Anisotropic flow far from equilibrium: onset of collectivity

Nicolas BORGHINI

Universität Bielefeld

Anisotropic flow far from equilibrium: onset of collectivity

Do you need many collisions to build up "collective behavior"?

flow of massless particles diffusing on fixed scattering centers

Do you need the presence of a thermalized medium to obtain the "mass-ordering" of (elliptic) flow?

flow of massive particles

(a 25-minute summary of) N.B. & C.Gombeaud, arXiv:1012.0899

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini – 1/27 Universität Bielefeld

Anisotropic flow

In non-central nucleus-nucleus collisions, the initial spatial asymmetry of the overlap region in the transverse plane is converted by particle rescatterings into an anisotropic transverse-momentum distribution of the outgoing particles: anisotropic (transverse) flow.

Anisotropic flow

Anisotropic flow far from equilibrium: onset of collectivity

Do you need many collisions to build up "collective behavior"?

flow of massless particles diffusing on fixed scattering centers

Or you need the presence of a thermalized medium to obtain the "mass-ordering" of (elliptic) flow?

flow of massive particles

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini — 4/27 u

Universität Bielefeld

The model

• System: 2-dimensional dilute Lorentz "gas" of N_i massless particles, which scatter elastically on N_k fixed centers with an isotropic and constant differential cross-section σ_d .

- 2-dimensional: I'm only interested in the transverse expansion.
- \circ $\sigma_{
 m d}$ isotropic, constant, p_T -independent: a single parameter!
- dilute system: kinetic description à la Boltzmann is meaningful.
- In the distribution functions $f_i(t, \mathbf{x}, \mathbf{p}_i)$, $f_k(t, \mathbf{x}, \mathbf{p}_k = \mathbf{0})$.

The model

• System: 2-dimensional dilute Lorentz "gas" of N_i massless particles, which scatter elastically on N_k fixed centers with an isotropic and constant differential cross-section σ_d .

- 2-dimensional: I'm only interested in the transverse expansion.
- \odot $\sigma_{
 m d}$ isotropic, constant, p_T -independent: a single parameter!
- dilute system: kinetic description à la Boltzmann is meaningful.
- In the distribution functions $f_i(t, \mathbf{x}, \mathbf{p}_i)$, $f_k(t, \mathbf{x}, \mathbf{p}_k = \mathbf{0})$.

• Initial condition (t = 0): isotropic distribution in momentum space, asymmetric distribution in position space (identical for i and k).

• in position space: Gaussian profile with mean square radii $R_x^2 < R_y^2$. $f(0, \mathbf{x}, \mathbf{p}_T) = \frac{N}{4\pi^2 R_x R_y} \tilde{f}(p_T) \exp\left(-\frac{x^2}{2R_x^2} - \frac{y^2}{2R_y^2}\right)$ Rencontres Ions Lourds, Orsay, February 18, 2011 N.Borghini - 5/27

The model: initial condition

Remarks on the Gaussian profile

(independent of the choice of particle masses)

N.Borghini – 6/27

Universität Bielefeld

$$f(0, \mathbf{x}, \mathbf{p}_T) = \frac{N}{4\pi^2 R_x R_y} \tilde{f}(p_T) \exp\left(-\frac{x^2}{2R_x^2} - \frac{y^2}{2R_y^2}\right)$$

Let
$$R_x^2 \equiv \frac{R^2}{1+\epsilon}$$
, $R_y^2 \equiv \frac{R^2}{1-\epsilon}$; then $\epsilon_2(0) = \frac{\langle y^2 - x^2 \rangle}{\langle x^2 + y^2 \rangle} = \frac{R_y^2 - R_x^2}{R_x^2 + R_y^2} = \epsilon!$

(Note that $\epsilon_2 = -\frac{\langle r^2 \cos 2\varphi_r \rangle}{\langle r^2 \rangle}$, where φ_r denotes the polar angle...)

The model: initial condition

Remarks on the Gaussian profile

(independent of the choice of particle masses)

$$f(0, \mathbf{x}, \mathbf{p}_T) = \frac{N}{4\pi^2 R_x R_y} \tilde{f}(p_T) \exp\left(-\frac{x^2}{2R_x^2} - \frac{y^2}{2R_y^2}\right)$$

Let
$$R_x^2 \equiv \frac{R^2}{1+\epsilon}$$
, $R_y^2 \equiv \frac{R^2}{1-\epsilon}$; then $\epsilon_2(0) = \frac{\langle y^2 - x^2 \rangle}{\langle x^2 + y^2 \rangle} = \frac{R_y^2 - R_x^2}{R_x^2 + R_y^2} = \epsilon!$

(Note that $\epsilon_2 = -\frac{\langle r^2 \cos 2\varphi_r \rangle}{\langle r^2 \rangle}$, where φ_r denotes the polar angle...)

Now, one finds $\epsilon_4 \equiv -\frac{\langle r^4 \cos 4\varphi_r \rangle}{\langle r^4 \rangle} = -\frac{\langle x^4 - 6x^2y^2 + y^4 \rangle}{\langle x^4 + 2x^2y^2 + y^4 \rangle} = -\frac{3\epsilon^2}{2+\epsilon^2}$, that is ϵ_2 and ϵ_4 are of opposite signs.

The model

(independent of the choice of particle masses)

Once the distribution function $f(t, \mathbf{x}, \mathbf{p}_T)$ is known, the (transverse-) momentum distribution

$$\frac{\mathrm{d}^2 N}{\mathrm{d}^2 \mathbf{p}_T}(t, \mathbf{p}_T) = \int \mathrm{d}^2 \mathbf{x} f(t, \mathbf{x}, \mathbf{p}_T)$$

at time t follows at once.

One can thus obtain the time-dependence of the anisotropic flow coefficients $v_n(t, p_T)$.

The usual, experimentally accessible harmonic $v_n(p_T)$ is the large-time limit $v_n(t \to \infty, p_T)$.

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini – 7/27 Universität Bielefeld

(independent of the choice of particle masses)

Boltzmann equation

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

● $f_i \equiv f_i(t, \mathbf{x}, \mathbf{p}_i)$, $f_k \equiv f_k(t, \mathbf{x}, \mathbf{p}_k)$ distributions before the $i+k \rightarrow i+k$ collision;

 $f'_i \equiv f_i(t, \mathbf{x}, \mathbf{p}'_i), \quad f'_k \equiv f_k(t, \mathbf{x}, \mathbf{p}'_k)$ distributions after the collision.

•
$$v_{ik} = \sqrt{(\mathbf{v}_i - \mathbf{v}_k)^2 - \frac{(\mathbf{v}_i \times \mathbf{v}_k)^2}{c^2}}$$
 relative velocity.

 Θ angle between \mathbf{p}_k and \mathbf{p}'_k (irrelevant hereafter: $\int \mathrm{d}\Theta = 2\pi$).

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini — 8/27

Universität Bielefeld

(independent of the choice of particle masses)

N.Borghini – 9/27

Universität Bielefeld

Integrating the Boltzmann equation

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

over x, the gradient part (odd function of x) disappears:

$$\frac{\partial}{\partial t} \frac{\mathrm{d}^2 N_i}{\mathrm{d}^2 \mathbf{p}_i} = \int \mathrm{d}^2 \mathbf{x} \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

(independent of the choice of particle masses)

Integrating the Boltzmann equation

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

over x, the gradient part (odd function of x) disappears:

$$\frac{\partial}{\partial t} \frac{\mathrm{d}^2 N_i}{\mathrm{d}^2 \mathbf{p}_i} = \int \mathrm{d}^2 \mathbf{x} \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

$$\boldsymbol{v_n}(p_T) \equiv \frac{\int \mathrm{d}\varphi \, \frac{\mathrm{d}^2 N}{\mathrm{d}^2 \mathbf{p}_T} \cos n\varphi}{\int \mathrm{d}\varphi \, \frac{\mathrm{d}^2 N}{\mathrm{d}^2 \mathbf{p}_T}}$$

Rencontres Ions Lourds, Orsay, February 18, 2011

Universität Bielefeld

(independent of the choice of particle masses)

N.Borghini – 9/27

Universität Bielefeld

Integrating the Boltzmann equation

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

over x, the gradient part (odd function of x) disappears:

$$\frac{\partial}{\partial t} \frac{\mathrm{d}^2 N_i}{\mathrm{d}^2 \mathbf{p}_i} = \int \mathrm{d}^2 \mathbf{x} \int \mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \left(f'_i f'_k - f_i f_k\right) v_{ik} \sigma_\mathrm{d}$$

Multiplying with $\cos n\varphi_i$ and averaging over the azimuth φ_i yields the time derivative of the anisotropic flow coefficient $v_n(t, p_i)$.

Easy, no?

The model: first solution

(independent of the choice of particle masses)

If there are no rescattering between i and k particles: $\sigma_d = 0$.

$$\frac{\partial f_i}{\partial t} + \mathbf{v}_i \cdot \nabla_{\mathbf{x}} f_i = 0$$

I free-streaming solutions:

$$f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) = f_i^{(0)}(0, \mathbf{x} - \mathbf{v}_i t, \mathbf{p}_i)$$

If one starts with an isotropic distribution in momentum space, it remains so as the system evolves: no anisotropies develop...

$$v_n(t, p_T) = 0$$
 at all times

Let's turn on the rescatterings...

(independent of the choice of particle masses)

... but only few of them!

New solution: $f_i(t, \mathbf{x}, \mathbf{p}_i) = f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) + f_i^{(1)}(t, \mathbf{x}, \mathbf{p}_i) + \cdots$

with $f_i^{(1)} \ll f_i^{(0)}$, and so on.

Improvementum anisotropies of f_i are those of $f_i^{(1)}$.

Let's turn on the rescatterings...

(independent of the choice of particle masses)

... but only few of them!

New solution: $f_i(t, \mathbf{x}, \mathbf{p}_i) = f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) + f_i^{(1)}(t, \mathbf{x}, \mathbf{p}_i) + \cdots$

with $f_i^{(1)} \ll f_i^{(0)}$, and so on.

IF momentum anisotropies of f_i are those of $f_i^{(1)}$.

 $f_i^{(1)} \ll f_i^{(0)}$: need to ensure a small number of scatterings per particle. Collision rate: $\frac{\mathrm{d}N_{\mathrm{coll}}}{\mathrm{d}t} = \int \mathrm{d}^2 \mathbf{x} \int \mathrm{d}^2 \mathbf{p}_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \, f_i f_k v_{ik} \sigma_{\mathrm{d}}$, which should be integrated from t = 0 to ∞ , with $f_i = f_i^{(0)}$, and be kept small. Rencontres Ions Lourds, Orsay, February 18, 2011 N.Borghini - 11/27 Universität Bielefeld

Relation to anisotropic flow

(independent of the choice of particle masses)

Momentum anisotropies of f_i are those of $f_i^{(1)}$.

The loss term of the Boltzmann equation does lead to anisotropies: the number of particles with azimuth φ_i lost in a rescattering is directly linked to the initial geometry.

Relation to anisotropic flow

(independent of the choice of particle masses)

N.Borghini - 12/27

Universität Bielefeld

Momentum anisotropies of f_i are those of $f_i^{(1)}$.

- The loss term of the Boltzmann equation does lead to anisotropies: the number of particles with azimuth φ_i lost in a rescattering is directly linked to the initial geometry.
- The gain term of the Boltzmann equation does NOT lead (to leading order) to anisotropies for an isotropic cross-section: the gain term involves the distribution functions after rescattering, and these have lost memory ("molecular chaos" hypothesis) of the initial geometry.

Relation to anisotropic flow

(independent of the choice of particle masses)

Momentum anisotropies of f_i are those of $f_i^{(1)}$.

- The loss term of the Boltzmann equation does lead to anisotropies: the number of particles with azimuth φ_i lost in a rescattering is directly linked to the initial geometry.
- The gain term of the Boltzmann equation does NOT lead (to leading order) to anisotropies for an isotropic cross-section: the gain term involves the distribution functions after rescattering, and these have lost memory ("molecular chaos" hypothesis) of the initial geometry.

$$\frac{\partial \boldsymbol{v}_n}{\partial t}(t, p_i) \propto -\int \mathrm{d}^2 \mathbf{x} \,\mathrm{d}\varphi_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) \,v_{ik}\sigma_{\mathrm{d}}\cos n\varphi_i$$

Thanks to the Gaussian spatial profile, the integral over ${\bf x}$ is trivial...

Lorentz gas

$$v_{ik} = \sqrt{(\mathbf{v}_i - \mathbf{v}_k)^2 - \frac{(\mathbf{v}_i \times \mathbf{v}_k)^2}{c^2}}$$

- The massless diffusing particles: $|\mathbf{v}_i| = c$
- \bigcirc fixed scattering centers: $|\mathbf{v}_k| = 0$

$$v_{ik} = c$$
 ...much easier!

In particular, v_{ik} is independent of the particle azimuths.

Lorentz gas

$$v_{ik} = \sqrt{(\mathbf{v}_i - \mathbf{v}_k)^2 - \frac{(\mathbf{v}_i \times \mathbf{v}_k)^2}{c^2}}$$

- massless diffusing particles: $|\mathbf{v}_i| = c$
- fixed scattering centers: $|\mathbf{v}_k| = 0$

$$v_{ik} = c$$
 ...much easier!

In particular, v_{ik} is independent of the particle azimuths.

$$\frac{\mathrm{d}N_{\mathrm{coll}}}{\mathrm{d}t} = \int \mathrm{d}^2 \mathbf{x} \,\mathrm{d}^2 \mathbf{p}_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) v_{ik}\sigma_{\mathrm{d}}$$
$$\frac{\partial v_n}{\partial t}(t, p_i) \propto -\int \mathrm{d}^2 \mathbf{x} \,\mathrm{d}\varphi_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) \,v_{ik}\sigma_{\mathrm{d}} \cos n\varphi_i$$

The integrals over $\mathbf{x}, \Theta, \varphi_k, |\mathbf{p}_k|$ are easy or even trivial!

Lorentz gas

$$v_{ik} = \sqrt{(\mathbf{v}_i - \mathbf{v}_k)^2 - \frac{(\mathbf{v}_i \times \mathbf{v}_k)^2}{c^2}}$$

- massless diffusing particles: $|\mathbf{v}_i| = c$
- fixed scattering centers: $|\mathbf{v}_k| = 0$

$$v_{ik} = c$$
 ...much easier!

In particular, v_{ik} is independent of the particle azimuths.

$$\frac{\mathrm{d}N_{\mathrm{coll}}}{\mathrm{d}t} = \int \mathrm{d}^{2}\mathbf{x} \,\mathrm{d}^{2}\mathbf{p}_{i} \,\mathrm{d}^{2}\mathbf{p}_{k} \,\mathrm{d}\Theta \,f_{i}^{(0)}(t,\mathbf{x},\mathbf{p}_{i})f_{k}^{(0)}(t,\mathbf{x},\mathbf{p}_{k})v_{ik}\sigma_{\mathrm{d}}$$
$$\frac{\partial v_{n}}{\partial t}(t,p_{i}) \propto \iint \mathrm{d}^{2}\mathbf{x} \,\mathrm{d}\varphi_{i} \,\mathrm{d}^{2}\mathbf{p}_{k} \,\mathrm{d}\Theta \,f_{i}^{(0)}(t,\mathbf{x},\mathbf{p}_{i})f_{k}^{(0)}(t,\mathbf{x},\mathbf{p}_{k}) \,v_{ik}\sigma_{\mathrm{d}}\cos n\varphi_{i}$$

The integrals over $\mathbf{x}, \Theta, \varphi_k, |\mathbf{p}_k|$ are easy or even trivial!

Lorentz gas: the results

Let
$$\mathcal{C}(t, \mathbf{p}_i, \mathbf{p}_k) \equiv \int d^2 \mathbf{x} d\Theta f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_k) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) v_{ik} \sigma_d$$
.

For the Lorentz gas,

$$\mathcal{C}(t,\mathbf{p}_i,\mathbf{p}_k) = \frac{N_i N_k \sigma_{\mathrm{d}} c \sqrt{1-\epsilon^2}}{8\pi^2 R^2} \,\tilde{f}_i(p_i) \,\tilde{f}_k(p_k) \,\exp\left[-\frac{c^2 t^2}{4R^2} \left(1+\epsilon \cos 2\varphi_i\right)\right]$$

The integral over φ_k yields a factor 2π , those over $|\mathbf{p}_i|$ and $|\mathbf{p}_k|$ cancel the initial momentum distributions \tilde{f}_i , \tilde{f}_k (which are normalized to 1).

The integral over φ_i gives a modified Bessel function I_0 :

$$\frac{\mathrm{d}N_{\mathrm{coll}}}{\mathrm{d}t} = \frac{N_i N_k \sigma_{\mathrm{d}} c \sqrt{1 - \epsilon^2}}{2R^2} \,\mathrm{e}^{-c^2 t^2 / 4R^2} \,I_0\!\left(\frac{c^2 t^2}{4R^2} \,\epsilon\right)$$

so that the total number of rescatterings is (K: elliptic integral)

$$N_{\rm coll} = \frac{N_i N_k \sigma_{\rm d}}{\sqrt{\pi}R} \sqrt{1-\epsilon} K \left(\sqrt{\frac{2\epsilon}{1+\epsilon}} \right)$$

Lorentz gas: number of rescatterings

The total number of rescatterings is (K: elliptic integral)

$$N_{\text{coll}} = \frac{N_i N_k \sigma_{\text{d}}}{\sqrt{\pi}R} \sqrt{1 - \epsilon} K \left(\sqrt{\frac{2\epsilon}{1 + \epsilon}} \right)$$

i.e. maximal for central collisions [$K(0) = \frac{\pi}{2}$] at a given cross-section: the choice

$$\sigma_{\rm d}^{\rm max} = \frac{2}{N_k \sqrt{\pi}} R$$

ensures at most one rescattering per diffusing particle for all ϵ .

is consistency of the approach!

Lorentz gas: anisotropic flow

If we now multiply $C(t, \mathbf{p}_i, \mathbf{p}_k)$ by $\cos n\varphi_i$ and then integrate over the azimuths and over $|\mathbf{p}_k|$ and divide by $N_i \tilde{f}_i - i.e.$ the denominator in the definition of the anisotropic flow coefficient — we get

(do not forget the — sign from our considering the loss term!)

$$\frac{\mathrm{d}\boldsymbol{v}_{n}}{\mathrm{d}t} = (-1)^{\frac{n}{2}+1} \frac{N_{k}\sigma_{\mathrm{d}}c\sqrt{1-\epsilon^{2}}}{R^{2}} \,\mathrm{e}^{-c^{2}t^{2}/4R^{2}} I_{\frac{n}{2}} \left(\frac{c^{2}t^{2}}{4R^{2}}\epsilon\right)$$

Lorentz gas: anisotropic flow

If we now multiply $C(t, \mathbf{p}_i, \mathbf{p}_k)$ by $\cos n\varphi_i$ and then integrate over the azimuths and over $|\mathbf{p}_k|$ and divide by $N_i \tilde{f}_i - i.e.$ the denominator in the definition of the anisotropic flow coefficient — we get

(do not forget the — sign from our considering the loss term!)

$$\frac{\mathrm{d}v_{n}}{\mathrm{d}t} = (-1)^{\frac{n}{2}+1} \frac{N_{k}\sigma_{\mathrm{d}}c\sqrt{1-\epsilon^{2}}}{R^{2}} e^{-c^{2}t^{2}/4R^{2}} I_{\frac{n}{2}}\left(\frac{c^{2}t^{2}}{4R^{2}}\epsilon\right)$$

that is $\sim (-1)^{\frac{n}{2}+1} \frac{N_{k}\sigma_{\mathrm{d}}c\sqrt{1-\epsilon^{2}}}{(\frac{n}{2})!R^{2}} \left(\frac{ct\sqrt{\epsilon}}{4R}\right)^{n}$ for $t \ll \frac{2R}{c}$

so that $v_n(t) \propto (-1)^{\frac{n}{2}+1} t^{n+1}$ at early times.

Sehavior already seen in transport codes (Gombeaud & Ollitrault);

 \odot differs from the slower rise $\propto t^n$ in fluid dynamics.

Lorentz gas: anisotropic flow

Integrating $\frac{\mathrm{d}v_n}{\mathrm{d}t}$ from t = 0 to ∞ , one obtains v_n , e.g. $v_2(p_i) = \frac{N_k \sigma_{\mathrm{d}} \sqrt{\pi}}{8R} \sqrt{1 - \epsilon^2} {}_2F_1\left(\frac{3}{4}, \frac{5}{4}; 2; \epsilon^2\right)\epsilon$

Gauss hypergeometric function

Requiring at most one rescattering per diffusing particles, i.e. fixing σ_d to $\sigma_d^{max} = 2R/N_k\sqrt{\pi}$, gives the parameter-free results

$$v_{2}(p_{i}) = \frac{1}{4}\sqrt{1-\epsilon^{2}} {}_{2}F_{1}\left(\frac{3}{4}, \frac{5}{4}; 2; \epsilon^{2}\right)\epsilon$$
$$v_{4}(p_{i}) = -\frac{3}{32}\sqrt{1-\epsilon^{2}} {}_{2}F_{1}\left(\frac{5}{4}, \frac{7}{4}; 3; \epsilon^{2}\right)\epsilon^{2}$$

 v_2 and v_4 are of opposite signs! reflects the opposite signs of ϵ_2 and ϵ_4 : obvious (?)

Rencontres Ions Lourds, Orsay, February 18, 2011

Universität Bielefeld

Lorentz gas: Centrality dependence of v_2

Glauber optical model to relate b and ϵ

Universität Bielefeld

Rencontres Ions Lourds, Orsay, February 18, 2011

Lorentz gas: Centrality dependence of v_2

Black curves (full: "LDL", dashed: hydro) and points (RQMD 2.3) from Voloshin & Poskanzer, Phys. Lett. B **474** (2000) 27

Anisotropic flow far from equilibrium: onset of collectivity

Or you need many collisions to build up "collective behavior"?

flow of massless particles diffusing on fixed scattering centers

Do you need the presence of a thermalized medium to obtain the "mass-ordering" of (elliptic) flow?

flow of massive particles

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini – 20/27 Universität Bielefeld

The model

System: 2-dimensional dilute mixture of several components with different masses m_i , m_k ... > 0, which scatter elastically on each other with an isotropic and constant differential cross-section σ_d .

Initial condition (t = 0): isotropic distribution in momentum space, asymmetric distribution in position space (identical for all species).

- in position space: Gaussian profile with mean square radii $R_x^2 < R_y^2$.
 in momentum space: no longer irrelevant!
- Evolution: Boltzmann equation

$$N_{\text{coll}} = \int \mathrm{d}t \,\mathrm{d}^2 \mathbf{x} \,\mathrm{d}^2 \mathbf{p}_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) v_{ik}\sigma_{\mathrm{d}}$$
$$v_n(p_i) \propto -\int \mathrm{d}t \,\mathrm{d}^2 \mathbf{x} \,\mathrm{d}\varphi_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) \,v_{ik}\sigma_{\mathrm{d}} \cos n\varphi_i$$

as before...

The model

Important complication: the relative velocity

$$v_{ik} = \sqrt{(\mathbf{v}_i - \mathbf{v}_k)^2 - \frac{(\mathbf{v}_i \times \mathbf{v}_k)^2}{c^2}}$$
$$= c\sqrt{\left[1 - \beta_i \beta_k \cos(\varphi_i - \varphi_k)\right]^2 - (1 - \beta_i^2)(1 - \beta_k^2)}$$

now depends on the particle azimuths...

Integrating over φ_i and φ_k is no longer straightforward.

(in particular, the integral over time has to be performed "early" in the calculation: one loses the early-time dependence of $v_n(t)$.)

N.Borghini - 22/27

Universität Bielefeld

Mixture of massive components: anisotropic flow

 $\boldsymbol{v_n}(p_i) \propto -\int \mathrm{d}t \,\mathrm{d}^2 \mathbf{x} \,\mathrm{d}\varphi_i \,\mathrm{d}^2 \mathbf{p}_k \,\mathrm{d}\Theta \,f_i^{(0)}(t, \mathbf{x}, \mathbf{p}_i) f_k^{(0)}(t, \mathbf{x}, \mathbf{p}_k) \,v_{ik}\sigma_\mathrm{d}\cos n\varphi_i$

$$\boldsymbol{v_n}(p_i) = \mathcal{N}_n \mathcal{K}_n(\boldsymbol{\epsilon}) \int \mathrm{d}p_k \, p_k \, N_k \tilde{f_k}(p_k) \, \mathcal{F}_n(\beta_i, \beta_k)$$

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini – 23/27 Universität Bielefeld

Mixture of massive components: anisotropic flow $v_n(p_i) = \mathcal{N}_n \mathcal{K}_n(\epsilon) \int dp_k \, p_k \, N_k \tilde{f}_k(p_k) \, \mathcal{F}_n(\beta_i, \beta_k)$

- $\mathcal{K}_n(\epsilon)$: centrality dependence.
- $f_k(p_k)$: the momentum distribution of diffusing centers plays a role.
- $\mathcal{F}_n(\beta_i, \beta_k)$: universal function of the particle velocities.

Boltzmann equation is kinetic: depends on velocities, not on momenta.

IF $v_n(\beta_i)$ function of velocity, rather than momentum.

Mixture of massive components: anisotropic flow $v_n(p_i) = \mathcal{N}_n \mathcal{K}_n(\epsilon) \int dp_k \, p_k \, N_k \tilde{f}_k(p_k) \, \mathcal{F}_n(\beta_i, \beta_k)$

- $\mathcal{K}_n(\epsilon)$: centrality dependence.
- *f̃_k(p_k)*: the momentum distribution of diffusing centers plays a role. *F_n(β_i, β_k)*: universal function of the particle velocities.
 Boltzmann equation is kinetic: depends on velocities, not on momenta. *v_n(β_i)* function of velocity, rather than momentum.
 At a given momentum, heavier particles have smaller velocity
 - + v_2 increasing function of velocity
 - $v_2(p_T)$ mass-ordered, irrespective of thermalization.

Mixture of massive components: v_2

thermal-like momentum spectrum assumed; one collision per particle

Anisotropic flow far from equilibrium: onset of collectivity

Do you need many collisions to build up "collective behavior"?

flow of massless particles diffusing on fixed scattering centers

 $\frac{v_2}{\epsilon} \approx 0.2$ after a single collision per particle

Do you need the presence of a thermalized medium to obtain the "mass-ordering" of (elliptic) flow?

flow of massive particles

 v_n function of velocity, not momentum

Rencontres Ions Lourds, Orsay, February 18, 2011

N.Borghini – 26/27 Universität Bielefeld

Anisotropic flow far from equilibrium: phenomenological relevance?

The model is very much simplified!

In longitudinal dilution;

@ universal, constant, isotropic cross-section for elastic collisions...

Considering a single rescattering only may however be relevant for particles that are "destroyed" after a single collision:

@ high-momentum particles, which lose a sizable amount of their momentum, thus are gone from their initial $p_{\rm T}$ bin;

N.Borghini – 27/27

Universität Bielefeld