J/ ψ elliptic flow

Audrey FRANCISCO Subatech, France

Heavy-ion meeting, March 8th 2017 • IPN Orsay

Outlook

The flow observable

anistropic matter distribution around the collision

$$E \frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} \{1 + \sum_{n=1}^{\infty} 2v_{n} \cos(n(\Phi - \Psi_{RP}))\}$$

Flow coefficients : $v_n = \cos \{n(\Phi_i - \Psi_{RP})\} >$

directed flow (v_1) , elliptic flow (v_2) , triangular flow (v_3) , ...

Motivations for charmonium flow study

Why is it interesting ?

How to measure it ?

What are the results ?

Audrey Francisco

Hydrodynamics : charged hadrons with ALICE

Comparison to hydro at low $p_{T:}$

- v₂ origin: early, partonic stages of the system
- v₂ governed by the QGP evolution

 J/ψ elliptic flow

At low p_T ($p_T < 2 \text{ GeV/c}$) : mass ordering

For intermediate p_T : v₂ (Baryons) > v₂ (Mesons)

Motivations for charmonium studies

- Heavy quarks in Pb-Pb collisions at the LHC
 - early production (c ~ 0.1 fm/c vs. QGP ~ 0.3 fm/c)
 → experience the full system evolution Nucl.Phys. A757 (2005) 184-283
 - interact with the QGP : sensitive to the medium properties
- Charmonium (cc̄) in Pb-Pb collisions : hard probes of the QGP

Open questions :

- Do charm quarks thermalize?
- Do they follow collective dynamics of bulk?

Charmonium production in the QGP

Quarkonium suppression :

- Initially : J/ψ suppression predicted by Matsui and Satz in 1986 by Debye screening mechanism Phys.Lett. B178 (1986) 416-422
- Different quarkonium binding energy : sequential suppression with increasing medium temperature Phys. Rev. D 64 (2001) 094015

$$R_{AA} = \frac{Y_{AA}}{\langle T_{AA} \rangle \sigma_{PP}}$$

Quarkonium yield in AA compared to the pp one, scaled by the overlap factor T_{AA} (from Glauber model) (Re)combination :

- Increased charm quark density
 →enhanced quarkonia production
- Less relevant for bottomonium than charmonium
 Phys. Rev. C 63 (2001) 054905 Phys. Lett. B 490 (2000) 196–202

 J/ψ elliptic flow

Charmonium production in the QGP

- + From $\langle N_{part} \rangle$ > 50: no significant centrality dependence
- J/ ψ suppression at $\sqrt{s_{NN}}$ =5.02 TeV confirms observations at $\sqrt{s_{NN}}$ =2.76 TeV with an increased precision
- *p*_T > 0.3 GeV/*c* to remove most of photo-production (brackets for the remaining contribution)

Transport models: TM1 and TM2

NPA 859 (2011) 114, PRC 89 no.5, 459 (2014) 054911

Statistical hadronization

NPA 904-5 (2013) 535c

Co-movers interaction model PLB 731 (2014) 57

- Main sources of uncertainties
- Precise determination of open charm cross-section

Feed-down from higher quarkonium resonances and b decays

CNM effects on quarkonium production

Audrey Francisco

 J/ψ elliptic flow

Charmonium production at mid-y

 J/ψ elliptic flow

The elliptic flow of D mesons

• Heavy quarks participate to the collective expansion dynamics

- Recombined states should inherit their flow
- Relevant observable for quarkonium (re)generation study
- Further constrain theoretical models describing quarkonium production

$J/\psi v_2$ at RHIC energies

Audrey Francisco

 J/ψ elliptic flow

$J/\psi v_2$ at $\sqrt{s_{NN}} = 2.76 \text{TeV}$

$J/\psi v_2$ measurements with ALICE in Pb-Pb

Charmonium reconstruction with the ALICE detector

Audrey Francisco

 J/ψ elliptic flow

IPNO, March 8th 2018

3

ALICE Preliminary

Pb-Pb, $\sqrt{s}_{NN} = 5.02 \text{ TeV}$

Centrality: 20-40 %

•OS-EM

3.5

-MC

J/ψ elliptic flow: how to measure it ?

- Methods based on event plane determination From detector multiplicities : $\Psi_n = \frac{1}{n} \arctan(Q_{n,x}, Q_{n,y})$
- Fit of $\langle \cos(2 \Delta \phi) \rangle$ distribution vs inv. mass with $\Delta \phi = \phi_{\mu\mu} \Psi_{2,EP}$

Audrey Francisco

Results at $\sqrt{s_{NN}} = 5.02 \text{TeV}$

Highest significance : 6.6σ for 20-40% and $4 < p_T < 6 \text{ GeV}/c$ v₂ = 0.113 ± 0.015(stat) ± 0.008(syst)

Audrey Francisco

Compatible with results at $\sqrt{s_{NN}} = 2.76$ TeV with a higher precision

Comparison to open charm
→ indication of :
charm recombination and
thermalization in the medium

Comparison with theory

Additionnal component from initial magnetic field could help better describe high p_T anisotropy

ALI-DER-139134

Magnitude at low p_T is reproduced by including a strong J/ ψ (re)generation component At high p_T the v_2 is underestimated (prompt J/ ψ from CMS also indicate a non-zero v_2)

Cold nuclear matter effects

ALICE, inclusive $J/\psi \rightarrow \mu^+\mu^-$

Outside hot matter mechanisms, other effects might affect quarkonium production

 $R_{
m pPb}$

1.2

0.8

0.6

0.4

- Energy loss
- Initial state: nuclear parton shadowing/CG condensate
- Final state: nuclear absorption

Audrey Francisco

 J/ψ elliptic flow

Collectivity in p-Pb collisions ?

ALI-PREL-134117

- Positive v₂ observation for charged particles
- Mass ordering for $p_T < 2.5 \text{GeV/}c$
- At high p_T muons are dominated by HF decays

Collective effect for J/ψ in p-Pb ?

• Azimuthal correlations between J/ψ (in the dimuon channel) and mid-rapidity charged particles

- Sizeable v₂ measured in p-Pb collisions at 5.02 and 8.16 TeV (compatible with Pb-Pb in 5-20%)
- No significant (re)generation contribution is expected and lesser path-length effect w.r.t Pb-Pb

Summary

- The J/ ψ particle flows !
 - First hints at 2.76 TeV and clear signal at 5.02TeV
 - Low energy measurements still compatible with LHC observations
- At high p_T the J/ ψ v₂ in Pb-Pb is largely underestimated by theory
- The origin of $J/\psi v_2$ in p-Pb is not yet understood

Thank you for your attention !

Papers on arXiv :

1709.05260 : J/ ψ elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

1709.06807 : Search for collectivity with azimuthal J/ ψ hadron correlations in high multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV

Audrey Francisco

