#### Deuxièmes rencontres QGP-France Etretat, 17-20 septembre 2007



# Physique des quarkonia avec le spectromètre à muons d'ALICE



Philippe Rosnet

(ALICE Collaboration)

Laboratoire de Physique Corpusculaire
de Clermont-Ferrand (UBP - CNRS/IN2P3), France

# Physique des quarkonia avec le spectromètre à muons d'ALICE



➤ Introduction au spectromètre à muons d'ALICE

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (fast simulation)

 $\triangleright$  Collisions Pb-Pb à  $\sqrt{s_{NN}}$  = 5.5 TeV (fast simulation)

Collisions p-p à √s = 14 TeV (full simulation)

#### Intérêt des quarkonia



- □ Collisions p-p pour tester QCD :
  - étude des PDFs
  - modèles de formation des quarkonia
- □ Collisions p-A pour mesurer les effets nucléaires froids
  - effets de shadowing (CGC)
  - > absorption nucléaire normale
- ☐ Collisions A-A pour étudier les milieux chauds et denses
  - suppression anormale par écrantage de couleur
  - > augmentation par hadronisation statistique

Les quarkonia considérés : J/ $\psi$ ,  $\psi$ ',  $\Upsilon$ ,  $\Upsilon$ ',  $\Upsilon$ " $\rightarrow \mu^{+}\mu^{-}$ 

# Physique des quarkonia avec le spectromètre à muons d'ALICE



> Introduction au spectromètre à muons d'ALICE

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (fast simulation)

 $\triangleright$  Collisions Pb-Pb à  $\sqrt{s_{NN}} = 5.5$  TeV (fast simulation)

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (full simulation)

#### Objectif expérimental



Être capable de séparer les différents états de la famille du Y



# Le spectromètre à muons de l'expérience ALICE





# Performances du spectromètre à muons : Trigger





# Performances du spectromètre à muons : Tracking





# Physique des quarkonia avec le spectromètre à muons d'ALICE



> Introduction au spectromètre à muons d'ALICE

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (fast simulation)

 $\triangleright$  Collisions Pb-Pb à  $\sqrt{s_{NN}} = 5.5$  TeV (fast simulation)

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (full simulation)

# Simulation des quarkonia en mode p-p



- □ Distributions en impulsion transverse (p<sub>T</sub>)
   extrapolées des données du Tevatron (mi-rapidité)
- □ Distributions en rapidité (y) fournies par une paramétrisation du Color Evaporation Model (CEM)

Acceptance à 
$$\sqrt{s}$$
 = 14 TeV (p <sub>$\mu$</sub>  > 4 GeV/c)  
 $\alpha_{J/\psi}$  = 4.24 %  $\alpha_{\Upsilon}$  = 4.42 %





[J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295]

| √s      | $B_{\mu\mu}\sigma_{\mathrm{J/\Psi}}$ | $B_{\mu\mu}  \sigma_{B 	o J/\Psi}$ | $B_{\mu\mu}  \sigma_{\Psi}$ | $B_{\mu\mu}  \sigma_{B 	o  \Psi'}$ | $B_{\mu\mu} \sigma_{\Upsilon}$ | $B_{\mu\mu}  \sigma_{\Upsilon}$ | $m{\mathcal{B}}_{\!\mu\mu}\sigma_{\!\Upsilon''}$ |
|---------|--------------------------------------|------------------------------------|-----------------------------|------------------------------------|--------------------------------|---------------------------------|--------------------------------------------------|
| en p-p  | (µb)                                 | (µb)                               | (µb)                        | (µb)                               | (µb)                           | (µb)                            | (µb)                                             |
| 14 TeV  | 3.18                                 | 0.66                               | 0.057                       | 0.023                              | 0.028                          | 0.0069                          | 0.0041                                           |
| 5.5 TeV | 1.83                                 | 0.27                               | 0.033                       | 0.0094                             | 0.012                          | 0.0030                          | 0.0018                                           |

→ = 14 à 17 % des J/ψ

□ Charme et beauté générés avec Pythia pour reproduire pQCD @ NLO

à  $\sqrt{s}$  = 14 TeV :

 $\sigma_{cc} = 11.2 \text{ mb}$   $\sigma_{bb} = 0.51 \text{ mb}$ 

#### Statistique attendue en mode p-p à √s =14 TeV



> Ajustement des résonances à l'aide d'une triple gausienne  $N_{\Upsilon} = 27 \times 10^{3}$  $N_{J/\psi} = 2800 \times 10^3$  $N_{Y'} = 6.8 \times 10^3$ [ALICE-INT-2006-029]  $N_{w'} = 75 \times 10^3$  $N_{\gamma''} = 4.2 \times 10^3$ total ···· total bkg correlated bkg → correlated bkg combinatorial bkg combinatorial bkg ipsiFromB psiPrimeFromB 10<sup>4</sup> 10<sup>2</sup> Grande statistique  $\Rightarrow$  d $\sigma$ /d $p_T$  et d $\sigma$ /dy 10 10.5 11

#### Distribution gluonique avec le J/ψ en mode p-p à √s =14 TeV



Production des quarks lourds dominée par les processus de fusion de gluons

Intervalles en x accessibles à l'aide du  $J/\psi \rightarrow \mu^{+}\mu^{-}$ :  $x = M/\sqrt{s} \times exp(\pm y)$ 



Comparaison entre la distribution en rapidité expérimentale attendue des  $J/\psi$  (simulée avec MRST98 LO) et les prédictions phénoménologiques du Color Evaporation Model



#### Polarisation du J/ψ en mode p-p à √s =14 TeV



Étude de la polarisation du J/ψ dans le **repère d'hélicité** (référentiel

propre du  $J/\psi$ ):

$$\frac{d\sigma}{d\cos\theta} = 1 + \alpha\cos^2\theta$$







### Reconstruction avec le spectromètre à muons



### Physique des quarkonia avec le spectromètre à muons d'ALICE



> Introduction au spectromètre à muons d'ALICE

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (fast simulation)

 $\triangleright$  Collisions Pb-Pb à  $\sqrt{s_{NN}}$  = 5.5 TeV (fast simulation)

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (full simulation)

### Simulation des quarkonia en mode Pb-Pb



□ Sections efficaces totales en ions lourds (A-A) obtenues à l'aide d'un modèle de Glauber (binary scaling) des sections efficaces p-p :

$$\sigma_{AA} = A^2 \times \sigma_{pp}$$

☐ Prise en compte des effets de shadowing [Phys. Rev. C 61 (2000) 044904] :

$$C_{sh}(b) = C_{sh}(0) + [1 - C_{sh}(0)] (b / 16 \text{ fm})^4$$

| Pb-Pb à √s <sub>NN</sub> = 5.5 TeV | J/Ψ  | B→ J/Ψ | Ψ'   | В→ Ψ' | Υ    | Υ'   | Υ"   |
|------------------------------------|------|--------|------|-------|------|------|------|
| C <sub>sh</sub> (0)                | 0.60 | 0.84   | 0.60 | 0.84  | 0.76 | 0.76 | 0.76 |

■ Bruit de fond  $(\pi^{\pm}, K^{\pm}) \rightarrow \mu^{\pm}$  généré à l'aide d'une paramétrisation de Hijing telle que :

$$|dN_{ch}/d\eta|_{\eta=0} = 8000$$

☐ Étude avec 5 bins en centralité

|                         | c1    | c2    | сЗ    | c4     | c5   |
|-------------------------|-------|-------|-------|--------|------|
| b (fm)                  | 0 - 3 | 3 - 6 | 6 - 9 | 9 - 12 | > 12 |
| <n<sub>part&gt;</n<sub> | 385   | 297   | 177   | 70     | 8    |

### Extraction des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



Luminosité intégrée par mois :

$$\int \mathcal{L} dt = (5 \times 10^{26} \text{ cm}^{-2} \text{s}^{-1}) \times (10^{6} \text{ s})$$

- Hypothèse : soustraction parfaite des dimuons noncorrélés
- > Ajustement :
- résonance
  - = Landau ⊕ Gauss
- continuum
  - = exponentielle





#### Statistique des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



| State        | Centrality | S [ $\times 10^3$ ] | B [ $\times 10^3$ ] | S/B  | $S/\sqrt{S+B}$ |
|--------------|------------|---------------------|---------------------|------|----------------|
|              | c1         | 130 (22)            | 680                 | 0.20 | 150            |
|              | c2         | 230 (38)            | 860                 | 0.27 | 220            |
| $J/\psi$     | c3         | 200 (32)            | 410                 | 0.48 | 250            |
|              | c4         | 95 (15)             | 88                  | 1.08 | 220            |
|              | c5         | 21.7 (3.2)          | 6.9                 | 3.13 | 130            |
|              | c1         | 3.7 (1.4)           | 300                 | 0.01 | 6.7            |
|              | c2         | 6.5 (2.4)           | 385                 | 0.02 | 11             |
| $\psi'$      | c3         | 5.5 (2.0)           | 190                 | 0.03 | 13             |
|              | c4         | 2.6 (0.9)           | 42                  | 0.06 | 12             |
|              | c5         | 0.59 (0.20)         | 3.4                 | 0.17 | 9.3            |
|              | c1         | 1.3                 | 0.8                 | 1.7  | 29             |
|              | c2         | 2.4                 | 1.0                 | 2.3  | 41             |
| Υ            | c3         | 2.0                 | 0.55                | 3.6  | 39             |
|              | c4         | 0.93                | 0.15                | 6.1  | 28             |
|              | c5         | 0.20                | 0.022               | 9.1  | 14             |
|              | c1         | 0.35                | 0.54                | 0.65 | 12             |
|              | c2         | 0.62                | 0.67                | 0.92 | 17             |
| $\Upsilon'$  | c3         | 0.52                | 0.38                | 1.4  | 17             |
|              | c4         | 0.24                | 0.11                | 2.2  | 13             |
|              | c5         | 0.054               | 0.016               | 3.5  | 6.4            |
|              | c1         | 0.20                | 0.42                | 0.48 | 8.1            |
|              | c2         | 0.35                | 0.55                | 0.64 | 12             |
| $\Upsilon''$ | c3         | 0.30                | 0.30                | 0.99 | 12             |
|              | c4         | 0.14                | 0.088               | 1.6  | 9.2            |
|              | c5         | 0.030               | 0.014               | 2.2  | 4.6            |

(): b  $\rightarrow$  (J/ $\psi$ , $\psi$ ') + X

Statistique attendue sans effets nucléaire, excepté le shadowing :

- ☐ grande statistique  $\langle N_{J/\psi} \rangle \approx 135 \times 10^3$  $\langle N_{\gamma} \rangle \approx 1400$
- bonne significance
- ⇒ Étude en p<sub>T</sub> par bin de centralité possible

# Dépendance en $N_{part}$ des quarkonia en mode Pb-Pb à $\sqrt{s_{NN}}$ = 5.5 TeV



**Suppression-1** [909 : Phys. Rev. D 72 (2005) 114011] :  $T_c = 270 \text{ MeV}$ 

**Suppression-2** [908 : hep-ph/0509088] :  $T_c = 190 \text{ MeV}$ 

#### Rapport Quarkonia / Beauté:

- sans absorption nucléaire normale
- sans perte d'énergie des quarks lourds

| Resonance                     | $\mathrm{J}/\psi$ | $\psi'$ | Χς   | Υ    | $\Upsilon'$ | $\Upsilon''$ | χь   | $\chi_b'$ |
|-------------------------------|-------------------|---------|------|------|-------------|--------------|------|-----------|
| $\tau_{\mathrm{F}}$ , fm/ $c$ | 0.89              | 1.5     | 2.0  | 0.76 | 1.9         | 1.9          | 2.6  | 2.6       |
| $T_{\rm D}/T_{\rm c}~[909]$   | 1.7               | 1.1     | 1.13 | 4.0  | 1.4         | 1.14         | 1.6  | 1.16      |
| $T_{\rm D}/T_{\rm c}~[908]$   | 1.21              | 1       | 1    | 2.9  | 1.06        | 1            | 1.07 | 1         |







[J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295]

#### R<sub>AA</sub>(p<sub>T</sub>) du Υ en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV

[DimuonNet Report, in preparation]



p (GeV/c)



p<sub>+</sub> (GeV/c)

### Étude du rapport Y'/Y en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



#### **Intérêt**: annulation

- d'incertitudes systématiques
- d'effets nucléaires froids

Rapport Y'/Y sensible au milieu après 1 mois de données Pb-Pb



# Physique des quarkonia avec le spectromètre à muons d'ALICE



> Introduction au spectromètre à muons d'ALICE

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (fast simulation)

 $\triangleright$  Collisions Pb-Pb à  $\sqrt{s_{NN}} = 5.5$  TeV (fast simulation)

 $\triangleright$  Collisions p-p à  $\sqrt{s}$  = 14 TeV (full simulation)

# Physics Data Challenge 2006 : p-p à √s =14 TeV



- ➤ But du PDC06:
  - □ tester le calcul sur la grille
  - effectuer une production de type événements réels
  - □ développer les codes d'analyse "finals"
- ➢ Simulation équivalenteà ≈ 1 journée LHC :
  - J/ψ = Landau ⊕ Gauss
  - Bkg = exponentielle

 $\Rightarrow N_{J/\psi} \approx 5800$ 



#### Conclusions et perspectives (i)



- Bonnes performances attendues du spectromètre à muons pour l'étude des quarkonia : séparation des différents états d'une même famille
- $\triangleright$  En mode p-p à  $\sqrt{s}$  = 14 TeV :
  - $\Box$  très grande statistique :  $N_{J/\psi} = 2800 \times 10^3$  et  $N_{\Upsilon} = 27 \times 10^3$  par an
  - $\Box$  mesure des sections efficaces différentielles d $\sigma$ /dp $_{T}$  et d $\sigma$ /dy et de la polarisation du J/ψ
  - étude des modèles de formation des quarkonia et des PDFs
- > En mode Pb-Pb à  $\sqrt{s_{NN}}$  = 5.5 TeV :
  - $\square$  grande statistique :  $N_{J/\psi} = 675 \times 10^3$  et  $N_{\Upsilon} = 7 \times 10^3$  par mois
  - mesure possible du facteur  $R_{AA}$  et des rapports  $\psi'/(J/\psi)$  et Υ'/Υ en fonction de la centralité et du  $p_T$
  - études envisagées des différents scénarii de QGP

#### Conclusions et perspectives (ii)



- $\triangleright$  Études de physique avec des simulations complètes de collisions p-p à  $\sqrt{s}$  = 14 TeV : codes d'analyse des données en développement
- À développer :
  - □ l'analyse du Y en mode p-p
  - la soustraction du bruit de fond dans les collisions Pb-Pb
  - **\_** ...
- Mais également :
  - o finir d'installer le détecteur,
  - o et faire le commissioning du détecteur,
  - o et finir de développer les outils de contrôle (DCS, online, ...),
  - o et continuer à développer le software d'analyse
  - o et je n'ai plus de place ...



# Performances du spectromètre pour les quarkonia



**BKG 1 = 2 × Hijing (Pb-Pb cental : |N\_{ch}/dy|\_{y=0} = 6000)** 

|          |                | BKG 0           | BKG 0.5           | BKG 1             |
|----------|----------------|-----------------|-------------------|-------------------|
| Υ        | σ (MeV)        | 97 (99 ± 2)     | $108 (109 \pm 2)$ | $120 (115 \pm 2)$ |
| $J/\psi$ | $\sigma$ (MeV) | $75 (72 \pm 2)$ | $76 (74 \pm 2)$   | $77 (70 \pm 2)$   |

#### **Efficacités**

|                   |                                                                               | BKG 0                         | BKG 0.5                       | BKG 1                         |
|-------------------|-------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| Υ                 | $arepsilon_{ m trig}(\%)$ $arepsilon_{ m track}(\%)$ $arepsilon_{ m all}(\%)$ | 92 (92)<br>92 (97)<br>85 (89) | 91 (91)<br>90 (94)<br>82 (86) | 92 (91)<br>86 (91)<br>79 (83) |
| $\mathrm{J}/\psi$ | $arepsilon_{ m trig}(\%)$ $arepsilon_{ m track}(\%)$ $arepsilon_{ m all}(\%)$ | 74 (72)<br>86 (92)<br>64 (67) | 77 (76)<br>84 (90)<br>64 (69) | 83 (83)<br>79 (84)<br>66 (70) |

[J. Phys. G: Nucl. Part. Phys. 32 (2006) 1295]

### Simulation des quarkonia à √s = 14 TeV







### Mesure des spectres du $\Upsilon$ en mode p-p à $\sqrt{s}$ =14 TeV



#### Distribution en $p_T$ du $\Upsilon$



#### Distribution en rapidité du Y



Uniquement incertitudes statistiques prises en compte 
⇒ Mesures pas limitées par la statistique

### Polarisation du J/ψ en mode p-p à √s =14 TeV





- > CEM: pas de polarisation
- NRQCD : polarisation transverse



Statistique suffisante pour une étude de la polarisation en fonction du  $p_T$  du  $J/\psi$ 

[R. Arnaldi and E. Scomparin, PWG3 ALICE-Physics-Week-Munster-2007]

### Simulation des quarkonia à √s = 5.5 TeV







### Acceptance des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV





### Fit des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV





# Suppression nucléaire des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



#### Rapport Quarkonium / Beauté:

- avec absorption nucléaire normale [hep-ph/0311048]
  - $\sigma_{abs}^{J/\psi}$  = 10.3 ± 1.0 mb
  - $\sigma_{abs}^{\ \ \ \ }$  = 4.6 ± 0.9 mb
- sans perte d'énergie des quarks lourds

Incertitudes = statistique





#### R<sub>AA</sub>(p<sub>T</sub>) des quarkonia en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



#### Calcul du facteur de modification nucléaire pour un quarkonium |QQ> :

Spectre en  $p_T$  dans les collisions Pb-Pb à  $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ 

 $R_{AA}^{\left| {
m Q} \overline{
m Q} 
ight
angle} =$ 

Nombre moyen de collisions binaires pour une tranche en centralité fixe d'une collision Pb-Pb à  $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ 

 $\frac{dp_{T}}{dN_{coll}} \frac{dN_{pp}^{in}}{dN_{NN}^{in}(5.5 \text{ TeV})} \frac{dN_{pp}^{QQ}}{dp_{T}}$ 

Rapport des sections efficaces totales inélastiques N-N à  $\sqrt{s}$  = 14 et 5.5 TeV Rapport des spectres en  $p_T$  à  $\sqrt{s} = 5.5$  et 14 TeV extrapolés des données de CDF avec l'approche CEM

Rapport de la fraction de  $J/\psi$  de B par rapport aux  $J/\psi$  directs à  $\sqrt{s} = 5.5$  et 14 TeV

 $\left\langle S_{\left|Q\overline{Q}\right.}^{5.5/14}\left(p_{T}\right)\right\rangle$ 

Spectre en  $p_T$  dans les collisions p-p à  $\sqrt{s} = 14$  TeV

 $dN^{|Q\overline{Q}\rangle}$ 

 $\mathbf{E}^{5.5/14}$ 

### $R_{AA}(p_T) du J/\psi$ en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV







### Étude du rapport ψ'/(J/ψ) en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV







### Polarisation du J/ψ en mode Pb-Pb à √s<sub>NN</sub> = 5.5 TeV



Prédiction [B.L. loffe and D.E. Kharzeev: Phys. Rev. C68 (2003) 061902] :
 « augmentation de la polarisation du J/ψ dans un QGP »



Possibilité d'étudier la polarisation du J/ψ en fonction de la centralité, mais incertitudes systématiques à évaluer

# PDC06 : $p_T du J/\psi$ en mode p-p à $\sqrt{s}$ =14 TeV



Normalisation 'minimum bias' : N<sub>pp</sub> = 2.2 10<sup>9</sup> (≈ 1 LHC-day)



Incertitudes = statistique ⊕ fit ⊕ systématique (background)

### PDC06 : rapidité du J/ψ en mode p-p à √s =14 TeV



Normalisation 'minimum bias' : N<sub>pp</sub> = 2.2 10<sup>9</sup> (≈ 1 LHC-day)



Incertitudes = statistique ⊕ fit ⊕ systématique (background)

### Polarisation du J/ $\psi$ avec le PDC06 en mode p-p à $\sqrt{s}$ =14 TeV



#### Statistique de 7000 J/ $\psi$





# Quarkonia et écrantage de couleur dans un QGP 'dynamique'



Conditions de suppression d'un qruarkonium:

- temps de formation dans le référentiel du QGP :  $t_{form} < \tau_{QGP}$
- $\bullet$  distance de formation dans le référentiel du QGP :  $d_{form} < r_{QGP}$
- température de dissociation :  $T_D < T_{QGP}$

Donc pour une paire  $b\overline{b}$  produite dans le plan trasverse au point  $x^{\mu} = (0, \vec{r}, 0)$ , un quarkonium de masse M et de temps propre de formation  $\tau_{\text{form}}$  se forme

au point  $x^{\mu'}=(t_{\text{form}},\vec{r}+\frac{\tau_{\text{form}}\vec{p}_T}{M},0)$  avec un quadrimoment  $p^{\mu'}=(\sqrt{p_T^2+M^2},\vec{p}_T,0),$  on doit alors avoir :