $\Delta \phi$ bins - Preliminary D^{*+} , EP 2 $\Delta \phi$ bins - Preliminary -0.2 Empty box: syst. from data D⁰. SP Empty box: syst. from data D^{*+}. QC Filled box: svst. from B feed-down Filled box: syst. from B feed-down -0.4 6 8 4 12 16 18 10 14 6 10 12 14 16 18 20 p_t (GeV/c) p₋ (GeV/c) ALI-PERF-14723 ALI-PERF-34552

 \diamond Good agreement between the methods for the different D mesons

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D⁰ **R**_{AA} **vs EP in 30-50%**

- \diamond Raw yield in and out of plane in 30-50%
- \diamond Efficiencies computed from simulations
- \diamond Feed-down subtraction with FONLL calculations
- ♦ Reference: ALICE pp 7 TeV scaled down to 2.76 TeV

♦ More suppression Out Of Plane with respect to In Plane: longer path length at high p_T elliptic flow at low p_T

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D mesons v₂ Beauty feed down (I)

♦ ALICE sample contains both prompt and feed down D meson. To obtain the v_2^{prompt} of prompt D meson e need to take into account their contribution

 \diamond Since v₂ is additive, it is possible to write:

$$v_{2}^{prompt} = \frac{1}{f_{prompt}} v_{2}^{inclusive} - \frac{1 - f_{prompt}}{f_{prompt}} v_{2}^{feed-down} v_{2}^{0.05}$$

0.3

0.25

0.2

0.15

0.1

2

♦ To subtract the B feed-down contribution, we need an hypothesis on $v_2^{\text{feed-down.}}$ All models predics $v_2^{\text{feed-down}} \leq v_2^{\text{prompt}}$.

Heavy Ion Meeting - D mesons in HI

ALICE

electrons, |y non-prompt J/psi, |y

n_f=3+2, running coupling,

IPN Orsay, 28/03/2013

D mesons v₂ Beauty feed down (II)

The case v₂^{feed-down} = 0 gives the extreme case and the limit for the (asymmetric) systematic uncertainties:

$$v_2^{\text{feed-down}} = 0 \rightarrow v_2^{\text{prompt}} = v_2^{\text{inclusive}} / f_{\text{prompt}}$$

- ♦ 0.7 < f_{prompt} < 0.95 computed with MC efficiencies and FONLL predictions
- $rightarrow f_{prompt}$ depends also on the relative R_{AA} suppression of feed down and prompt (as in the R_{AA} analysis)
- ♦ An asymmetric systematic uncertainties is computed considering the hypothesis: $0.5 < R_{AA}^{feed-down} / R_{AA}^{prompt} < 2$ $0 < v_2^{feed-down} < v_2^{prompt}$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

♦ Efficiencies computed using HIJING MC with embedded Pythia cc events. 30-50%

- ♦ No centrality dependence observed
- ◇ In Plane Out Of Plane difference in multiplicity was reproduced with different centrality bins. No trend is observed.

D. Caffarri b22

Efficiencies

D⁰ *v*₂: comparison with different EP

Consistent results for the three Event Plane.
 Not sensitive to different nonflow contributions with this uncertainties

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

Example of physics performance

IPN Orsay, 28/03/2013

RHIC results and LHC predictions

electrons, |y| < 0.8

n_f=3+2, running coupling,

κ=0.2, K=3.5

 $b = 9.7 \, \text{fm}$

8

10

12

non-prompt J/psi, |y| < 2.4 D mesons, |y| < 0.5

6

p_T [GeV]

Uphoff et al. arXiv: 1112.1559

- ♦ Not all models reproduce R_{AA} and v_2 simultaneously
- \diamond we expect $v_2^B < v_2^D$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

0.3

0.25

0.2

0.15

0.1

0.05

-0.05

0

0

Pb+Pb

2

BAMPS

√s = 2.76 TeV

Δ

22

D⁰ **R**_{AA} **vs EP comparison with models**

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI D.

D⁰ **R**_{AA} **vs EP comparison with models**

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

D⁰ **R**_{AA} **vs EP comparison with models**

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI

 $D^0 R_{AA} vs p_T (2011 data)$

IPN Orsay, 28/03/2013

Heavy Ion Meeting - D mesons in HI