

Physique des quarkonia avec le spectromètre à muons d'ALICE

Philippe Rosnet (ALICE Collaboration) Laboratoire de Physique Corpusculaire de Clermont-Ferrand (UBP - CNRS/IN2P3), France Physique des quarkonia avec le spectromètre à muons d'ALICE

> Introduction au spectromètre à muons d'ALICE

> Collisions p-p à \sqrt{s} = 14 TeV (fast simulation)

> Collisions Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV (fast simulation)

> Collisions p-p à \sqrt{s} = 14 TeV (full simulation)

□ Collisions p-p pour tester QCD :

> étude des PDFs

> modèles de formation des quarkonia

Collisions p-A pour mesurer les effets nucléaires froids

- effets de shadowing (CGC)
- > absorption nucléaire normale

Collisions A-A pour étudier les milieux chauds et denses

- > suppression anormale par écrantage de couleur
- > augmentation par hadronisation statistique

Les quarkonia considérés : J/ ψ , ψ ', Υ , Υ ', Υ '' $\rightarrow \mu^+\mu^-$

Physique des quarkonia avec le spectromètre à muons d'ALICE

> Introduction au spectromètre à muons d'ALICE

> Collisions p-p à \sqrt{s} = 14 TeV (fast simulation)

> Collisions Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV (fast simulation)

> Collisions p-p à \sqrt{s} = 14 TeV (full simulation)

Être capable de séparer les différents états de la famille du Y

Le spectromètre à muons de l'expérience ALICE

Performances du spectromètre à muons : Trigger

Performances du spectromètre à muons : Tracking

Physique des quarkonia avec le spectromètre à muons d'ALICE

Introduction au spectromètre à muons d'ALICE

> Collisions p-p à \sqrt{s} = 14 TeV (fast simulation)

> Collisions Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV (fast simulation)

> Collisions p-p à \sqrt{s} = 14 TeV (full simulation)

Simulation des quarkonia en mode p-p

□ **Distributions en impulsion transverse (p_T)** extrapolées des données du Tevatron (mi-rapidité)

Distributions en rapidité (y) fournies par une paramétrisation du Color Evaporation Model (CEM)

 Acceptance à \sqrt{s} = 14 TeV (p_µ > 4 GeV/c)

 $\alpha_{J/\psi}$ = 4.24 %
 α_{Υ} = 4.42 %

Section efficaces totales incluant la contribution des résonances de plus haute masse :

[J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295]

√s	Β_{μμ} σ_{J/Ψ}	$B_{\mu\mu}\sigma_{B ightarrow J/\Psi}$	Β _{μμ} σ _Ψ ,	$B_{\mu\mu} \sigma_{B ightarrow \psi'}$	Β _{μμ} σ _Υ	Β _{μμ} σ _{Υ'}	Β_{μμ} σ_{Υ"}
en p-p	(µb)	(µb)	(µb)	(µb)	(µb)	(µb)	(µb)
14 TeV	3.18	0.66	0.057	0.023	0.028	0.0069	0.0041
5.5 TeV	1.83	0.27	0.033	0.0094	0.012	0.0030	0.0018

-----→ = 14 à 17 % des J/ψ

□ Charme et beauté générés avec Pythia pour reproduire pQCD @ NLO à $\sqrt{s} = 14$ TeV : $\sigma_{cc} = 11.2$ mb $\sigma_{bb} = 0.51$ mb

Statistique attendue en mode p-p à √s =14 TeV

> Luminosité intégrée par an : $\int \mathcal{L} dt = (3 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}) \times (10^7 \text{ s})$

 $\Rightarrow N_{pp} = 1.8 \times 10^{12}$ evts avec $\sigma_{pp}^{in} = 60$ mb [J. Phys. G: Nucl. Part. Phys. 30 (2004) 1517]

Distribution gluonique avec le J/ ψ en mode p-p à \sqrt{s} =14 TeV

Production des quarks lourds dominée par les processus de fusion de gluons

Intervalles en x accessibles à l'aide du $J/\psi \rightarrow \mu^+\mu^-$: $x = M/\sqrt{s} \times exp(\pm y)$

Comparaison entre la distribution en rapidité expérimentale attendue des J/ψ (simulée avec MRST98 LO) et les prédictions phénoménologiques du Color Evaporation Model

Polarisation du J/ ψ en mode p-p à \sqrt{s} =14 TeV

Physique des quarkonia avec le spectromètre à muons d'ALICE

Introduction au spectromètre à muons d'ALICE

> Collisions p-p à \sqrt{s} = 14 TeV (fast simulation)

> Collisions Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV (fast simulation)

> Collisions p-p à \sqrt{s} = 14 TeV (full simulation)

Simulation des quarkonia en mode Pb-Pb

□ Sections efficaces totales en ions lourds (A-A) obtenues à l'aide d'un modèle de Glauber (binary scaling) des sections efficaces p-p :

$$\sigma_{\text{AA}} = \textbf{A}^2 \times \sigma_{\text{pp}}$$

□ Prise en compte des effets de shadowing [Phys. Rev. C 61 (2000) 044904] :

 $C_{sh}(b) = C_{sh}(0) + [1 - C_{sh}(0)] (b / 16 \text{ fm})^4$

Pb-Pb à √s _{NN} = 5.5 TeV	J/Ψ	$B \rightarrow J/\Psi$	Ψ'	$B \rightarrow \Psi'$	Υ	Υ'	Υ"
C _{sh} (0)	0.60	0.84	0.60	0.84	0.76	0.76	0.76

□ Bruit de fond (π^{\pm} ,K[±]) → μ^{\pm} généré à l'aide d'une paramétrisation de Hijing telle que :

 $|dN_{ch}/d\eta|_{\eta=0} = 8000$

Étude avec 5 bins		c1	c2	c3	c4	c5
en centralité	b (fm)	0 - 3	3 - 6	6 - 9	9 - 12	> 12
	<n<sub>part></n<sub>	385	297	177	70	8

Extraction des quarkonia en mode Pb-Pb à √s_{NN} = 5.5 TeV

× (10⁶ s)

≻ <u>Hypothèse</u> :

soustraction parfaite des dimuons noncorrélés

Ajustement :

résonance
 = Landau
 ⊕ Gauss

continuum
 exponentielle

Statistique des quarkonia en mode Pb-Pb à √s_{NN} = 5.5 TeV

State	Centrality	S [×10 ³]	B [×10 ³]	S/B	$S/\sqrt{S+B}$
	c1	130 (22)	680	0.20	150
	c2	230 (38)	860	0.27	220
J/ψ	c3	200 (32)	410	0.48	250
	c4	95 (15)	88	1.08	220
	c5	21.7 (3.2)	6.9	3.13	130
	c1	3.7 (1.4)	300	0.01	6.7
	c2	6.5 (2.4)	385	0.02	11
ψ'	c3	5.5 (2.0)	190	0.03	13
	c4	2.6 (0.9)	42	0.06	12
	c5	0.59 (0.20)	3.4	0.17	9.3
	c1	1.3	0.8	1.7	29
	c2	2.4	1.0	2.3	41
Υ	c3	2.0	0.55	3.6	39
	c4	0.93	0.15	6.1	28
	c5	0.20	0.022	9.1	14
	c1	0.35	0.54	0.65	12
	c2	0.62	0.67	0.92	17
Ύ	c3	0.52	0.38	1.4	17
	c4	0.24	0.11	2.2	13
	c5	0.054	0.016	3.5	6.4
	c1	0.20	0.42	0.48	8.1
	c2	0.35	0.55	0.64	12
Υ''	c3	0.30	0.30	0.99	12
	c4	0.14	0.088	1.6	9.2
	c5	0.030	0.014	2.2	4.6

() : b \rightarrow (J/ ψ , ψ ') + X

Statistique attendue sans effets nucléaire, excepté le shadowing :

 $\square \mathbf{N}_{|\mathbf{QQ}\rangle} = \mathbf{m}_{fit} \pm 2 \sigma_{m}$ $(\sigma_{m} = W_{Landau} + \sigma_{Gauss})$

□ grande statistique $<N_{J/\psi}> \approx 135 \times 10^{3}$ $<N_{\Upsilon}> \approx 1400$

bonne significance

⇒ Étude en p_⊤ par bin de centralité possible

Dépendance en N_{part} des quarkonia en mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV

Suppression-1 [909 : Phys. Rev. D 72 (2005) 114011] : $T_c = 270 \text{ MeV}$ Suppression-2 [908 : hep-ph/0509088] : $T_c = 190 \text{ MeV}$

Rapport Quarkonia / Beauté :

 sans absorption nucléaire normale
 sans perte d'énergie des quarks lourds

Resonance	J/ψ	ψ'	χc	Υ	Υ'	Υ''	χb	χ_b'
$\tau_{\rm F}$, fm/ c	0.89	1.5	2.0	0.76	1.9	1.9	2.6	2.6
$T_{\rm D}/T_{\rm c}~[909]$	1.7	1.1	1.13	4.0	1.4	1.14	1.6	1.16
$T_{\rm D}/T_{\rm c}~[908]$	1.21	1	1	2.9	1.06	1	1.07	1

R_{AA}(p_T) du Υ en mode Pb-Pb à √s_{NN} = 5.5 TeV

[DimuonNet Report, in preparation]

Étude du rapport Υ'/Υ en mode Pb-Pb à √s_{NN} = 5.5 TeV

Intérêt : annulation

d'incertitudes systématiques

d'effets nucléaires froids

Rapport Y'/Y sensible au milieu après 1 mois de données Pb-Pb

[DimuonNet Report, in preparation]

Physique des quarkonia avec le spectromètre à muons d'ALICE

Introduction au spectromètre à muons d'ALICE

> Collisions p-p à \sqrt{s} = 14 TeV (fast simulation)

> Collisions Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV (fast simulation)

> Collisions p-p à \sqrt{s} = 14 TeV (full simulation)

Physics Data Challenge 2006 : p-p à √s =14 TeV

But du PDC06 :

tester le calcul sur la grille

effectuer une production de type événements réels

développer les codes d'analyse "finals"

- ➢ Simulation équivalente
 à ≈ 1 journée LHC :
 - J/ ψ = Landau \oplus Gauss
 - Bkg = exponentielle

$$\Rightarrow$$
 N_{J/ ψ} \approx 5800

Bonnes performances attendues du spectromètre à muons pour l'étude des quarkonia : séparation des différents états d'une même famille

> En mode p-p à $\sqrt{s} = 14$ TeV :

□ très grande statistique : $N_{J/\psi}$ = 2800×10³ et N_{Υ} = 27×10³ par an

 $\hfill \square$ mesure des sections efficaces différentielles $d\sigma/dp_T$ et $d\sigma/dy$ et de la polarisation du J/ψ

□ étude des modèles de formation des quarkonia et des PDFs

> En mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV :

G grande statistique : $N_{J/\psi} = 675 \times 10^3$ et $N_{\Upsilon} = 7 \times 10^3$ par mois

mesure possible du facteur R_{AA} et des rapports ψ'/(J/ψ) et Υ'/Υ en fonction de la centralité et du p_T

études envisagées des différents scénarii de QGP

> Études de physique avec des simulations complètes de collisions p-p à $\sqrt{s} = 14$ TeV : codes d'analyse des données en développement

À développer :

I'analyse du Υ en mode p-p

Ia soustraction du bruit de fond dans les collisions Pb-Pb
 ...

Mais également :

- o finir d'installer le détecteur,
- o et faire le commissioning du détecteur,
- o et finir de développer les outils de contrôle (DCS, online, ...),
- o et continuer à développer le software d'analyse
- o et je n'ai plus de place ...

© Bogdan Vulpescu (LPC)

Performances du spectromètre pour les quarkonia

	BI	≺G 1 = 2 × Hi	jing (Pb-Pl	b cental :	N _{ch} /dy _{y=0}	<mark>, = 6000)</mark>	
Rés	olution						
		BKG 0	BKG 0.5	BKG	G 1		
Υ	σ (MeV) σ (MeV)	$97 (99 \pm 2)$ 75 (72 ± 2)	108 (109 ±	E 2) 120	(115 ± 2) (70 ± 2)		
J /ψ	0 (MCV)	75 (72 ± 2)	10()+1	2) 11	(70 ± 2)	Effic	cacités
					BKG 0	BKG 0.5	BKG 1
			Υ	$arepsilon_{ ext{trig}}(\%) \ arepsilon_{ ext{track}}(\%)$	92 (92) 92 (97)	91 (91) 90 (94)	92 (91) 86 (91)
				$\varepsilon_{\rm all}(\%)$	85 (89)	82 (86)	79 (83)
				$\varepsilon_{\rm trig}(\%)$	74 (72)	77 (76)	83 (83)
	C Nucl Dort Dh	Va 22 (2006) 12051	J/ψ	$arepsilon_{ ext{track}}(\%) \ arepsilon_{ ext{all}}(\%)$	86 (92) 64 (67)	84 (90) 64 (69)	79 (84) 66 (70)

Simulation des quarkonia à $\sqrt{s} = 14 \text{ TeV}$

Mesure des spectres du Υ en mode p-p à \sqrt{s} =14 TeV

Uniquement incertitudes statistiques prises en compte ⇒ Mesures pas limitées par la statistique

[ALICE-INT-2006-029]

Polarisation du J/ ψ en mode p-p à \sqrt{s} =14 TeV

- > CEM : pas de polarisation
- NRQCD : polarisation transverse

Statistique suffisante pour une étude de la polarisation en fonction du p_T du J/ψ

[R. Arnaldi and E. Scomparin, PWG3 ALICE-Physics-Week-Munster-2007]

Simulation des quarkonia à $\sqrt{s} = 5.5 \text{ TeV}$

Fit des quarkonia en mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV

Suppression nucléaire des quarkonia en mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV

Rapport Quarkonium / Beauté :

avec absorption nucléaire normale [hep-ph/0311048]

•
$$\sigma_{abs}^{J/\psi}$$
 = 10.3 ± 1.0 mb
• σ_{abs}^{Υ} = 4.6 ± 0.9 mb

sans perte d'énergie des quarks lourds

Incertitudes = statistique

Calcul du facteur de modification nucléaire pour un quarkonium $|Q\overline{Q}\rangle$:

Spectre en p_T dans les collisions p-p à $\sqrt{s} = 14$ TeV

R_{AA}(p_T) du J/ψ en mode Pb-Pb à √s_{NN} = 5.5 TeV

Preliminary : uncertainties under-estimated

Étude du rapport ψ'/(J/ψ) en mode Pb-Pb à √s_{NN} = 5.5 TeV

[DimuonNet Reprot, in preparation]

Polarisation du J/ ψ en mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV

Prédiction [B.L. loffe and D.E. Kharzeev: Phys. Rev. C68 (2003) 061902] : « augmentation de la polarisation du J/ψ dans un QGP »

Possibilité d'étudier la polarisation du J/ψ en fonction de la centralité, mais incertitudes systématiques à évaluer

PDC06 : $p_T du J/\psi$ en mode p-p à \sqrt{s} =14 TeV

Normalisation 'minimum bias' : $N_{pp} = 2.2 \ 10^9$ ($\approx 1 \ LHC$ -day)

PDC06 : rapidité du J/ψ en mode p-p à √s =14 TeV

Normalisation 'minimum bias' : $N_{pp} = 2.2 \ 10^9$ ($\approx 1 \ LHC$ -day)

Polarisation du J/ ψ avec le PDC06 en mode p-p à \sqrt{s} =14 TeV

Statistique de 7000 J/ ψ

Quarkonia et écrantage de couleur dans un QGP 'dynamique'

Conditions de suppression d'un qruarkonium :

- temps de formation dans le référentiel du QGP : $t_{form} < \tau_{QGP}$
- distance de formation dans le référentiel du QGP : $d_{form} < r_{QGP}$
- température de dissociation : $T_D < T_{QGP}$

Donc pour une paire $b\overline{b}$ produite dans le plan trasverse au point $x^{\mu} = (0, \vec{r}, 0)$, un quarkonium de masse M et de temps propre de formation τ_{form} se forme au point $x^{\mu'} = (t_{\text{form}}, \vec{r} + \frac{\tau_{\text{form}}\vec{p}_T}{M}, 0)$ avec un quadrimoment $p^{\mu'} = (\sqrt{p_T^2 + M^2}, \vec{p}_T, 0)$, on doit alors avoir :

$$\circ \sqrt{1 + \frac{p_{T}^{2}}{M^{2}}} \tau_{form} < \tau_{QGP}$$
$$\circ \left| \vec{r} + \frac{\tau_{form} \vec{p}_{T}}{M} \right| < r_{QGP}$$

R. F. Gunion and R. Vogt, Nucl. Phys. B492 (1997) 301]