Heavy ion meeting 26/11/2010

First results on J/ψ production at forward rapidity at ALICE

B. Boyer

- Physics motivation
- The ALICE experiment
- Data sample and cuts
- J/ ψ analysis
 - Extraction yield
 - Acc x eff correction
 - Normalization
- Results pp @ 7 TeV
- Conclusion

Cross section

CEM: fit over data, not very predictive **CSM**: NLO better than LO (but LO ok for low p_T) **COM (NRQCD)**: reproduces well the data

Physics motivation

ALICE

Few words about polarization

The models make different prediction about the polarization

CEM: None

 $\begin{array}{l} \textbf{COM:} Transverse \ polarization \ at \\ high \ p_T \end{array}$

CSM: Longitudinal at high p_T

The polarization is a good way to discriminate among models

(**) A. Abulencia et al., The CDF Collaboration, Phys. Rev. Lett. 99, 132001 (2007)

(***) Phenix Collaboration, Phys. Rev. D 82, 012001 (2010)

- Using the central barrel: $J/\psi \rightarrow e^-e^+$ (BR = 5.94 %)
- With the muon spectrometer: $J/\psi \rightarrow \mu^{-}\mu^{+}$ (BR = 5.93 %)

The ALICE detector

ALICE

ALICE is the dedicated LHC experiment to heavy-ion studies

p + p collisions

Ref for heavy ion studies pp physics

Pb + Pb collisions

QGP studies

Central barrel $(|\eta| < 0.9)$

Quarkonia in dielectrons, jet, strangeness...

Two important detectors for all physics analysis:

- V0 (V0A,V0C) and the SPD → Min.Bias trigger signal (SPD OR V0A OR V0C).
- SPD → Vertex localisation

The ALICE muon spectrometer

• Heavy flavour $(J/\psi, \psi', Y, Y', Y'')$ and low mass resonance study in dimuon channel.

- Expected resolution of 70 MeV/c² for the J/ψ and 100 MeV/c² for the Y family.
- Acceptance: 4 < η < -2.5

Analysis results are based on the following periods

F	Period	Time	Integrated luminosity	Comments	
LHC	10c1	May 2010	2.0 nb ⁻¹	 Low beam intensity 	
LHC	10d1	June 2010	6.9 nb ⁻¹	 High beam intensity 	
LHC	10d2b	July 2010	4.7 nb ⁻¹	 Low beam intensity 	
Total integrated luminosity: 13. 6 nb ⁻¹				Muon track	
Default cuts used for analysis:					
	1 reconstr 1 muon m	 Rabs			

1 muon match the trigger

Cut on R_{absorber}

Absorber

pp @ 7 TeV

• Example of J/ψ invariant mass plot (cuts tuned to enhance the ψ ' (2S) signal)

•The fit is a sum of a Crystal Ball function for the J/ψ and ψ ' plus a double exponential for the background.

 Integrated luminosity: 6.9 nb⁻¹

Another fitting function « NA60 » (3 gaussians with different sigmas) works well

Crystal Ball + « NA60 » give the J/ ψ yield extraction systematical error

10

Acc x eff correction

pp @ 7 TeV

- Correction based on realistic MC simulation for each period
- \bullet Simulation performed with realistic inputs: CDF or p_{T} , CEM for y
- Polarization taken into account

 $J/\psi p_T$ and y distributions, corrected for acceptance and efficiency, compared to Monte Carlo simulations (CDF extrapolation).

 \bullet p_T distribution: real data are softer than the MC but the difference is negligible so we can apply the correction.

Normalization

- To get an estimation of the luminosity we use the signal from the V0 (V0A and V0C in coincidence → V0and).
- Using a Van der Meer scan we get the Luminosity $\rightarrow \sigma_{V0and} = 62.3 \text{ mb}$ with 10% systematic
- With low intensity runs (to avoid large pile-up) we can extract the ratio V0and/CINT1B.
- CINT1B is our main MB trigger in pp. CINT1B = V0A or V0C or SMB (a pixel trigger)
 → σ_{CINT1B} = σ_{V0and} / (V0and/CINT1B) = 71.4 mb

We use σ_{CINT1B} to normalize the cross section with the following formula (most of data come from single μ trigger):

$$\sigma_{J/\psi} = \frac{N_{J/\psi|single\ \mu}}{Acc\ \times\ \varepsilon} \times \frac{1}{N_{\mu|single\ \mu}} \times \frac{N_{\mu|CINT1B}}{N_{CINT1B\ (pile\ up\ corr)}} \times \sigma_{CINT1B}$$

Systematic uncertainties on cross section

Source	Value	
Signal extraction	7.5 %	
p_T and y shapes used in MC	p _T : +2 % -1.3% Y: + 1.4%, - 1.3%	
Trigger efficiency	4 %	
Tracking efficiency	2 %	
Normalization	10 %	
Syst uncertainties combined	13.5 %	
Polarization	+ 12.0 % - 20.7 %	

J/ψ differential cross section

pp @ 7 TeV

The polarization is an important source of uncertainty

ALICE vs LHCb

pp @ 7 TeV

ALICE

 $\sigma_{J/\psi}(2.5 < y < 4) = 7.25 \pm 0.29 \text{ (stat)} \pm 0.98 \text{ (syst)}^{+1.09}_{-2.25} \text{ (syst pol)} \mu b$

LHCb (P. Robbe et al. (LHCb collaboration), LHCb-CONF-2010-010)

 $\sigma_{J/\psi}(2.5 < y < 4) = 7.65 \pm 0.19 \text{ (stat)} \pm 1.10 \text{ (syst)}^{+0.87}$ (syst pol) µb

Within the errors, the two measurements are in good agreement.

Data vs. CEM

• y dependance: model is flatter than data

• p_T dependance: CEM (prompt J/ ψ) does not reproduce the data at low p_T but the shape is similar for data with $p_T > 2$ GeV/c 17

J/ψ differential cross section

pp @ 7 TeV

Data vs. CSM

CSM LO direct (gg) reproduce the y dependence.

Heavy ion

- •LHC is running in heavy ion configuration since November 7th.
- •Data taking at $s^{1/2}_{NN} = 2.76$ TeV is ongoing.

Heavy ions: hunting the J/ψ

 J/ψ peak from a sample a runs.

accepted contain VOA + VOC + bunch crossing mask event and/or high multiplicity

- 17.6 < R_{abs} < 80 cm
- Rapidity [-4;-2.5] cut on single muon tracks.

 The two tracking tracks match a muon trigger track

- We have presented the differential and absolute J/ψ cross section in pp collisions at 7 TeV in the dimuon channel
 → our results are in very good agreement with LHCb.
- p_T and y dependances seem not to be reproduced by the CEM but theoretical uncertainties are high.

 \rightarrow cross section does not constraint the model, other observables are needed: polarization.

- y dependence seems to be well reproduced by CSM LO direct(gg)
- At midrapidity, the pQCD (NLO) calculations seems to reproduce well the trend of the cross section.
- First heavy ions data are available \rightarrow the J/ ψ is here !

Van der Meer scan

22

A midrapidity result

