

Alexandre SHABETAI

Mesures du charme ouvert et de sa section efficace

Aujourd'hui (RHIC) et demain (RHIC2)

Mesures du charme à RHIC aujourd'hui

-Indirectes

-Directes (à l'aide de la TPC de STAR)

Futur dans STAR : le Heavy Flavor Tracker

-Hardware

-Simulation

Motivations

B. Müller, nucl-th/0404015

Le charme :

• est sensible aux premiers instants de la collision

• a une structure en masse unique

• est principalement produit par fusion de gluons

Mesures du charme ouvert à RHIC

Mesures indirectes

Spectres des e⁻ non photoniques

« Scaling » avec le nombre de collisions binaires (de p+p à Au+Au)

Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

Questions ouvertes

<u>Mesures du charme ouvert à RHIC</u> <u>Mesures directes (spécifiques à STAR)</u>

(mon analyse de thése)

Période	Système	$\sqrt{s_{NN}}$	Luminosité	
Run I (2000)	Au+Au	130 GeV	$1 \ \mu b^{-1}$	
Run II	Au+Au	200 GeV	$24 \ \mu b^{-1}$	
(2001)	$\mathbf{p} + \mathbf{p}$	200 GeV	0.15 pb^{-1}	
Run III	$_{\rm d+Au}$	200 GeV	2.74 nb^{-1}	
(2002-03)	$\mathbf{p} + \mathbf{p}$	200 GeV	0.35 pb^{-1}	H Zhang (A Shahetai)
Run IV	Au+Au	200 GeV	$241 \ \mu b^{-1}$	
(2003-04)	Au+Au	62	$9.0 \ \mu b^{-1}$	H. Zhang
	$\mathbf{p} + \mathbf{p}$	200 GeV	0.35 pb^{-1}	
Run V	Cu+Cu	200 GeV	3.0 nb^{-1}	\mathbf{C} D
(2005)	Cu+Cu	62.4 GeV	0.19 nb^{-1}	S.Baumgart (Yale)
	Cu+Cu	22.5 GeV	$2.7 \ \mu b^{-1}$	A Shabetai
	$\mathbf{p} + \mathbf{p}$	200 GeV	3.8 pb^{-1}	11.011000001
				L

Reconstruction du D⁰ dans STAR

- Sélectionner les Pions et les Kaons à l'aide de la TPC et du TOF
- Combiner les paires provenant d'un même évènement ⇒ signal+bruit
- Combiner les paires provenant d'évènements différents ⇒ bruit ("évènements mélangés" ou "rotation de traces")
- Soustraire \Rightarrow signal

STAR

Premiers résultats – collisions d+Au @ 200 GeV

~ 15 Millions d'événements (toute la stat. disponible)

```
S/B ~ [1/400 , 1/600]
```

 →Mesure difficile
 → Soustraction du bruit de fond capitale (et compléxe)
 →Erreurs
 statistiques et systématiqus
 très importantes

Deuxièmes résultats – collisions Cu+Cu @ 200 GeV

~ 35 Millions d'événements: toute la statistique Cu+Cu « minimum bias » (RHIC run V)

 $S/B \ll S/B_{d-Au}$ (combinatoire **plus élevée** que d-Au)

S/sqrt(S+B) > 4 (difficile à évaluer)

IPHC Institut Pluridisciplinaire Hubert CURIEN STRASBOURG

→Mesure difficile → 2 analyses indépendantes (A.S et S.B)
 → soustraction du bruit de fond capitale (et complexe)
 →Erreurs statistiques et systématiques très importantes

Spectres corrigés

<u>D⁰ et (D⁰+D⁰bar)/2</u>

Retour à la section efficace

(mon file conducteur)

Extraction de la section efficace

$$\sigma_{c\bar{c}}^{NN} = dN_{D^0}^{Cu+Cu} / dy \times \sigma_{inel}^{pp} / N_{bin}^{Cu+Cu} \times f / R$$

$$dN_{D^0} / dy = 0.218 + / -0.06 \text{ (stat.)}$$
Nombre de collisions binaires
$$N_{binary}^{Cu+Cu} = 51.5 + 1.0 - 2.9$$
Section efficace inélastique p+p
$$\sigma_{inel}^{pp} = 42 \text{ mb}$$
Facteur de conversion "full rapidity"
$$f = 4.7 \pm 0.7$$
Ratio obtenu à partir des collisions etc. (FF)

$$R = N_{D^0} / N_{c\bar{c}} = 0.54 \pm 0.05$$

$$\stackrel{\text{Péliminaire :}}{\Rightarrow \sigma_{c\bar{c}}^{NN}} = 1.56 \pm 0.67 \text{ (stat.) mb}$$

<u>d σ/dy dans STAR...</u>

STAR

- La forme des spectres est en accord STAR et PHENIX observent la même dépendance en fonction de Nbin

La valeur de la section efficace
n'est pas la même (facteur 2-3)
STAR et PHENIX sont tous deux au dessus des prédictions FONLL...

De quoi dépend la valeur prédite?

Est-ce un calcul précis?

A l'aide de la QCD (et pQCD) :

- on peut prédire, correctement la section efficace totale de production des saveurs lourdes

 les sections efficaces différentielles (en fonction de l'impultion, de l'energie, de la rapidité...), peuvent aussi être connues moyennant « l'ajout d'un jeu <u>minimal</u>, <u>self-consistant et universel</u> de paramètres d'entrée non perturbatifs » <u>Matteo Cacciari</u>

ISMD 2007

Afin de parvenir à un accord, il faut:

- Utiliser des **outils théoriques dédiés** (FONLL et maintenant NNLO)

- Utiliser **les bon paramètres** (echelles de masse, de renormalisation et de factorisation, couplage) et les bonnes Fonction de Distributions de Partons (PDF) et Fonction de Fragmentation (FF).

- <u>Faire le minimum d'extrapolations/déconvolutions entre les</u> <u>mesures et la théorie</u>

→Si et seulement si toutes ces conditions sont réunies alors on peut espérer parvenir à un bon accord entre théorie et expérience

en pratique

Comment faire mieux ?

→ Utiliser le SVT + SSD (cf. présentation suivante)
 → « Upgrade » pour RHIC2

Cas de STAR :

Projet HFT Berkeley / MIT (proto. complet installé pour le run de 2009)

- Utilisation de capteurs CMOS (Strasbourg)

- « Full Simulation » pour en évaluer les performances de physique (deux autres parties de ma thèse)

The Heavy Flavor Tracker dans STAR

Le futur "Tracking interne" du détecteur STAR au RHIC

Le futur détecteur de vertex de STAR (« pixel detector ») :

•2 couches

 \dot{Rayon} : 2.5 cm and 8 cm ,

24 échelles

-2 cm x 20 cm chacune

Utilisation de capteurs <u>CMOS</u> pixel car il nous faut :

- une grande précision (résolution du détecteur : ~ 9 μ m)
- un détecteur fin (260 μ m equi. Si) par échelle (0.28%X₀)
- un detecteur rapide (proto. 0.2 ms de temps d'intégratic
- Une faible consommation électrique (< 100 mW/cm²)
- Une tolérance aux radiations modérées

Un prototype d'échelle

cf. HFT Proposal LBNL-PUB-5509

CMOS « Active Pixel Sensors »

Reconstruction du charme ouvert avec le HFT

STAR

A. SHABETAI – Deuxièmes rencontres QGP-France d'Etretat - Sept. 2007

Conclusions / Perspectives

Aujourd'hui:

- mesures indirectes (limitations) et **1eres mesures directes** (spectre $D^0 \rightarrow K + \pi$) du charme ouvert à RHIC.
- Section efficace du charme à RHIC : désaccord STAR/PHENIX mais R_{AA} semble en accord : normalisation?
- Théorie: Calculs peuvent être précis si peu d'extrapolations...

:Nouvelles incertitudes NLO ? (R. Vogt @ ISMD 2007) → STAR et PHENIX ne sont peut-être plus au dessus de la prédiction théorique.....

<u>Futur</u> (2009-2011) avec le HFT Mesures directes et topologiques du charme et V_2 précis (+ R_{AA} , R_{CP} , corrélations...) Perspective : finir de rédiger ma thèse....

