HERA-B Results on Heavy Flavor Production in 920 GeV Proton-Nucleus Interactions

Hermann Kolanoski Humboldt Universität zu Berlin and DESY Zeuthen for the HERA-B Collaboration

- **D** Charmonium production: J/ψ , ψ ', χ_c
- □ Open charm production: D⁰, D[±], D^{*}
- **I** Hidden and open beauty production: $\sigma(b \ \overline{b})$, Y(ns)

The HERA-B Experiment

 $p + A \rightarrow X @ \sqrt{s} = 41.6 \text{ GeV}$

920 GeV protons

The HERA-B Detector

The Dilepton Trigger

HERA B

HERA-B detector: data is read out and buffered for 12 μ s (proton bunches cross every 96 ns, 0.5 interactions/BX) 5 MHz Pretriggers: ECAL cluster or hit coincidence in muon detector as trigger seed (custom hardware) 3 MHz First Level Trigger (FLT): Track trigger in hardware using tracking detectors behind magnet, seeding by pretriggers 20 kHz Second Level Trigger (SLT): FLT tracking confirmed, extrapolation to vertex detector, vertex fit (PC farm) 100 F

Data samples

Data taking is finished in 2003; analysis is in progress

- ₪ 150 M di-lepton trigger events
- 210 M minimum bias events
- ₪ 35 M hard photon trigger events

B 60 M "glueball" trigger events ₃₅

22/04/2004

Topics of di-lepton trigger analysis

- p_t distribution
 x_F distribution
 A-dependence
 polarisation
- 2) ψ (2s)/J/ ψ production ratio
- 3) $\chi_c/J/\psi$ production ratio
- 4) bb cross section
- 5) Υ production
- 6) ($D^0 \rightarrow \mu \mu$)

HERA

Hermann Kolanoski HU Berlin - HERA-B Results - Paris

Most results are preliminary

Study of Charmonium Suppression

22/04/2004

J/ψ from Minimum Bias data

Important for cross section normalisation of di-lepton triggered data

$$\sigma_{J/\psi} = \frac{N_{J/\psi}}{\varepsilon_{J/\psi} \cdot BR(J/\psi \to \mu^+ \mu^-) \cdot \sum_i A_i^{\alpha} L_i}$$

 $\alpha = 0.96$

Result from both decay channels: HERA-B ~2X higher than E771 / 789 measurements in this energy region (!?)

Study of J/ ψ Cross Section Parametrisations

J/ ψ total cross section (scaled to α =0.955)

J/ψ Production: di-lepton triggered

Mass Resolution HERA-B vs. E866

J/ψ production: p_T distribution

HERA

B

A dependence: W wider than C B

Comparing X_F distributions

ψ' production: σ(ψ') / σ(ψ)

HERA

B

Acceptance of the J/ ψ vs x_F, p_T

Total acceptance is ~1%

- cancellation in the ψ'/ψ ratio
- $\epsilon(\psi) / \epsilon(\psi')$ is ~86%

HERA

B

Fitting of x_F distribution for J/ψ

Fitting function:

(fits well NRQCD, PHYTHIA)

$$g(x_F) = \frac{f(x_F \mid x_{B,}\sigma_x)}{\sqrt{x_M^2 + x_F^2}}$$

$$x_F < x_B: \quad f \sim \exp\left(-\frac{x_F^2}{2\sigma_x^2}\right)$$
$$x_F > x_B: \quad f \sim \left(1 - |x_F|\right)^C$$

ψ'/ψ vs x_F for all data

Fitted by $a + b |x_F|$

- In agreement with NRQCD
- almost constant vs x_F

- Power-low is suitable for the fitting
- Indication of p_T dependence
- How to treat different materials ?

A-Dependence of $\sigma(\psi') / \sigma(\psi)$

A-dependence should be taken into account: Define R separately for C, W and Ti targets and fit: $R(A) = R_1 \cdot A^{-(0.026 \pm 0.005)}$ $(R_1 \text{ will be the final result})$

Energy Dependence of $\sigma(\psi') / \sigma(\psi)$

χ_c / J/ ψ production ratio

χ_c production: results

Open Charm

- Search for FCNC in the decay BR(D⁰→μ⁺μ⁻)
 see: Phys Lett B 569 (2004) 173 (hep-ex/0405059)
- Open charm signals in minimum bias data
 - Production Cross Sections for D⁰, D⁺, D^{*+}
 - Production Ratios D^+/D^0 and D^{*+}/D^0

Open charm signals in minimum bias data

□ Production Cross Sections for D^{θ} , D^+ , D^{*+} **□** Production Ratios D^+/D^{θ} and D^{*+}/D^{θ}

Assuming A^{α} dependence with $\alpha = 1$

Open Charm Production

Open charm production: models

Pythia requires K-factors ~1.5 and ~ 4.5 to describe D⁰ and D⁺ data if m_c =1.5 GeV Smaller m_c require smaller K factors but predict smaller increase of σ at higher E

HERA

B

Beauty Production

Open beauty production

<u>Analysis of 2002/03 data:</u>
□ Full e⁺e⁻ and μ+μ- statistics
□ Carbon + Tungsten targets
□ J/ψ acceptance: -0.35 < x_F < 0.15 (90% of bb cross section)

Open beauty production

$$\sigma_{b\bar{b}} = \sigma_{J/\Psi} \cdot \frac{n_B}{n_{J/\Psi}} \cdot \frac{1}{\varepsilon_R \cdot \varepsilon_B^{\Delta z} \cdot Br(b\bar{b} \to J/\Psi)}$$

Relative to prompt J/ψ to minimize uncertainties from efficiencies, luminosity ...

Preliminary results with full statistics

$$\sigma_{bb}/\sigma_{J/\psi}$$
 = 0.033 \pm 0.005 \pm 0.004

Syst. error mainly from $B(b \rightarrow J/\psi)$

Beauty Production Cross Section

Normalizing to $\sigma_{J/\psi}$ from E771 and E789 $\sigma(pN \rightarrow J/\psi X) = (357 \pm 8 \pm 27)$ nb/nucleon

2000 data: Eur. Phys.J. C26(2003) 345

Hidden beauty production

$$\sigma_{\rm Y} = \sigma_{J/\psi} \cdot \frac{n_{\rm Y}}{n_{J/\psi}} \cdot \frac{Br(J/\Psi \to l^+ l^-)}{Br({\rm Y} \to l^+ l^-)} \cdot \frac{\varepsilon^{J/\psi}}{\varepsilon^{\rm Y}}$$

Hidden beauty production

	Events	Br∙ d₀/dy _{y=0}
μ + μ-	33±7	3.9±1.1 pb/N
e⁺e⁻	31±10	2.9±1.2 pb/N
both		3.4±0.8 pb/N

Summary

HERA-B collected 300k J/ ψ and 200M min.bias events on different nuclei

Preliminary results are presented on:

- J/ ψ cross section, x_F and p_T distributions in a new negative x_F range J/ ψ A dependence shows a flat behavior in this region
- Fraction of χ_c and ψ (2S) yields relative to J/ψ
- **D0**, **D+** and **D*+** cross sections and relative yields
- Open and hidden beauty cross sections

Final results on these and other topics are expected until the end of 2005

Main problem: systematic errors must have been underestimated by some or all experiments