Le calorimètre électromagnétique d'ALICE : EMCAL

Ubotech Cynthia Hadjidakis

Cynthia Hadjidakis

Rencontres QGP France, Etretat 17 septembre 2007

Motivations physiques Le calorimètre EMCAL Physique des jets et des photons avec EMCAL

Le jet-quenching

- ⇒ Répercussion dans l'état final hadronique: élargissement des distributions en multiplicité et impulsion transverse des jets (rayonnement → augmentation du nombre de partons)
- \Rightarrow Déficit de particules à grand p_T , augmentation de particules à petit p_T

jet-quenching @ RHIC $\sqrt{s} = 200A \text{ GeV}$

Jet-quenching via la production de jets

Mesurer l'énergie totale du jet E :

- Très difficile en mode ions lourds (bruit de fond important)
 - Cône de recherche autour de la particule prépondérante
 - Elimination du bruit de fond en définissant un p_T^{th}
- Mesurer E le plus précisément possible
 - \succ Composants chargés et neutres du jet (\rightarrow calorimétrie)

Mesure directe:

E = le jet survivant E' + rayonnement gluons ΔE Si on manque ΔE , on mesure essentiellement un jet non modifié mais d'énergie moindre E'

Mesure indirecte:

Trouver le jet via des particules qui n'interagissent pas (γ)
 → sonde γ-jet: E_{jet} = E_γ

Les modifications du milieu identifiés par la redistribution de l'énergie du jet parmi ses constituants (fonction de fragmentation) γ

botech Cynthia Hadjidakis QGP FRANCE

Particule prépondérant

EMCAL

situé à 4.28 m du point d'intéraction

EMCal – Éléments

la tour EMCAL

- Calorimètre à échantillonage
 - 1 tour = 77 couches successives de 1.76mm Sci / 1.44mm Pb
 - Transmission et conversion lumière par fibres optiques à WLS perpendiculaires aux Sci.
- Géometrie:
 - $-60 \times 60 \text{ mm}^2$,
 - 20 X0
 - $\sigma_E / E \sim 15\% / \sqrt{E(GeV) + 2\%}$

Calendrier EMCAL

- EMCal est une collaboration USA-EU (France-Italie)
- Tests sur faisceau :
 - 2005 @ FNAL prototype de première génération
 - septembre-octobre 2007 @ CERN prototype final

Test faisceau 2005

prototype de première génération : 1.6 mm scint/1.6 mm Pb

résolution en énergie

résolution requise pour les jets à grand p_t: σ_F/E ~15%/√E(GeV)+2%

QGP FRANCE Cynthia Hadjidakis

Test faisceau sept-oct. 2007

4x4 modules sont testés au CERN

s QGP FRANCE

Calendrier EMCAL

- EMCal est une collaboration USA-EU (France-Italie)
- Tests sur faisceau :
 - 2005 @ FNAL prototype de première génération
 - septembre-octobre 2007 @ CERN prototype final
- Calendrier d'installation de EMCAL dans ALICE :
 - CalFrame dans L3 prévu pour fin octobre 2007

CalFrame

test d'insertion d'unSuperModule dans le CalFrame

Calendrier EMCAL

- EMCal est une collaboration USA-EU (France-Italie)
- Tests sur faisceau :
 - 2005 @ FNAL prototype de première génération
 - septembre-octobre 2007 @ CERN prototype final
- Calendrier d'installation de EMCAL dans ALICE :
 - CalFrame dans L3 prévu pour fin octobre 2007
 - run de 2008 (p-p@LHC) \rightarrow 1 dizaine de modules : commissioning du hardware, reconstruction du software online et offline
 - − run de 2009 (Pb-Pb@LHC) → 3 SM : premier résultats physiques pour les γ, π^0 , e⁺e⁻ à grand p_t
 - − run de 2010 (Pb-Pb haute luminosité@LHC) → 8 SM : physique des jets
 - run de 2011 : 11 SM
- En attente de l'accord et des fonds du DOE (novembre 2007 \rightarrow mis en route de la construction), IN2P3 (avis positif du CS), INFN (consultation cette semaine)

EMCAL étend de façon significative les performances d'ALICE pour les mesures de jet-quenching et de photons en collision d'ions lourds:

- 1. Déclenchement sur les jets à grands p_T , $\gamma(\pi^0)$, électrons
- 2. Meilleure reconstruction des jets par la mesure de la fraction d'énergie EM du jet
- 3. Bonne discrimination γ/π^0 pour augmenter les performances d'ALICE pour la détection de photons directs à grand $p_T \rightarrow$ analyse γ -jet
- Bonne discrimination e/h± → analyse de jet-quenching pour les quarks lourds

Ubotech Cynthia Hadjidakis

EMCal et la physique à grand p_T

- Augmentation de l'acceptance (stat.)
- Extension à plus grand p_T (γ , π^0)
 - jets inclusifs : E_T ~ 200 GeV
 dijets: E_T ~ 170 GeV
 π⁰: p_T ~ 75 GeV/c

 - γ inclusifs: $p_T \sim 45$ GeV/c e inclusifs : $p_T \sim 30$ GeV/c

 - γ + jet p_T ~ 30 GeV/c

-Mesures des corrélations

- γ (PHOS) + jet (CTS+EMCal)
- γ (EMCal) + part. prép. π^{0}/γ (PHOS)
- γ (EMCal) + jet (CTS)

Déclenchement des jets avec EMCAL

System	jet trigger?	$N_{jets} (125 \text{ GeV})$	$N_{jets} (175 \text{ GeV})$
Pb+Pb cent	у	1.1×10^{4}	1700
	n	2100	320
Pb+Pb periph	у	410	62
	n	8	1
p+Pb 8.8 TeV	у	2.7×10^4	4200
	n	250	40
p+p 14 TeV	у	6.9×10^{5}	1.0×10^{4}
	n	1200	190

• augmentation des taux d'enregistrement des jets par des facteurs de 10 à 60

• taux d'enregistrement limité par la DAQ et le TPC gating

 \rightarrow Level 1 trigger (Level 0 en p+p) nécessaire

Reconstruction des jets

Chaîne de **simulation complète** Jets simulés avec PYTHIA p-p @ 14 TeV Reconstruction dans l'acceptance de l'EMCal

→ Meilleure reconstruction de l'énergie du jet → Meilleure résolution en énergie

Cynthia Hadjidakis

botech

PID: discrimination γ - π^0

trois régions d'analyse:

p_T< ~ 8 GeV

PID: discrimination γ - π^0

trois régions d'analyse:

p_{T} < ~ 8 GeV/c 8 ~ < p_{T} < ~ 30 GeV/c

clusters séparés →analyse de masse invariante merged clusters non sphériques →analyse de la forme de la gerbe

PID: discrimination γ - π^0

trois régions d'analyse:

$p_T < ~8 \text{ GeV/c}$ $8 ~ < p_T < ~30 \text{ GeV/c}$ $40 \text{ GeV/c} ~ < p_T$

clusters séparés →analyse de masse invariante merged clusters non sphériques →analyse de la forme de la gerbe

angle d'ouverture << 1 tour → méthode d'isolement dans un cône

G. Conesa & A. Casanova

Conclusion

ALICE+EMCAL pour la physique des jets et des photons à grand p_T

Physique des jets Déclenchement efficace sur les jets Energie totale du jet mesurée avec des biais réduits et une meilleure résolution

Physique des photons Discrimination γ/π^0 jusqu'à p_T <~ 30 GeV/c A grand p_T \rightarrow méthode d'isolement \rightarrow étude γ -jet possible

