

J/ψ production in p-Pb collisions with

Igor Lakomov*, IPN Orsay

*on behalf of the ALICE collaboration

Rencontres Ions Lourds, 18.07.2013, Orsay

Outline

 \diamond Physics motivation

 \diamond Analysis

 \diamond Results

- Forward to Backward ratio $R_{FB}^{J/\psi}$ integrated and vs p_{T} , vs y_{cms}
- Nuclear modification factor $R_{pPb}^{J/\psi}$ integrated and vs y

♦ Summary and outlook

Physics motivations

To disentangle hot and cold nuclear matter (CNM) p-Pb measurements are needed as an intermediate step between Pb-Pb and benchmark pp collisions.

Cold nuclear matter effects

In p-Pb different kinds of nuclear matter effects can be considered:

1 Initial-state

✓ gluon shadowing[1] (or saturation[2]): at high energies gluons start shadowing each other (or recombining).

> At LHC energies large shadowing is expected.

2 Coherent energy loss [4]: gluon radiates a soft gluon.

> The amount of medium-induced gluon radiation defines the strength of the J/ ψ suppression.

③ Final-state

✓ nuclear absorption: J/ ψ pre-resonant state destruction by colliding nucleons.

➤ At the LHC at mid- and forward rapidity in p-Pb the ccbar pair spends a very short time within cold nuclear matter, due to the large Lorentz gamma of the colliding nuclei. Consequently, nuclear absorption is then expected to be negligible [5].

 K. Eskola et al., JHEP 0904:065 (2009)
D. E. Kharzeev et al., arXiv:1205.1554 (2012); F. Dominguez et al. arXiv:1109.1250 (2012)

[3] R. Vogt Phys.Rev. C81 (2010) 044903

[5] Lourenco et al., JHEP 0902:014, 2009

[4] F. Arleo, S. Peigne, arXiv1204.4609 (2012)

ALICE detector

Event selection and analysis cuts

Event selection

- ✓ MB trigger: Coincidence of the two sides of VZERO: 2.8 < η < 5.1, -3.7 < η < -1.7
- ✓ MB trigger efficiency ~99% for NSD events
- \checkmark Rejection of beam-gas and electromagnetic interactions
- \checkmark SPD used for vertex determination

• Dimuon trigger

- ✓ Coincidence of minimum bias (MB) interaction with two opposite sign muon tracks detected in the trigger chambers of the Muon spectrometer
- The following cuts (standard for J/ψ analysis) were also applied:
 - ✓ Muon trigger matching
 - ✓ -4 < η_µ < -2.5
 - ✓ 17.6 cm < R_{abs} < 89.5 cm, where R_{abs} track radial position at the absorber end
 - ✓ Unlike sign dimuon

$$\checkmark 2.5 < y_{\mu\mu}^{lab} < 4$$

18.07.2013

Main observables (R_{pPb} , R_{Pbp})

 \succ Nuclear modification factor R_{pPb} and R_{Pbp}

$$R_{pPb}^{J/\psi} = \frac{Y_{p-Pb}}{\left\langle T_{p-Pb} \right\rangle \sigma_{pp}^{J/\psi \to \mu^{+}\mu^{-}}}, \qquad Y_{p-Pb} = \frac{N_{J/\psi \to \mu^{+}\mu^{-}}}{\left(A \times \varepsilon\right) N_{MB}}$$

 R_{pPb} and R_{Pbp} are computed in the range 2.5 < y_{lab} < 4 T_{pPb} = 0.0983 ± 0.0034 mb⁻¹ – nuclear overlap function

Shift in y_{cms} and rapidity coverage

LHC beam asymmetry (E_{Pb} =1.58•A TeV, E_p =4 TeV) => $|\Delta y|_{cms}$ = 0.5 Log($Z_{Pb}A_p/Z_pA_{Pb}$) = 0.465

Main observables (R_{FB})

Forward to Backward ratio *R*_{FB}

$$R_{FB}^{J/\psi} = \frac{R_{pPb}}{R_{Pb-p}}$$

 R_{FB} is computed in the y_{cms} range common to both p-Pb and Pb-p: 2.96 < y_{cms} < 3.53 which corresponds to the following range in lab.system:

p-Pb: $3.43 < y_{lab} < 4$ Pb-p: $-3.07 < y_{lab} < -2.5$ $3.2 \cdot 10^{-5} > x_{Bjorken} > 1.8 \cdot 10^{-5}$ $2.1 \cdot 10^{-2} > x_{Bjorken} > 1.2 \cdot 10^{-2}$

In that case T_{pPb} and the pp cross-section cancel out in the ratio:

Signal extraction

Signal extraction (and its syst. unc.) is based on fits of dimuon inv.mass distribution by varying:

Signal shape: Extended Crystal Ball (CB2) or other pseudo-Gaussian functions (tails tuned on the corresponding Monte Carlo (MC))
Background shape: Variable Width Gaussian (VWG) or Pol2*Exp (or Pol4*Exp)

3<u>Fitting range</u>

These plots are examples of the fit with **CB2+VWG**.

Acceptance x Efficiency

> Average J/ ψ acceptance x efficiency:

p-Pb: ~25% in 2.03<*y*_{cms}<3.53

- Pb-p: ~17% in -4.46<*y*_{cms}<-2.96
- Difference in AccxEff between p-Pb and Pb-p are due to different efficiency of detector in two periods of data-taking

Systematic uncertainties on acceptance inputs uncorrelated vs p_T, y and collision system (different physics)

Summary on the syst. uncertainties

Source of systematic uncertainty:	Systematic uncertainty
Signal extraction	1-4%
Nuclear thickness function T_{pPb}	3.4%
Acceptance inputs	1-3.5%
Tracking efficiency	4-6%
Trigger efficiency	3%
Matching efficiency	1%
Normalization dimuon-MB trigger	1%
Total syst. uncertainty	7-12%

*(ranges correspond to values obtained in y or p_{T} bins)

 $d\sigma_{J/\psi}/dydp_{T}$

$$\sigma_{J/\psi\to\mu^+\mu^-}^{pPb} = \frac{N_{J/\psi\to\mu^+\mu^-}}{L_{int} \times Acc \times \varepsilon \times BR_{J/\psi\to\mu^+\mu^-}}$$

 $\sigma_{\rm MB}$ obtained using VdM scans:

✓ $\sigma_{\rm MB}$: MB condition related to signal in VZERO

 $=\frac{N_{MB}}{N}$

 $\sigma_{\scriptscriptstyle MB}$

 $d\sigma_{J/\psi}/dy$

- Correlated uncertainties (brackets): luminosity, normalization factor, BR
- Luminosity is correlated within p-Pb or Pb-p, but not within the two systems
- Uncorrelated uncertainties (filled boxes): matching, trigger efficiency, tracking, acc. inputs, signal extraction
- Statistical uncertainties (line)

> Cross-sections are higher in the backward rapidity region (Pb-p).

Integrated R_{FB}

$R_{\rm FB} = 0.60 \pm 0.01$ (stat.) ± 0.06 (syst.)

- The uncertainty is small
- Pure shadowing slightly overestimates the data
- Model including energy loss contribution is rather good

$R_{\rm FB}$ vs rapidity

- Comparison with theoretical models confirms previous observations done on the yintegrated results.
- > Calculations including both shadowing and energy loss seems consistent with the data

$R_{\rm FB}$ vs $p_{\rm T}$

- > A sizeable $p_{\rm T}$ -dependence of $R_{\rm FB}$ is seen.
- > Stronger suppression is found at low p_{T} .
- > Theoretical models including energy loss show strong nuclear matter effects at low p_T in fair agreement with the data
- > The observed p_{T} -dependence is smoother than expected in coherent energy loss models

pp-reference

Phenomenological interpolation of the inclusive J/ ψ x-section to pp collisions at V_{*s*_{NN}}=5.02 TeV from CDF, RHIC and LHC (2.76 and 7 TeV) based on the paper from arXiv:1103.2394v3.

①Energy dependence: pp cross-section at mid-rapidity

Calculations performed using a Monte Carlo toy. Parametrization with a power-law shape.

$$\frac{d\sigma_{J/\psi \to \mu^+ \mu^-}^{pp}}{dy} \bigg|_{y=0} = 362 \pm 6(stat.)^{+55(syst.)}_{-37(syst.)} nb$$

2 Rapidity dependence

Based on a universal, energy independent gaussian shape.

3 Systematic uncertainties

Evaluated within 2.5 σ in order to include most of the uncertainties from FONLL and CEM LO interpolation.

$$BR \cdot \sigma_{J/\psi \to \mu^{+}\mu^{-}}^{pp} (2.03 < y_{cms} < 3.53) = 231^{+41(syst.)}_{-32(syst.)} nb$$
$$BR \cdot \sigma_{J/\psi \to \mu^{+}\mu^{-}}^{pp} (-4.46 < y_{cms} < -2.96) = 159^{+40(syst.)}_{-27(syst.)} nb$$

Summary on the systematics

Source of systematic uncertainty:	Systematic Uncertainty
Signal extraction	1-4%
Nuclear thickness function T_{pPb}	3.4%
Acceptance inputs	1-3.5%
Tracking efficiency	4-6%
Trigger efficiency	3%
Matching efficiency	1%
Normalization dimuon-MB trigger	1%
pp reference <i>@ y</i> =0 <i>,</i> √ <i>s</i> = 5.02 TeV	10-15%
<i>y</i> -dependence of pp interpolation @ $\sqrt{s_{NN}}$ = 5.02 TeV	10-20%
Total syst. uncertainty (excluding pp interpol.)	7-12%

*(ranges correspond to values obtained in y or p_{T} bins)

$R_{\rm pPb}$ and $R_{\rm Pbp}$ integrated

 R_{pA} (2.03< y_{cms} <3.53) = 0.732 ± 0.005(stat) ± 0.059(syst) + 0.131(syst. ref) - 0.101(syst.ref) R_{pA} (-4.46< y_{cms} <-2.96) = 1.160 ± 0.010 (stat) ± 0.096(syst) + 0.296(syst. ref) - 0.198(syst.ref)

- Large uncertainty (correlated and uncorrelated) from pp interpolation
- > At forward rapidity, data in-between shadowing and energy loss models
- Color Glass Condensate (CGC) model underestimates the data

$R_{\rm pPb}$ and $R_{\rm Pbp}$ vs rapidity

- At backward rapidity, models including coherent parton energy loss show a slightly steeper pattern than the one observed in data
- Results dominated by a large uncertainty from pp interpolation

What about the other experiments?

Comparison of ALICE results with LHCb

ALI-DER-50812

- Visible disagreement in results.
- Only half of statistics analyzed by LHCb.
- Work in progress in understanding the discrepancy between experiments.

Summary...

ALICE has measured inclusive J/ ψ production in p-Pb run in backward and forward rapidity regions at v_{NN} = 5.02 TeV. Many interesting results are obtained:

• Measured strong p_T dependence of R_{FB} with a decrease at low p_T is in a fair agreement with models including coherent energy loss contribution.

- R_{pPb} and R_{Pbp} show an increase of suppression towards forward rapidity in agreement with energy loss model and/or shadowing model EPS09 NLO.
- pure nuclear shadowing and/or energy loss seem to reasonably describe the data, indicating that final state absorption may indeed be negligible at LHC energies

Some extra fresh results...

From the $d\sigma/dydp_T$ distributions one can calculate the mean p_T in the full y-range

Some extra fresh results...

From the $d\sigma/dydp_T$ distributions one can calculate the mean p_T in the common y-range

> $< p_T > |_{0-15 \text{ GeV/c}} = 2.71 \pm 0.02^{\text{stat.}} \pm 0.03^{\text{syst.}}$ GeV/c in p-Pb -> compare to $< p_T > |_{0-15 \text{ GeV/c}} = 2.77 \pm 0.01^{\text{stat.}} \pm 0.02^{\text{syst.}}$ GeV/c in the full y-range

 $> <\mathbf{p}_{T} > |_{0-15 \text{ GeV/c}} = 2.56 \pm 0.02^{\text{stat.}} \pm 0.03^{\text{syst.}} \text{ GeV/c in Pb-p}$ $- > \text{compare to } <\mathbf{p}_{T} > |_{0-15 \text{ GeV/c}} = 2.47 \pm 0.01^{\text{stat.}} \pm 0.02^{\text{syst.}} \text{ GeV/c in the full y-range}$

...and outlook

• Many other interesting results are under study: R_{pPb} vs centrality, $\Psi(2S)$ yield...

Stay tuned...

> Thank you for your attention!

...and outlook

• Many other interesting results are under study: R_{pPb} vs centrality, $\Psi(2S)$ yield...

Stay tuned...

> Thank you for your attention!

Backup slides

Signal extraction in p_{T} bins

Signal extraction in y bins

$d\sigma_{J/\psi}/dp_T$ in common y-range

From these cross-sections one can directly calculate the R_{FB}

Interpolation of $\sigma_{J/\psi}^{pp}$ at $\sqrt{s_{NN}}$ =5.02 TeV

Comparison of ALICE results with LHCb - 2

- ALICE uncertainties:
- ♦ Statistical uncertainties (line)

♦ Systematic uncertainties:
<u>Corr. uncertainties</u> (brackets): luminosity, normalization factor, BR
(Luminosity is correlated within p-Pb or Pb-p, but not within the two systems)
<u>Uncorr. uncertainties</u> (filled boxes): matching, trigger, tracking, acc. inputs, signal extraction

ALI-DER-50864

- Visible disagreement in results.
- Only half of statistics analyzed by LHCb.
- Work in progress in understanding the discrepancy between experiments.