EFFETS FROIDS SUR LA PRODUCTION DU J/Ψ Du SPS au LHC

Andry Rakotozafindrabe - LLR QGP - France (Etretat 2007)

EFFETS FROIDS DANS L'ÉTAT INITIAL / FINAL

« Calibration » des effets froids : collisions p(d)+A

- $\sigma_{pA} / \sum N_{coll} \sigma_{NN} \neq 1$ • PDF[A] \neq PDF[N]
 - shadowing à petits x
 - sonde / effets de cohérence
 - recombinaison des gluons
- En p(d)+A :
 - formalisme de diff. multiples
 - paramétrisations PDF[A]/PDF[N] par ex. EKS
 - mesures de R_{dA}
- Etendus en A+A

gluons dans le Pb / gluons dans le p

Nucl. Phys. A696 (2001) 729-746

EFFETS FROIDS DANS L'ÉTAT INITIAL / <u>FINAL</u>

« Calibration » des effets froids : collisions p(d)+A

Abs. nucléaire

- Diff. multiple du charmonia ou de la pré-résonance avec les nucléons ∈ proj./cible
- Paramétrisations :
 - $\sigma_{pA} = \sigma_{pp}$. A^{α} avec $\alpha < 1$
 - $\sigma_{pA} \propto \exp(-\rho_0 \sigma_{abs} L)$
- Paramètres effectifs pour le J/ψ :
 - feed-down du ψ' (~8%) et du χ_c (~25-40%)
 - attention de ne pas y inclure l'(anti)-shadowing

EFFETS FROIDS À BASSE ÉNERGIE 1-FOCUS SUR L'ABS. NUCLÉAIRE A E866 : J/4 VS 4

PRL 84, 3256 (2000); PRL 72, 2542 (1994)

E866/NuSea

Expériences p+A à cible fixe \sqrt{s} (GeV) E866/NuSea 39

charme ouvert (insensible à l'abs.) : à $x_F \sim 0$, $\alpha \sim 1 \Rightarrow$ peu de shadowing à y ~ 0

Effets dans l'état initial identiques pour le J/ψ et le ψ'
A x_F~0 :

abs. nucléaire = effet dominant $\alpha_{\psi} < \alpha_{J/\psi}$: interaction N et charmonia entièrement hadronisé

• A grand x_F :

abs. + autres effets froids dans l'état initial $\alpha_{\psi} \approx \alpha_{J/\psi}$: interaction N et pré-résonance ?

EFFETS FROIDS À BASSE ÉNERGIE 2-ABS. NUCLÉAIRE AU SPS

Expériences p+A à cible fixe \sqrt{s} (GeV)SPS17 à 27

 En supposant l'abs. nucléaire seule en p+A : σ_{pA}/σ_{DY} ∝ exp(-ρ₀σ_{abs}L) avec σ_{abs} = 4.2 ± 0.5 mb
 Elle décrit la suppression du J/ψ en p+A, S+U et même Pb+Pb périphérique

• Même exercice pour le ψ' : $\sigma_{abs} = 7.7 \pm 0.9 \text{ mb}$

valeurs de σ_{abs} issues de NA50, EPJ. C48 (2006) 329

5

EFFETS FROIDS À BASSE ÉNERGIE 2-(ANTI)SHADOWING AU SPS?

distribution en y_{cm} du J/ ψ

NA50, EPJ. C48 (2006) 329

Expériences p+A à cible fixe \sqrt{s} (GeV)SPS17 à 27

- Petite fenêtre en rapidité (Δy=1)
- Asymétrie importante : variation de 30% à 50%
- Anti-shadowing ?
- Si oui, ré-évaluer σ_{abs} ?

EFFETS FROIDS À BASSE ÉNERGIE 2-(ANTI)SHADOWING AU SPS?

distribution en y_{cm} du J/ ψ : calculées par Vogt (QM06)

Dépendance en y plus importante lorsque A croît

EFFETS FROIDS AV RHIC 1-EN FONCTION DE LA RAPIDITÉ

Kopeliovich, NP A696, 669 (2001)

Run 3 d+Au	√s (GeV)
RHIC	200

- R_{da} normalisé par le Run 3 pp
- Comparé à diverses paramétrisations shadowing + σ_{abs} :
 - faible shadowing (EKS98)
 - faible absorption (\leq 3mb)

EFFETS FROIDS AV RHIC 1 - EN FONCTION DE LA CENTRALITÉ

Phys. Rev. Lett. 96 (2006), 012304

Vogt, PRC71, 054902 (2005)

 $\frac{\text{Run 3 d+Au}}{\text{RHIC}} \xrightarrow[]{\sqrt{s} (GeV)}$

a R_{dA} vs N_{coll} pour y = -1.7, 0 et +1.7

Comparé EKS98 shadowing +

 $\sigma_{abs} = 1 \text{ mb}$

 $\sigma_{abs} = 3 \text{ mb} \quad \bullet \bullet \bullet$

■ Glauber + fit de RdA(b) pour chaque y ⇒ paramétrisation des effets nucléaires froids en A+A à partir des données d+A uniquement Karsch, Kharzeev & Satz, PLB 637 (2006) 75 Granier de Cassagnac, hep-ph/0701222

EFFETS FROIDS AV RHIC $1 - EN FONCTION DEP_T$

- Pas de modèles disponibles pour la comparaison
- Modélisation du shadowing par Vogt : $p_T \sim 0$ (négligeable devant $m_{J/\psi}$)

19/09/2007

JIN : UNE MODÉLISATION MC DES EFFETS FROIDS LE PRINCIPE

E. Ferreiro, F. Fleuret, A. Rakotozafindrabe

8

4 p_T (GeV/c)

6

JIN: SHADOWING/FORMALISME DE DIFFUSIONS MULTIPLES

19/09/2007

JIN : SHADOWING / PARAMÉTRISATION EKS DE LA MODIFICATION DES PDF NUCLÉAIRES

EFFETS FROIDS EN A+A AU RHIC

Paramétrisation à partir des données d+Au (RgdC) : $R_{AA}(y, b) = \sum_{collisions} [R_{dA}(-y, b_1^i) \cdot R_{dA}(+y, b_2^i)] / Ncoll$

Pas la même référence p+p for Au+Au and d+Au err. globale sur R_{dAu} à prendre en compte !!! Au+Au & effets froids (d+Au) : total global systematics 35% 30% (Granier de Cassagnac, hep-ph/0701222)

19/09/2007

CONCLUSIONS

Abs. nucléaire :

σ_{abs}

- différents pour le J/ ψ et le ψ ', inconnu pour le χ_c
- dépendance en fonction de \sqrt{s} ?
 - prédictions :
 - décroissance

Braun et al., Nucl. Phys. B 509 (1998) 357, Capella & Ferreiro, hep-ph/0610313 croissance

ref?

• large incertitude sur σ_{abs} au RHIC

Shadowing :

- large incertitude sur la paramérisation de la PDF des gluons
- dépendance en p_T ?

Perspectives :

- futur run d+Au au RHIC
- nécessité d'un run p+Pb au LHC

BACK-UP

ABSORPTION NUCLÉAIRE

A l'énergie de E866

Figure 5: The A dependence of nuclear absorption models is given in (a), (b) and (c) and the comover A dependence is shown in (d). In (a), octet cross sections of 1 mb (solid), 3 mb (dashed), 5 mb (dot-dashed) and 7 mb (dotted) are shown. Singlet absorption is shown in (b) for ψ with $\sigma_{\psi N}^s = 5$ mb (solid) and 10 mb (dashed) as well as ψ' with $\sigma_{\psi'N}^s = 15$ mb (dot-dashed) and 20 mb (dotted). A combination of octet and singlet production is assumed in (c). The curves represent: ψ absorption with $\sigma_{abs}^{octet} = 1$ mb and $\sigma_{abs}^{singlet} = 1$ mb (solid) and $\sigma_{abs}^{octet} = 3$ mb and $\sigma_{abs}^{singlet} = 5$ mb (dot-dashed); ψ' absorption with $\sigma_{abs}^{octet} = 1$ mb and $\sigma_{abs}^{singlet} = 3.7$ mb (dashed) and $\sigma_{abs}^{octet} = 3$ mb and $\sigma_{abs}^{singlet} = 19$ mb (dotted). In (d), comover interactions are shown for $\sigma_{\psi co} = 0.67$ mb (solid) and $\sigma_{\psi' co} = 3.7\sigma_{\psi co}$ (dot-dashed).

Vogt, hep-ph/9907317

COCKTAIL D'EFFETS FROIDS

