Initial geometry fluctuations and Triangular flow

Burak Alver

Rencontres Ions Lourds

May 7, 2010

arXiv: 1003.0194

Traditional picture

"The Perfect Liquid at RHIC"

Large elliptic flow signal at RHIC suggests early thermalization and strongly interacting medium

Elliptic flow in Cu+Cu collisions

Elliptic flow signal in Cu+Cu collisions was observed to be surprisingly large, in particular for the most central collisions

PHOBOS nucl-ex/0610037

Initial geometry

Glauber Model Description of the initial geometry:

- Nuclei consist of randomly positioned nucleons
- Impact parameter is randomly selected
- Nucleons collide if closer than $D = \sqrt{\sigma_{_{NN}} / \pi}$

"Standard" eccentricity

Eccentricity of the collision region can be calculated from positions of nucleons

Underlying assumption: Event-by-event fluctuations in Glauber model are not physical

"Participant" eccentricity

Eccentricity of the collision region can be calculated from positions of nucleons

Participant eccentricity is calculated with no reference to the impact parameter vector

Two different pictures

Participant eccentricity is finite even for most central collisions.

A greater impact on the smaller Cu+Cu system

PHOBOS nucl-ex/0610037

Two different pictures

Participant eccentricity reconciles elliptic flow for Cu+Cu and Au+Au collisions

Elliptic flow fluctuations

If initial geometry fluctuations are present v_2 should fluctuate event-by-event at fixed N_{part} or b

Elliptic flow fluctuations

As predicted v_2 fluctuates event-by-event at fixed N_{part}

Statistical fluctuations and non-flow correlations are taken out in these results.

PHOBOS PRL arXiv:nucl-ex/0702036 PHOBOS PRC arXiv:1002.0534

Two-particle correlations

Au+Au 0%-10%

Two-particle correlations

Ridge and Broad Away side

A large correlation structure at $\Delta \phi = 0^{\circ}$ and a broad away side at $\Delta \phi = 180^{\circ}$ is observed out to $\Delta \eta = 4$

High p_T triggered correlations

Collective Flow?

- Triangular anisotropy in initial geometry
- Description of data in terms of triangular flow
- Model description of triangular anisotropy

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

1003.0194

Participant triangularity

Triangular anisotropy in initial geometry can be quantified by "participant triangularity" analogous to participant eccentricity.

Participant triangularity

Correlations at large Δη

Long range correlations are well described by 3 Fourier Components

20

1003.0194

AMPT Model

AMPT model: Glauber initial conditions, collective flow

AMPT model also produces similar correlation structures that extend out to long range in $\Delta\eta$.

Lin et. al. nucl-th/0411110

Elliptic flow in AMPT

Triangular flow in AMPT

1003.0194

Flow and correlations in AMPT

Triangular flow in data

The ratio of triangular flow to elliptic flow qualitatively agree between data and AMPT

Initial geometry fluctuations

26

A consistent picture

1003.0194

Backups

Two different pictures

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \Big(1 + \sum 2v_n \cos(n(\phi - \psi_R)) \Big)$$

$$v_2 = \left\langle \cos(2(\phi - \psi_R)) \right\rangle$$

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum 2v_n \cos(n(\phi - \psi_n)) \right)$$

$$v_2 = \left\langle \cos(2(\phi - \psi_2)) \right\rangle$$

Triangular flow

1003.0194

Phases

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} = \frac{N}{2\pi} \left(1 + \sum 2v_n \cos(n(\phi - \psi_n)) \right)$$

= $\frac{N}{2\pi} \left(1 + \dots + 2v_2 \cos(2(\phi - \psi_2)) + 2v_3 \cos(3(\phi - \psi_3)) + \dots \right)$
 $\frac{\mathrm{d}N^{\text{pairs}}}{\mathrm{d}\Delta\phi} = \frac{N^{\text{pairs}}}{2\pi} \left(1 + \dots + 2v_2^2 \cos(2\Delta\phi) + 2v_3^2 \cos(3\Delta\phi) + \dots \right)$

Second Fourier coefficient

- Why do we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also v_2 {4}, v_2 fluctuations and $v_2^2(\eta_1, \eta_2)$

Third Fourier coefficient

- Why should we believe it is collective flow?
 - Large!
 - Present at large $\Delta \eta$: early times
 - Connection to initial geometry
 - i.e. centrality dependence
 - p_T dependence
 - Also three particle correlations

Initial geometry fluctuations

33