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Anisotropic flow far from equilibrium:
onset of collectivity

 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Do you need the presence of a thermalized medium to obtain the 
“mass-ordering’’ of (elliptic) flow?

flow of massive particles

(a 25-minute summary of)  N.B. & C.Gombeaud, arXiv:1012.0899
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Anisotropic flow
In non-central nucleus-nucleus collisions, the initial spatial asymmetry 
of the overlap region in the transverse plane is converted by particle 
rescatterings into an anisotropic transverse-momentum distribution of 
the outgoing particles: anisotropic (transverse) flow.
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Anisotropic flow
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 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Do you need the presence of a thermalized medium to obtain the 
“mass-ordering’’ of (elliptic) flow?

flow of massive particles
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Anisotropic flow far from equilibrium:
onset of collectivity
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The model

R2
x < R2

y

 System: 2-dimensional dilute Lorentz “gas’’ of Ni massless particles, 
which scatter elastically on Nk fixed centers with an isotropic and 
constant differential cross-section    .

 2-dimensional: I’m only interested in the transverse expansion.

     isotropic, constant,    -independent: a single parameter!

 dilute system: kinetic description à la Boltzmann is meaningful.

 distribution functions             ,                  . 

 Initial condition (t = 0): isotropic distribution in momentum space, 
asymmetric distribution in position space (identical for i and k).

 in position space: Gaussian profile with mean square radii           .

σd

σd pT

f(0,x,pT ) =
N

4π2RxRy
f̃(pT ) exp

�
− x2

2R2
x

− y2

2R2
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fk(t,x,pk = 0)fi(t,x,pi)
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The model: initial condition

f(0,x,pT ) =
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Remarks on the Gaussian profile
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(Note that                       , where     denotes the polar angle...)�2 =
�r2 cos 2ϕr�

�r2�— ϕr

(independent of the choice of particle masses)
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Now, one finds                                                                , 
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The model

Once the distribution function        is known, the (transverse-)
momentum distribution

at time t follows at once.

One can thus obtain the time-dependence of the anisotropic flow 
coefficients           .

The usual, experimentally accessible harmonic         is the large-time 
limit                  .

f(t,x,pT )

d2N

d2pT
(t,pT ) =

�
d2x f(t,x,pT )

vn(t, pT )

vn(pT )

(t → ∞, pT )vn

(independent of the choice of particle masses)



                                         distributions before the i+k → i+k 
collision;

                                         distributions after the collision.
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The model: evolution equation
(independent of the choice of particle masses)

Boltzmann equation
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Integrating the Boltzmann equation

over x, the gradient part (odd function of x) disappears: 

Multiplying with           and averaging over the azimuth     yields the 
time derivative of the anisotropic flow coefficient          .  

Easy, no?
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The model: evolution equation
(independent of the choice of particle masses)
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The model: evolution equation
(independent of the choice of particle masses)

(pT ) ≡

�
dϕ

d2N

d2pT
cosnϕ

�
dϕ

d2N

d2pT

vn



∂fi
∂t

+ vi ·∇xfi =

�
d2pk dΘ (f �

if
�
k − fifk) vikσd

∂

∂t

d2Ni

d2pi
=

�
d2x

�
d2pk dΘ (f �

if
�
k − fifk) vikσd

cosnϕi ϕi

vn(t, pi)

Integrating the Boltzmann equation

over x, the gradient part (odd function of x) disappears: 

Multiplying with           and averaging over the azimuth     yields the 
time derivative of the anisotropic flow coefficient          .  

Easy, no?

N.Borghini — 9/27Rencontres Ions Lourds, Orsay, February 18, 2011

The model: evolution equation
(independent of the choice of particle masses)
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The model: first solution
(independent of the choice of particle masses)

If there are no rescattering between i and k particles:     = 0.σd

∂fi
∂t

+ vi ·∇xfi = 0

   free-streaming solutions: 

f (0)
i (t,x,pi) = f (0)

i (0,x− vit,pi)

If one starts with an isotropic distribution in momentum space, it 
remains so as the system evolves: no anisotropies develop...

vn(t, pT ) = 0  at all times
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Let’s turn on the rescatterings...
(independent of the choice of particle masses)

fi(t,x,pi) = f (0)
i (t,x,pi) + f (1)

i (t,x,pi) + · · ·

... but only few of them!

New solution: 

with              , and so on.  

    momentum anisotropies of     are those of     . 

f (1)
i � f (0)

i

fi f (1)
i
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Let’s turn on the rescatterings...
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New solution: 

with              , and so on.  

    momentum anisotropies of     are those of     . 

f (1)
i � f (0)

i
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             : need to ensure a small number of scatterings per particle.

Collision rate:                                                 , which should be

integrated from t = 0 to ∞, with    =     , and be kept small.
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Relation to anisotropic flow
(independent of the choice of particle masses)

Momentum anisotropies of    are those of     .

 the loss term of the Boltzmann equation does lead to anisotropies:  
the number of particles with azimuth   lost in a rescattering is 
directly linked to the initial geometry.

fi f (1)
i

ϕi
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Relation to anisotropic flow
(independent of the choice of particle masses)

Momentum anisotropies of    are those of     .

 the loss term of the Boltzmann equation does lead to anisotropies:  
the number of particles with azimuth   lost in a rescattering is 
directly linked to the initial geometry.

fi f (1)
i

ϕi

 the gain term of the Boltzmann equation does NOT lead (to leading 
order) to anisotropies for an isotropic cross-section:
the gain term involves the distribution functions after rescattering, 
and these have lost memory (“molecular chaos’’ hypothesis) of the 
initial geometry.
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Thanks to the Gaussian spatial profile, the integral over x is trivial...
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Lorentz gas

 massless diffusing particles:  |vi| = c

 fixed scattering centers:  |vk| = 0

vik = c

vik =

�
(vi − vk)2 −

(vi × vk)2

c2

…much easier!

In particular, vik is independent of the particle azimuths. 
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Lorentz gas: the results
Let                                                                .

For the Lorentz gas, 

C(t,pi,pk) ≡
�

d2x dΘ f (0)
i (t,x,pk)f

(0)
k (t,x,pk) vikσd

The integral over     yields a factor 2π, those over |pi| and |pk| cancel
the initial momentum distributions    ,     (which are normalized to 1).

ϕk

f̃i f̃k

so that the total number of rescatterings is (K: elliptic integral)

ϕiThe integral over     gives a modified Bessel function I0:
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Lorentz gas: number of rescatterings

K(0) = π
2

σmax
d =

2

Nk
√
π
R

The total number of rescatterings is (K: elliptic integral)

i.e. maximal for central collisions [            ] at a given cross-section:

the choice

ensures at most one rescattering per diffusing particle for all  .
   
    consistency of the approach!
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√
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Lorentz gas: anisotropic flow
If we now multiply               by          and then integrate over the 
azimuths and over |pk| and divide by Ni   — i.e. the denominator in the 
definition of the anisotropic flow coefficient — we get 

(do not forget the — sign from our considering the loss term!)

C(t,pi,pk) cosnϕi

f̃i

dvn
dt

= (−1)
n
2 +1Nkσdc

√
1− �2
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e−c2t2/4R2
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2

�
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4R2
�

�
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 behavior already seen in transport codes (Gombeaud & Ollitrault);

 differs from the slower rise       in fluid dynamics.∝ tn

∼ (−1)
n
2 +1Nkσdc

√
1− �2
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that is                                                     for           

so that                          at early times. 

t � 2R

c

vn(t) ∝ (−1)
n
2 +1tn+1

� �
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Lorentz gas: anisotropic flow
vnIntegrating       from t = 0 to ∞, one obtains    , e.g.dvn

dt

vn
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Gauss hypergeometric function
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Requiring at most one rescattering per diffusing particles, i.e. fixing σd 
to                      , gives the parameter-free resultsσmax

d = 2R/Nk
√
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v2(pi) =
1

4

�
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v2    and    are of opposite signs!
     reflects the opposite signs of    and    : obvious (?)�4
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Lorentz gas:
Centrality dependence of v2
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Lorentz gas:
Centrality dependence of v2

Glauber optical model to relate b and �
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Black curves (full: ‘‘LDL’’, dashed: hydro) and points (RQMD 2.3) from 
Voloshin & Poskanzer, Phys. Lett. B 474 (2000) 27

Lorentz gas:
Centrality dependence of v2



 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Do you need the presence of a thermalized medium to obtain the 
“mass-ordering’’ of (elliptic) flow?

flow of massive particles
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Anisotropic flow far from equilibrium:
onset of collectivity



 System: 2-dimensional dilute mixture of several components with 
different masses mi, mk… > 0, which scatter elastically on each other 
with an isotropic and constant differential cross-section    .

 Initial condition (t = 0): isotropic distribution in momentum space, 
asymmetric distribution in position space (identical for all species).

 in position space: Gaussian profile with mean square radii           .

 in momentum space: no longer irrelevant!

 Evolution: Boltzmann equation

as before...
N.Borghini — 21/27Rencontres Ions Lourds, Orsay, February 18, 2011

The model

R2
x < R2

y

σd

Ncoll =

�
dt d2x d2pi d

2pk dΘ f (0)
i (t,x,pi)f

(0)
k (t,x,pk)vikσd

vn(pi) ∝ −
�
dt d2x dϕi d

2pk dΘ f (0)
i (t,x,pi)f

(0)
k (t,x,pk) vikσd cosnϕivn
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The model
Important complication: the relative velocity

now depends on the particle azimuths...

    Integrating over     and     is no longer straightforward.

(in particular, the integral over time has to be performed “early’’ in the 
calculation: one loses the early-time dependence of vn(t).)

vik =

�
(vi − vk)2 −

(vi × vk)2

c2

= c
��

1−βiβk cos(ϕi−ϕk)
�2 − (1−β2

i )(1−β2
k)

ϕi ϕk



vn(pi) ∝ −
�
dt d2x dϕi d

2pk dΘ f (0)
i (t,x,pi)f

(0)
k (t,x,pk) vikσd cosnϕivn
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Mixture of massive components:
anisotropic flow

vn(pi) = NnKn(�)

�
dpk pk Nkf̃k(pk)Fn(βi,βk)vn Kn(�) Fn(βi,βk)f̃k(pk)
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Mixture of massive components:
anisotropic flow

vn(pi) = NnKn(�)

�
dpk pk Nkf̃k(pk)Fn(βi,βk)vn Kn(�) Fn(βi,βk)f̃k(pk)

        : centrality dependence.

        : the momentum distribution of diffusing centers plays a role.

             : universal function of the particle velocities.

Boltzmann equation is kinetic: depends on velocities, not on momenta.

            function of velocity, rather than momentum. 

At a given momentum, heavier particles have smaller velocity

+    increasing function of velocity

                mass-ordered, irrespective of thermalization.

f̃k(pk)

Fn(βi,βk)

Kn(�)

vn(βi)vn

v2

v2(pT )
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Mixture of massive components: v2

80% pions
12.5% kaons
7.5% protons

thermal-like momentum spectrum assumed;   one collision per particle

� = 0.1

more plots in arXiv:1012.0899



 Do you need many collisions to build up “collective behavior”? 

flow of massless particles diffusing on fixed scattering centers

 Do you need the presence of a thermalized medium to obtain the 
“mass-ordering’’ of (elliptic) flow?

flow of massive particles
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Anisotropic flow far from equilibrium:
onset of collectivity

v2
�

≈ 0.2 after a single collision per particle
v2
�

function of velocity, not momentumvn
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Anisotropic flow far from equilibrium:
phenomenological relevance?

 The model is very much simplified!

 no longitudinal dilution;

 universal, constant, isotropic cross-section for elastic collisions...

 Considering a single rescattering only may however be relevant for 
particles that are “destroyed’’ after a single collision: 

high-momentum particles, which lose a sizable amount of their 
momentum, thus are gone from their initial pT bin;

fragile states (quarkonia? ϕ-meson?).


