# Le détecteur V0

-Détecteur

-Software

Journées QGP France, Etretat 2007 – Fabien Nendaz

# Généralités

2 disques, VOA et VOC, de chaque côté du PI

Composés d'éléments scintillants

Chaque disque comporte 32 canaux :
4 anneaux et 8 secteurs



# Fonctions

Trigger pour les détecteurs centraux.

- Validation du trigger du spectromètre à muon.
- Filtre pour les événements p-gaz.

Mesure de la luminosité en pp.

Mesure du nombre de particules chargées produites (à l'étude).



# V0A



# V0A

- Les 32 éléments scintillants ont été fabriqués à l'UNAM, au Mexique.
- Mai 2007 : déplacement au CERN.
- Eté 2007 : tests et calibration avec un faiceau de pions au PS.
  - Résolution en temps obtenue : 800 ps.
- janvier-février 2008 : installation dans ALICE.

# V0C



#### V0C

- Fabriqué à Lyon
- Mars 2007 : installation dans ALICE
- Ensuite : tests et calibration
  - DCS, DAQ, TRG
  - Commissioning avec l'électronique finale

#### Installation du V0C

- Les 2 demi-disques contre l'absorbeur
- Les fibres optiques dans leurs tuyaux
- Les PMs dans leurs tubes
- Amplificateurs
- Unités HV/LV installées à CR4
- □ FEE testée, à installer en I20









#### Commissioning du V0C

- Position du disque donnée par les géomètres
- Contrôle de chaque cellule avec une source radioactive
  - > Avec 2 sources différentes : <sup>90</sup>Sr et <sup>60</sup>Co
  - > Contrôle des connexions HV, LV et signal
- > Ajustement de la longueur des câbles signaux



Procédure similaire prévue pour le VOA

# Software

- Calibration
- Alignement
- Visualisation d'événement
- Contrôle qualité
- etc.

#### Visualisation d'événement : pp



#### Visualisation d'événement : diffractif



#### Visualisation d'événement : PbPb





10 000 collisions pp simulées



Mesure de la luminosité en pp

 $R = L \cdot \sigma$ 

R : taux d'événements

 $\Box \sigma$  : section efficace

 $R = L \cdot \sigma_{in} \cdot Acc \cdot \epsilon$ 

R : taux d'événements mesuré par le V0.
 σ<sub>in</sub> : section efficace inélastique.
 Donnée par TOTEM (précision de ~1 %).
 Acc . ε : fraction d'événements inélastiques détectés
 Trouvée à partir de simulations (AliROOT HEAD of 12/12/06)

#### Efficiency: simulations



#### Efficacité: résultats

| with env. | 900 GeV | 2.2TeV | 14 TeV |
|-----------|---------|--------|--------|
| V0A       | 84.8    | 85.7   | 87.2   |
| V0C       | 83.6    | 84.2   | 87.1   |
| and       | 75.8    | 77.2   | 80.8   |
| or        | 92.7    | 92.7   | 93.5   |
|           |         |        |        |
| V0 only   | 900 GeV | 2.2TeV | 14 TeV |
| V0A       | 83.5    | 84.3   | 86     |
| V0C       | 80.8    | 81.9   | 83.8   |
| and       |         |        | 77.0   |
| anu       | /2.5    | 74.5   | //.9   |

-> syst. errors due to the environment of max 3%.

# Conclusion

- Le VOC est installé et testé.
- Le VOA est prêt à être installé.
- Le V0 sera capable de mesurer la luminosité avec une précision de quelques % en pp.

# Backup

# Cell numbering

As seen from IP:





# The V0 detector (II)

V0C





3.4/2.8

Ring 4

-2.2/-1.7

# Control plots for the beam

