Status and first results on proton-proton collisions at 900 GeV and 2.36 TeV in CMS

Lamia Benhabib

Rencontre ions lourds /heavy-ion meeting IPN Orsay 09.04.2010

CMS phase-space coverage

- CMS: full ϕ and almost full η acceptance at the LHC
- Charged tracks and muons: $\mid \eta \mid$ < 2.4
- Electrons and photons: $\mid \eta \mid < 3$
- Jets, energy flow: $\mid \eta \mid <$ 6.7 (plus $\mid \eta \mid >$ 8.3 for neutrals, with the ZDC)

Introduction

- First LHC collisions : Nov 23rd
- First stable beams $\sqrt{s} = 900 \text{ GeV}$: Dec 6th
- First collisions $\sqrt{s} = 2.36 \,\text{TeV}$: Dec 14th
- First collisions $\sqrt{s} = 7 \,\text{TeV}$: Mar 30^{th}
- Luminosity recorded by CMS with the full detector ON
 - $\sim 10 \,\mu \,\mathrm{b^{-1}} \,\sqrt{\mathrm{s}} = 900 \,\mathrm{GeV}$
 - ~0.4 μ b⁻¹ $\sqrt{s} = 2.36$ TeV
 - Normalized to $\sigma_{\text{MinBias}} = 52 \text{ mb}$
- High data taking efficiency
- Trigger : Inclusive configuration to accept Minimum Bias events (Beam Scintillator Counter)
- In 2009 CMS recorded : 350k MB events from p+p collisions $\sqrt{s} = 900 \text{ GeV}$ 20k MB events from p+p collisions $\sqrt{s} = 2360 \text{ GeV}$
- **Different measurements :** resonances, electrons, muons, jets...

Charged hadron dN/dŋ and dN/dp $_{T}$

- Important for high-luminosity LHC runs with pile-up and relevant as reference for heavy ion physics
- Various processes involved :
- elastic
- single-diffractive,
- non-single- diffractive(NSD)
 - = double diffractive + non-diffractive
- aim to measure the NSD component \rightarrow

At very low pT, a big challenge for the tracking : 0.1 GeV/c in a B field of 3.8T corresponds to a beding radius of 8 cm

 dN/dP_{T} results Integral for $\mid \eta \mid < 2.4$ 60 (b) CMS (a) Data 2.36 TeV CMS 0 $1/(2\pi p_{T}) d^{2} N_{ch}/dn dp_{T} [(GeV/c)^{-2}]$ • Data 0.9 TeV 50 $d^2 N_{ch}$ / dŋ dp_ [(GeV/c)⁻¹] • Data 2.36 TeV Inl=2.3 lŋl=2.1 40 Inl=1.9 ml=1.7 30 ml=1.5 ml=1.3 ml=1.1 20 Inl=0.9 ml=0.7 10 Inl=0.5 lηl=0.3 10⁻⁵ lŋl=0.1 0 1.5 2 2.5 0.5 3 3.5 0.5 1.5 4 0 0 2 p_T [GeV/c] p_T [GeV/c] For 900 GeV p+p collisions (72637 events) and for 2.36TeV (18074 events) Fitted with the empirical Tsallis function (exponential at low pT, power law at high pT) Integral used for dN/d η particle count (5% correction at low pT) $< p_T > = 0.46 \pm 0.01 (stat) \pm 0.01 (syst) 0.9 TeV$ $< p_T > = 0.50 \pm 0.01$ (stat) ± 0.01 (syst) 2.36TeV

Results for $dN/d\eta$

- 3 methods give consistent results
- Error bars show systematic errors (ranging from 4.4% to 2.4%)

- 3 CMS methods are averaged
- Shaded band indicates systematic error
- Largest part is due to uncertainty in SD/DD contamination (2%).

UA5 and CMS results are symmetrized in $~\eta$

Other (yet unpublished) results...

- Primary vertex reconstruction
- First CMS resonances: π^0 and η
- K_s and Λ^0 Mass and Lifetime
- Electrons
- Muons
- Jets
- Missing E_T

First CMS resonances: π^0 and η

 K_s and Λ_0 Mass and Lifetime

- Resolution of the mass fit: Ks : 7.99 \pm 0.14 MeV Λ_0 : 3.01 \pm 0.08 MeV
- Agreement Data/MC Ks : 7.62 \pm 0.03 MeV Λ_0 : 2.99 \pm 0.04 MeV
- Measured lifetime in agreement with PDG
- Other Reconstructed resonances

$$\Xi \longrightarrow \Lambda_0 \pi^- (+c.c.)$$

K^{*}(892) $\pm \longrightarrow K_0 \pi \pm$

Electron reconstruction

- Electron reconstruction: affected by
- Material in front of ECAL
- Magnetic field

Energy clustering to recover bremsstrahlung

Electron track seeding (2 approaches)

- Start from ECAL superclusters and searchfor compatible hits in the tracker (Ecal Driven)
- Use all tracks as starting point (Tracker Driven)
- Tracking for electrons:
 - Loose match with tracker seeds
 - Bremsstrahlung energy loss modeled with a mixture of Gaussians in the track fit
 - Final energy / momentum combination
 - Bremsstrahlung estimate using tracks : $f_{brem} = (P_{IN} P_{OUT}) / P_{IN}$

Electron commissioning at 900 GeV

Low pT electron candidates expected, mainly non-prompt from *γ* conversions
351 candidates reconstructed in 2009 collision data at 900 GeV
From MC, 40% are expected to be real electrons

Electron Identification

- Electron tracking tuned to have good efficiency more than high purity
- 10^3 - 10^5 rejection power needed against jets depending on physics analysis
- Remaining background due to conversions, π^0 Dalitz decays, isolated hadrons
 - Geometrical matching ECAL/tracker
 - Energy / momentum matching
 - Deposits in ECAL vs HCAL

(mva)Multivariate Variable Analysis

for electrons

2 complementary approaches

• Stand alone muon based (outside-in) : the algorithm fits all the hits in the muon system and search for compatible tracks in the tracker system

• Tracker based (inside-out) : starting from all the tracks in the tracker system and identify the muon associating the tracker tracks with the segments in the muon system

Dimuons in CMS at 900 and 2360 GeV

The 2.36 TeV data set contains two opposite-sign dimuons : • M = 3.04 \pm 0.04 GeV/c², dimuon vertex χ 2 prob.= 57%, c τ = -17 \pm 81 μ m (a J/ ψ ?) • M = 4.26 \pm 0.04 GeV/c², dimuon vertex χ 2 prob.= 6%, c τ = -51 \pm 106 μ m

Jet reconstruction in CMS

3 methods to reconstruct jets

Calorimeter jets

Reconstruction using energy deposits in the ECal and HCal cells (calorimeter tower)

Calorimeter tower : one or more HCAL cells and the geometrically corresponding ECALcrystals.

The Jet-Plus-Tracks (JPT) algorithm

Corrects the energy and the direction of a calorimeter jet by exploiting the excellent performance of the CMS tracker to improve the p $_{\rm T}$ response and resolution of calorimeter jets

Particle Flow jets

Reconstruct, identify and calibrate each individual particle in the event by combining the information from all CMS sub-detector systems, then cluster to jets

		CaloJets	JPTJets	PFJets
ive Dijet	PT min	10 GeV	8 GeV	8 GeV
	η max	3.0	2.0	3.0
ive		CaloJets	JPTJets	PFJets
nclusive	PT min	CaloJets 15 GeV	JPTJets 13 GeV	PFJets 10 GeV
Inclusive	PT min η max	CaloJets 15 GeV 2.6	JPTJets 13 GeV 2.0	PFJets 10 GeV 3.0

Missing ET in CMS

3 methods to reconstruct jets : Calorimeter jets, the Jet-Plus-Tracks (JPT) algorithm, particle flow jets

Conclusion

- CMS arrived prepared to first collision data and was ready to quickly analyze the data and to produce physics results
- Very good agreement with simulation without further need of tuning, thanks to preparation with test beams and cosmic runs
- First paper on collision data is published, 5 other papers are in preparation
- Excellent detector performance shown with high data quality
- Exploring 7 TeV data...

Geneva, March 30th 2010.

. . .

. . .

At 12:58:34 the LHC Control Centre declared stable colliding beams: the collisions were immediately detected in CMS. Moments later the full processing power of the detector had analyzed the data and produced the first images of particles created in the 7 TeV collisions traversing the CMS detector

25