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Abstract1

This thesis reports on the measurement of the production of three massive gauge bosons2

in proton-proton collisions at 13 TeV with the CMS experiment at the CERN Large3

Hadron Collider (LHC). The thesis work focuses on the production of two W bosons4

and one Z boson (WWZ), decaying to either electrons or muons. This process has5

relatively little reducible background because of the fully reconstructed Z boson, and a6

higher production cross-section than processes with more Z bosons. The measurement7

considers 137 fb−1 of collision data recorded during the the second LHC run (2015 –8

2018).9

The production of three massive gauge bosons is a so-far unobserved phenomenon pre-10

dicted by the standard model of particle physics. The process is sensitive to the trilinear11

and quartic gauge couplings, which might be modified by physics beyond the standard12

model. Additionally, triboson production is an increasingly important background to13

both direct searches for new physics and standard model precision measurements.14

While trilinear gauge couplings are also accessible via diboson production, probing15

quartic couplings requires the measurement of Vector Boson Scattering (VBS) or tri-16

boson production. The VBS process better isolates the vector boson self-couplings,17

whereas triboson production is mainly affected by diagrams without any vector boson18

self-interaction. However, this plays a minor role in searches for new physics at energy19

scales beyond the electroweak scale, where triboson production has the advantage of20

probing a more massive final state.21

The analysis presented in this thesis establishes evidence for the WWZ final state with a22

significance of 3.35 standard deviations (1.31 standard deviations if the vector bosons are23

required to be on-shell). Combined with other analyses covering the remaining massive24

triboson final states, this measurement contributed to observing the production of three25

massive gauge bosons with a significance of 5.67 standard deviations (2.90 standard26

deviations for on-shell vector bosons). All results are in agreement with the standard27

model predictions. Beyond that, this thesis presents studies of the WWZ processes sen-28

sitivity to anomalous quartic gauge couplings in an effective field theory framework.29

Triboson production is a rare process that requires high electron and muon identifi-30

cation efficiencies. Among these two types of leptons, electrons are more challenging31

to measure. Therefore, this thesis includes a rigorous update and optimization of the32

multivariate electron selection based on the Boosted Decision Tree (BDT) algorithm, ap-33

plied within the CMS collaboration since the beginning of LHC data-taking. As a result,34

the identification of electrons remains very performant, even at a significant increase in35

the number of proton-proton interactions per bunch crossing. The multivariate electron36

identification algorithm produced for this thesis is now the default for CMS analyses37

with data from the second LHC run.38
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Résumé39

Cette thèse présente la mesure de la production de trois bosons de jauge massifs dans40

des collisions entre protons à 13 TeV avec l’expérience CMS auprès du Grand collision-41

neur de hadrons (LHC) du CERN. Le travail de cette thèse se concentre sur la production42

de deux bosons W et d’un boson Z (WWZ), où les trois bosons se désintègrent en élec-43

trons ou en muons. Ce processus a un bruit de fond réductible relativement faible car le44

boson Z est entièrement reconstruit, et une section efficace plus élevée que les processus45

avec plusieurs bosons Z. L’analyse couvre 137 fb−1 de données enregistrées pendant la46

deuxième phase d’exploitation du LHC (2015 – 2018).47

La production de trois bosons de jauge massifs est un phénomène qui n’a pas encore été48

observé, mais elle est prédit par le modèle standard de la physique des particules. Ces49

mesures sont donc un test du modèle standard et un défis de sensibilité. Ce processus50

est sensible aux couplages de jauge trilinéaired et quartiques, qui pourraient être modi-51

fiés par la physique au-delà du Modèle Standard. En outre, la production de tribosons52

est un bruit de fond de plus en plus important pour les recherches directes de nouvelles53

physiques et les mesures de précision du modèle standard.54

Les couplages de jauge trilinéaires sont également accessibles dans le processus dibo-55

son, mais le sondage des couplages quartiques nécessite la mesure de la diffusion de56

bosons massifs (VBS) ou de la production de tribosons. Le processus VBS isole bien les57

auto-couplages des bosons massifs, mais la production de triboson est dominée par des58

diagrammes sans aucun auto-couplage. Cependant, cela joue un rôle mineur dans les59

recherches de nouvelles physiques aux échelles d’énergie au-delà de l’échelle électro-60

faible, où la production de tribosons a l’avantage de sonder un état final plus massif.61

L’analyse présentée dans cette thèse établit la production WWZ avec une signification62

statistique de 3.35 écarts-types, qui est réduit à 1.31 écarts-types si les bosons sont63

non-virtuels. Combinée avec d’autres analyses couvrant les autres états finals de tri-64

bosons, cette mesure a contribué à une observation d’une signification statistique de65

5.67 écarts-types de la production de trois bosons de jauge massifs (2.90 écarts-types66

pour les bosons non-virtuels). Les résultats sont en accord avec les prédictions du mod-67

èle standard. De même, cette thèse présente des études sur la sensibilité du processus68

WWZ aux couplages de jauge quartiques anormaux dans le cadre d’une théorie effective69

des champs.70

Comme la production de triboson est un processus rare, sa détection requiert une bonne71

efficacité d’identification des électrons et des muons. Parmi ces deux types de lep-72

tons, les électrons sont les plus difficiles à mesurer. Par conséquent, ce travail de73

thèse inclut une amélioration rigoureuse de la sélection d’électrons multivariée basée74

sur l’algorithme Boosted Decision Tree (BDT), utilisé dans le cadre de la collaboration75

CMS depuis la première période d’exploitation du LHC. Cette optimisation permet ainsi76

de conserver une identification des électrons très performante dans la deuxième période77

malgré le fait que le nombre d’interactions proton-proton par croisement de faisceaux de78

particules a considérablement augmenté. L’algorithme d’identification d’électrons mul-79

tivariée développé dans cette thèse est désormais devenu l’algorithme standard dans les80

analyses de CMS pour toutes les données de la deuxième phase du LHC.81
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Summary for the general public82

The standard model of particle physics contains matter particles (fermions) and parti-83

cles mediating interactions between matter (gauge bosons). Electrons and the so-called84

quarks found in protons and neutrons are matter particles. The massless photon, which85

mediates electromagnetic interaction, is the most well-known gauge boson. The so-86

called weak interaction, responsible for radioactivity, is also mediated by gauge bosons.87

Unlike photons, these weak bosons are massive, decay rapidly, and directly interact88

among themselves. This thesis studies the production of three weak bosons in high-89

energy proton collisions at the CERN Large Hadron Collider, where sufficient energy90

is available to produce the heavy bosons. This process is sensitive to weak boson-self91

interaction. As they are unstable, they can only be detected indirectly by their decay92

products, e.g. electrons. Therefore, this thesis also presents improvements in electron93

detection with the CMS particle detector.94

Résumé vulgarisé pour le grand public95

La théorie de la physique fondamentale contient des particules de matière (fermions) et96

des porteurs des interactions élémentaires (bosons de jauge). Les électrons et les quarks97

constituant les protons et les neutrons présents au sein du noyau atomique sont des98

fermions. L’interaction faible, responsable de la radioactivité, est portée par des bosons99

de jauge dits bosons faibles. Contrairement aux photons qui portent l’interaction électro-100

magnétique, les bosons faibles sont massifs, se désintègrent rapidement et interagissent101

entre eux. Cette thèse étudie la production de trois bosons faibles dans les collisions102

entre protons au Grand collisionneur de hadrons du CERN, où l’énergie est suffisante103

pour observer ce processus sensible à l’auto-couplage des bosons faibles. Ces bosons ne104

peuvent être détectés qu’indirectement par leurs produits de désintégration, par exem-105

ple des électrons. Cette thèse inclut des améliorations de la détection des électrons dans106

le détecteur CMS.107
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Chapter 1217

Theoretical foundation and motivation218

The theory of fundamental physics is the so-called standard model of particle physics, which219

describes the fundamental particles and their interactions. The limits of the standard220

model can be explored in different experimental environments, one of them being the221

high-energy frontier, where the energy refers to the center-of-mass energy of particle colli-222

sion events. The state-of-the-art particle collider that explores the current energy frontier223

is the Large Hadron Collider (LHC), which collides proton beams at a center-of-mass224

energy of
√

s = 13 TeV. So far, the LHC experiments have confirmed all predictions225

by the standard model at this energy scale and have not seen anything contradicting it.226

This means that high energy physics at the energy frontier is entering an era of precision227

physics, intending to conceive high-quality measurements that are sensitive to effects of228

physics beyond the standard model even if there is no smoking-gun-like signal.229

This thesis explores the energy frontier by studying the production of three massive230

vector bosons (W or Z bosons). The rate of this triboson production1 process is sensitive231

to self-interactions among the vector bosons, their coupling to the Higgs boson, and232

possible new physics beyond the standard model affecting the electroweak sector. Before233

elaborating further on the motivation for this measurement in Section 1.3, this chapter234

gives an introduction to the standard model in Section 1.1 and reviews the phenomena235

that it does not explain in Section 1.2.236

1.1 The standard model of particle physics237

At the very foundation of physics stands an observation by the Michelson-Morley ex-238

periment: the speed of light is the same in all inertial reference frames. This result239

was rigorously interpreted by Einstein and other physicists of the early 20th century.240

Mathematically, the invariance of the speed of light can be enforced by describing real-241

ity with Minkovski spacetime, where translations and Lorentz transformations permit242

us to change from one reference frame to another. The equations of physics should be243

covariant, meaning that they should have the same form in all reference frames. To244

ensure this, the building blocks of the equations must live in some representation of the245

Poincaré symmetry group (Lorentz transformations plus translations), just like vectors246

in spacetime do. These representations can be labeled by the so-called spin, referring247

to different representations of the Lorentz group, and a mass, which needs to be sup-248

plemented to parametrize representations of the full Poincaré group. The elementary249

objects in our visible Universe can be described in precisely these representations. This250

model was built and extensively tested in the last decades and is now known as the251

standard model of particle physics [1, 2, 3].252

1The W and Z bosons are not the only fundamental bosons in the standard model. However, in this thesis,
the term triboson production always refers to the production of three W or Z bosons.
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Chapter 1 Theoretical foundation and motivation

In the standard model, quantum fields of spin-1/2 (fermionic) make up stable and un-253

stable matter. Spin-1 fields (bosonic) mediate interactions between the fermion fields.254

A spin-0 field, the Higgs field, gives rise to mass terms for almost all fields. Besides spin255

and mass, there are also other field labels that correspond to internal symmetries. Inter-256

nal means that spacetime itself is not affected by these symmetry transformations, but257

only the fields are concerned. The additional labels (or quantum numbers) correspond-258

ing to the internal symmetries are the key to build a consistent theory that accounts for259

all the experimentally observed interactions.260

The standard model is a quantum field theory. The additional abstraction with field op-261

erators makes it possible to mathematically formulate a theory of interacting particles262

that can turn into each other. A given field can create or annihilate its corresponding263

particles by acting on the quantum state of our Universe, sticking to the interaction rules264

encoded by the standard model. Figure 1.1 shows all the particles that are described in265

this way.266

Before diving into the details of the theory, we will shift to a more experimental perspec-267

tive and discuss the standard model particles listed in Figure 1.1. Then, we will review268

the standard model starting with the fields that live in the lowest-dimensional non-269

trivial representation of the Poincaré group: the fermionic matter fields. Afterwards, we270

will introduce an internal symmetry that causes the fermions to interact with photons,271

leading us to quantum electrodynamics. We will take a look at the full electroweak the-272

ory, including the Higgs mechanism (also known as electroweak symmetry breaking).273

The strong interaction part of the standard model, Quantum Chromodynamics (QCD),274

is reviewed only briefly, as this is not the physics that was primarily targeted in this275

thesis. The presented review is strongly inspired by [4].

Figure 1.1: The particles of the standard model, showing the three generations of fermions
that are divided into quarks (purple) and leptons (green). The four gauge bosons that
mediate fundamental interactions are shown in red. The Higgs boson indicated by the
yellow box on the right is the only fundamental scalar particle in the standard model.

276
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1.1 The standard model of particle physics

1.1.1 Particles and interactions277

The standard model particles listed in Figure 1.1 can be grouped into four types, as278

indicated by the colors in the figure. In the matter sector, there are quarks and leptons.279

Then, there are the gauge bosons that mediate interactions between matter. Finally, there280

is a distinct scalar particle, the Higgs boson, whose corresponding field is responsible281

for giving mass to all particles. It is instructive to talk about the interactions – or forces –282

and their associated gauge bosons first. Being aware of the possible interactions helps283

to understand the differences between the fermions later on. All we need to know about284

fermions for the moment is that they come in three generations of increasing mass,285

where only the first generation particles are stable and hence make up the visible matter286

in our Universe. The standard model knows three kinds of interactions. The well-known287

electromagnetic force is mediated by the massless photon, denoted with γ. Then there288

is the so-called weak force, mediated by the W and Z bosons, which permits different289

fermions to interact wich each other. For example, nuclear beta decays happen through290

the weak interaction. The weak force is very short-ranged because the W and Z bosons291

are massive. Finally, the standard model explains the strong interaction, mediated by292

the gluons, that binds together one type of fermions, namely the quarks.293

Quarks and leptons are the two fermion-types that come in three generations, with a294

set of two intimately related leptons or quarks in each generation. A corresponding295

opposite-charged antiparticle matches all fermions. Quarks all have a fractional electric296

charge and are the constituents of hadrons, such as the proton or the neutron. The297

proton contains one down quark and two up quarks, whereas the neutron consists of298

one up quark and two bottom quarks. The third-generation top quark takes a special299

place in particle physics phenomenology because it is with 172.1 GeV the most massive300

particle of them all. This is important for two major reasons. First, it means that the301

top quark is the lepton that interacts most with the Higgs boson, dominating quantum302

corrections to its mass. Second, the large mass makes the top quark the only quark303

that decays via the weak interaction before it can hadronize, its decay products being a304

W boson and a bottom quark.305

Among the leptons, there is one charged particle and a corresponding neutral neutrino306

per generation. The first-generation charged lepton is the ubiquitous electron that binds307

with neutrons and protons to form atoms. In the second generation, we have the heavier308

muon that can be observed in nature as the decay product of hadrons from cosmic-309

ray interactions in the upper atmosphere. This makes the muon an important actor in310

astroparticle physics [5], but it also has a distinct role in collider physics. Its lifetime is311

long enough for it to reach particle detectors, and it interacts very little before it decays312

as µ− → e− + ν̄e + νµ. The annotated particle masses listed in Figure 1.1 indicate that313

the muon is more massive than the two first-generation quarks. This raises the question314

of possible muon decays to quarks. As we will discuss later in Section 1.1.8, quarks can315

never be the final decay products because of color confinement. Instead, the final decay316

product must be hadrons, where the lightest hadrons – the pions – are more massive317

than the muon. Hence, hadronic muon decays are forbidden by energy conservation.318

The third generation tau-lepton is massive enough to not only decay to first- and second-319

generation leptons, but also to hadrons. Its lifetime is relatively short, so taus produced320

in collider experiments decay close to the interaction point. Tau detection is particularly321

challenging, as there is at least one neutrino among the decay products and the hadronic322

decays can be easily confused with a hadronic jet stemming from a quark or a gluon.323

Now that the standard model particles have been presented, it is time to explore the324

theory that describes them.325
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Chapter 1 Theoretical foundation and motivation

1.1.2 Free fermions326

The Lorentz group is covered by two copies of SU(2), plus two distinct transformations327

that bridge its four disconnected subgroups: time-reversal and the reversal of spatial328

coordinates, commonly called parity transformation. The most fundamental objects329

that can be Lorentz transformed in a non-trivial way live in the two-dimensional rep-330

resentation of one copy of SU(2) and the trivial representation of the other copy. This331

representation is labeled ( 1
2 , 0), and the objects that live in it are called left-chiral spinors332

However, the parity transformation swaps this representation with (0, 1
2 ), making the333

object a right-chiral spinor. Therefore, to describe a physical system invariant under334

parity transformations, we need to use both kinds of spinors. They are usually put to-335

gether into a single object called a Dirac spinor, which hence lives in the ( 1
2 , 0)⊕ (0, 1

2 )336

representation and stands for fermion fields:337

ψ =

(

χL

ζR

)

. (1.1)

It is assumed in the standard model that when transitioning from one state to an-338

other, nature chooses the path that minimizes the integral of some object, called the339

Lagrangian L. This integral is the so-called action, and the equations obtained by mini-340

mizing it are named the equations of motion. The Lagrangian has to be Lorentz invariant,341

and its terms may include derivatives of the fields. However, terms with higher-order342

field derivatives can only appear if first-order-derivative terms do not affect the equa-343

tions of motion. Otherwise, the resulting theory would be unstable. Terms in the third344

order of the fields – or higher – result in interactions between the fields. Following these345

restrictions, the Lagrangian to describe free fermions must be346

LDirac = ψ̄
(

iγµ∂µ − m
)

ψ. (1.2)

where the matrices γµ have to satisfy the anticommutation relation {γµ, γν} = 2ηµν with347

the Minkovski metric ηµν, and ψ̄ = ψ†γ0. The hermitian conjugate of Equation 1.2 would348

work as well, but it is not necessary to keep it. It would lead to the same equations of349

motion.350

It is now clear that fermions are very fundamental in theoretical physics, so it is satis-351

fying to know that these objects can describe the building blocks of matter. In reality,352

there are many distinct fermions with masses spread over orders of magnitudes. The353

different fermions also live in different representations of the internal symmetries.354

1.1.3 Free vector bosons355

In the next higher-dimensional representation of the Lorentz group, both copies of SU(2)356

are represented by the spin-1/2 representation. The total spin is the sum of both indi-357

vidual spins, so the
(

1
2 , 1

2

)

representation gives us spin-1 bosons. It transforms exactly358

like the four-vector representation, meaning that this is the four-vector representation.359

Therefore, the objects living in it are called vector bosons.360

Since the spacetime derivative is also a four-vector, it is possible to write the general361

Lagrangian for a free vector boson without any additional matrices:362

LProca =
1

2

(

∂µ Aν∂µ Aν − ∂µ Aν∂ν Aµ
)

+ mAµ Aµ. (1.3)
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1.1 The standard model of particle physics

The ∂µ Aµ term does not affect the equations of motion, so the terms with two derivatives363

have to be kept this time. If the vector boson is massless, this Lagrangian is called364

LMaxwell. The kinetic terms for vector bosons are often written in terms of the field365

strength tensor:366

Fσρ := ∂σ Aρ − ∂ρ Aσ, (1.4)

which makes the Maxwell Largrangian look very compact:367

LMaxwell =
1

4
FµνFµν. (1.5)

The minus sign in front of the second term in Equation 1.3 seems at first glance unmoti-368

vated, but with this choice, the Lagrangian has an internal U(1) symmetry for massless369

fields. This has far-reaching implications that we will explore in the following.370

1.1.4 The internal U(1) symmetry for electromagnetism371

So far, we have used spacetime symmetry to arrive at a description of free fermions and372

vector bosons. We will now see how interacting theories arise naturally from imposing373

internal symmetries on the Lagrangian.374

The Maxwell Lagrangian allows us to gauge the vector potential Aµ with the derivative375

of an arbitrary function:376

Aµ → A′
µ = Aµ + ∂µga(x). (1.6)

The arbitrary function a(x) can be different for each point in space-time, making this377

gauge symmetry a local symmetry. The constant g is factored out because it will be378

interpreted as a coupling constant later.379

For the fermions, we can attempt to transform the fields with a phase rotation, corre-380

sponding to a U(1) internal symmetry as well:381

ψ → ψ′ = eiga(x)ψ, ψ̄ → ψ̄′ = e−iga(x)ψ̄. (1.7)

This is not a local symmetry of LDirac. It is only a global symmetry, meaning that it is only382

a symmetry if the parameter a(x) does not depend on the position, i.e., a(x) is just a.383

However, if we add an additional coupling term to LDirac and apply the transformations384

in Equations 1.6 and 1.7 together, the local symmetry works out. In other words, the385

following Lagrangian is invariant under local U(1) transformations:386

LDirac+Extra-Term = −mψ̄ψ + iψ̄γµ∂µψ + gAµψ̄γµψ. (1.8)

To make the Lorentz-invariance of the terms more explicit, one usually defines the co-387

variant derivative Dµ = ∂µ + igAµ, which transforms like a four-vector even under the388

local symmetry. Using this definition and adding the Maxwell Lagrangian – for which389

Equation 1.6 has already been a local symmetry –, one arrives at the Lagrangian for390

Quantum Electrodynamics (QED):391

LQED = −mψ̄ψ + iψ̄γµDµψ − 1

4
FµνFµν. (1.9)

Noether’s theorem connects each internal symmetry with a conserved quantity. The392

internal U(1) symmetry results in the conservation of electric charge.393
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Chapter 1 Theoretical foundation and motivation

1.1.5 The internal SU(2)L symmetry for weak interactions394

The success with the U(1) symmetry motivates the investigation of other possible in-395

ternal symmetries to model the remaining fundamental interactions. In the standard396

model, there is not only one fermionic field, so we must also consider possible internal397

symmetries of Lagrangians with multiple fermions. For working with two fermions, it398

is convenient to organize them in a doublet:399

Ψ :=

(

ψ1

ψ2

)

, Ψ̄ :=
(

ψ̄1 ψ̄2

)

. (1.10)

The Dirac Lagrangian LD1+D2 = iΨ̄γµ∂µΨ for such a doublet in the massless case is400

invariant under global SU(2) transformations:401

Ψ → Ψ′ = eiai
σi
2 Ψ, Ψ̄ → Ψ̄′ = Ψ̄e−iai

σi
2 , (1.11)

where ai are arbitrary real constants and σi
2 are the generators of SU(2), with the Pauli402

matrices σi. Again, if we want to have a local SU(2) symmetry, the derivative needs to be403

replaced with the covariant derivative:404

Dµ = ∂µ − ig
σi

2
W

µ
i . (1.12)

This time, three spin-1 fields are needed, one for each generator of SU(2). These fields405

usually appear in combination with the generators, so it is useful to define406

Wµ :=
(

Wµ

)

i

σi

2
. (1.13)

To get a locally SU(2) invariant Lagrangian, we still need a kinetic term for these three407

vector fields. One might naively attempt to use the simplest possible derivative terms,408

just like for a single vector field (compare Section 1.1.3), but then the Lagrangian would409

not be SU(2) invariant. Instead, the kinetic term needs to be defined in terms of the410

covariant derivative:411

Wµν =
i

g
[Dµ, Dν] =

i

g
(DµDν − DνDµ) . (1.14)

Applying this object to a test function Wµν f (x) reveals that the actual derivatives cancel412

out and how the field strength tensor can be expressed in terms of the fields:413

Wµν = ∂µWν − ∂νWµ − ig [Wµ,Wν] . (1.15)

Note that because of the multiplication with the generators, the field strength tensor is414

a matrix. However, to get a SU(2) invariant kinetic term for these three spin-1 fields, it415

is sufficient to take the trace of the analogon to the Maxwell term.416

Now, we can write down the locally SU(2) invariant Lagrangian:417

Llocally SU(2) invariant = iΨ̄γµDµΨ − 1

4
Tr
(

WµνWµν
)

. (1.16)

The additional commutator term in the field strength tensor (Equation 1.15) appears for418

all non-abelian gauge groups. It introduces new terms in the Lagrangian with the third419

or fourth power of the field Wµ. These terms correspond to the trilinear and quartic420

self-interactions of vector bosons, which are studied in this thesis.421
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1.1 The standard model of particle physics

The weak nuclear force is modeled by such a SU(2) interaction, more specifically a422

parity-violating SU(2)L interaction because only left-handed leptons interact via the423

weak force. This weak force is extremely short-ranged compared to the electromag-424

netic force, which can be modeled by making the spin-1 fields massive. However, it is425

not possible to add mass terms for the vector bosons without breaking the SU(2) sym-426

metry. Another problem are the fermion masses, as the mass terms for fermion doublets427

are only SU(2) invariant if both fermions in the doublet have the same mass. Mixing the428

left-handed SU(2) fermion doublets with the right-handed SU(2) singlets to write down429

mass-terms that are symmetric under parity transformation does not work.430

Although from a symmetry perspective, the addition of mass-terms for the fermions ap-431

pears to be just as problematic as for vector bosons, the introduction of massive vector432

bosons entails more theoretical problems. A massless vector boson can only be transver-433

sally polarized, but a massive vector boson can also have longitudinal polarization. This434

longitudinally polarized component causes the self-interaction processes to violate uni-435

tarity around 1.2 TeV [6, 7]. In general, the local SU(2) symmetry is needed to get a436

renormalizable quantum field theory. The bottom line is that Equation 1.16 with added437

mass-terms cannot be the correct theory for weak interactions. Next, we will discuss438

how all these problems can be addressed with minimal changes to the theory.439

1.1.6 Minimal scalar sector and unification of SU(2) and U(1)440

It is not possible to directly add mass terms for vector bosons and fermions without441

explicitly breaking the internal SU(2) symmetry of the theory. A way to solve this442

problem without giving up the SU(2) symmetry altogether is via a mechanism that443

spontaneously breaks the symmetry at lower energies while preserving it at high en-444

ergy. The Higgs mechanism – or Brout-Englert-Higgs (BEH) mechanism to give credit445

to all its inventors – achieves this by introducing a complex scalar SU(2) doublet with a446

self-interaction term in the Lagrangian that causes this scalar field to assume a nonzero447

vacuum expectation value at lower energies.448

Combining the findings of the previous sections, we so far have a locally U(1) and SU(2)449

invariant Lagrangian without mass-terms:450

LSU(2) and U(1) = iΨ̄γµDµΨ − 1

4
Tr
(

WµνWµν
)

− 1

4
BµνBµν, (1.17)

with the covariant derivative451

Dµ = ∂µ − ig
1

2
Bµ − ig′Wµ. (1.18)

The gauge field of the U(1) symmetry is now called Bµ instead of Aµ, where Aµ is the452

common name for the photon field. In a minute, we will see that the mass eigenstates453

will mix the SU(2) and U(1) gauge fields, with the photon field being the mixture’s454

massless eigenstate. The factor of 1
2 is introduced to unclutter the notation later.455

The BEH mechanism adds the following minimal scalar sector to the Lagrangian:456

LBEH = (DµΦ)†
(

DµΦ
)

+ ρ2Φ†Φ − λ
(

Φ†Φ
)2

= (DµΦ)†
(

DµΦ
)

− V(Φ). (1.19)

In this context, minimal means not merely a non-interacting scalar field, but also the457

necessary changes to realize electroweak symmetry breaking. The scalar has to be a458

SU(2) doublet. Otherwise, it would be again not possible to get different masses for459
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Chapter 1 Theoretical foundation and motivation

the elements of the left-handed fermion doublets. It is also necessary to add the next460

highest power in Φ to get a Higgs potential V(Φ) with the required properties. We will461

also find out soon why the scalar field needs to be complex.462

The minimum of the potential V(Φ) can be found by equating its derivative with zero,463

and it turns out to be at464

Φ†Φ =
ρ2

2λ
. (1.20)

This minimum is symmetric in all four components of Φ, but the system has to choose465

one of the solutions. This is the crux of the BEH mechanism. The SU(2) symmetry is466

spontaneously broken for perturbations around the minimum, even if the original La-467

grangian is symmetric. The spontaneous symmetry breaking is depicted in Figure 1.2.468

Figure 1.2: A visualization of the Higgs potential V(Φ) [8]. Just like a ball would roll into
the symmetric valley of minima and eventually come to a halt at a random position, the
Higgs field’s vacuum expectation value assumes a random minimum, breaking the SU(2)
symmetry. Note that since the actual Higgs field is not only a scalar but also a SU(2)
doublet, so it has four components, unlike what is depicted in the figure.

A convenient choice for the minimum of the potential for demonstration purposes is469

Φmin =

⎛

⎝

0
√

ρ2

2λ

⎞

⎠ ≡

⎛

⎝

0
v√
2

⎞

⎠ . (1.21)

In quantum field theory, computations are done as expansions around the minimum:470

Φ =

⎛

⎝

φ1r + φ1c
v√
2
+ φ2r + φ2c

⎞

⎠ ≈ eiθi
σi
2

⎛

⎝

0
v+h√

2

⎞

⎠ . (1.22)

The last redefinition involves some linear transformation from the φ{1,2},{l,r} to the newly471

introduced θi fields and is a valid approximation because the first order of the series472

expansion is equivalent.473

The exponential in Equation 1.22 looks exactly like a general local SU(2) transformation474

of a scalar field. For a global SU(2) symmetry, the massless fields θi, which depend on475

spacetime, cannot be gauged away and are called Goldstone bosons. However, with the476

added spin-1 fields W
µ
i the Lagrangian has a local SU(2) symmetry, and the Goldstone477

bosons can be gauged away. In more graphical language, the three SU(2) gauge bosons478

eat up the Goldstone bosons, explaining how the massive vector bosons get their lon-479

gitudinal degree of freedom. This argument also explains why the scalar doublet has480

to be complex, as at least three additional degrees of freedom are required. The fourth481

remaining degree of freedom h is the Higgs field.482
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1.1 The standard model of particle physics

Plugging Equation 1.22 into the BEH Lagrangian reveals gauge boson interactions with483

the Higgs field and Higgs self-interactions. If we leave the Higgs field aside and only484

consider the vacuum expectation value, we can understand how the SU(2) gauge bosons485

become massive:486

(

Dµ v√
2

)†(

Dµ
v√
2

)

=
v2

8

(

(

g′
)2
(

(

W
µ
1

)2
+
(

W
µ
2

)2
)

+
(

g′W
µ
3 − gBµ

)2
)

. (1.23)

All the matrix multiplications related to SU(2) representations have been done at this487

stage. In the next step, the gauge fields must be redefined to obtain terms that can be488

interpreted as mass terms:489

W
µ
± =

1

2

(

W
µ
1 ∓ iW

µ
2

)

,
(

Aµ

Zµ

)

=
1

√

g2 + g′2

(

gW
µ
3 + g′Bµ

g′W
µ
3 − gBµ

) (1.24)

The mass terms look as follows:490

1

4
v2g′2(W+)µ(W

−)µ +
1

8
v2(g2 + g′2)ZµZµ. (1.25)

As experimentally observed, the photon field Aµ is massless. If we had not used the491

unitary gauge in which the Goldstone bosons from Equation 1.22 disappear, they would492

have emerged in Equation 1.24 as parts of the massive vector bosons. The masses of the493

W and Z bosons are related by the Weinberg angle or weak mxing angle θW :494

cos θW =
g′

√

g2 + g′2
=

mW

mZ
. (1.26)

We have seen how the mass terms obtained from the vacuum expectation value of the495

Higgs field can spontaneously break the SU(2) symmetry at lower energies and how the496

SU(2) and U(1) gauge bosons mix. In the standard model, the internal SU(2)L ⊗ U(1)Υ497

symmetry is broken to U(1)EM. The subscript Υ denotes the hypercharge, which is the498

conserved quantity of the U(1) symmetry before electroweak symmetry breaking, and499

EM stands for electromagnetic.500

A scalar boson compatible with the Higgs boson has been discovered by the ATLAS501

and CMS collaborations in 2012 [9, 10], and most of its couplings to vector bosons and502

fermions have been measured. The measurements confirm that the discovered boson503

indeed exhibits the couplings expected from the Higgs boson.504

1.1.7 Fermion masses505

To understand the fermion mass terms, one must first understand the SU(2)L repre-506

sentations of the fermions in the standard model. The left-handed leptons come in507

doublets: a charged massive lepton together with a corresponding neutral massless508

neutrino. The right-handed charged lepton is a SU(2)L singlet. The right-handed neu-509

trino does not exist in the standard model because when the theory was developed,510

the neutrino appeared massless. For one lepton generation, we write the left-handed511

doublet and right-handed singlet as512

lL =

(

νe,L

eL

)

, eR. (1.27)
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Chapter 1 Theoretical foundation and motivation

In the quark sector, both the up-type and down-type quarks are massive, so we require513

two right-handed singlets per generation:514

qL =

(

uL

dL

)

, uR, dR. (1.28)

Introducing so-called Yukawa interactions with the Higgs field in the Lagrangian gives515

mass to the fermions:516

LYukawa = −λ
ij
d q̄i

LΦd
j
R − λ

ij
u q̄i

Liσ2Φ∗u
j
R − λ

ij
l l̄i

LΦe
j
R. (1.29)

The indices i and j are generational indices. For the quarks, the Yukawa couplings mix517

the generations, describing the experimentally observed mixing between quark mass518

and flavor eigenstates [11].519

1.1.8 SO(3) and quantum chormodynamics520

Analogous to the discussion in Section 1.1.5 about the SU(2) symmetry, one can impose521

a local SU(3) symmetry on the standard model. Like SU(2), the SU(3) symmetry group522

is non-abelian. It has eight generators commonly denoted by the Gell-Mann matrices523

λa=1,...,8. The eight generators give rise to eight massless gauge boson fields Ga
µ named524

gluons. Most standard model fields live in the trivial representation of this gauge group,525

except for the quarks. Hence, the gluon fields make quarks interact and form hadrons,526

corresponding to the strong interaction. The quarks are represented by SU(3) triplets,527

but this time, the triplet’s components are not representing fundamentally different528

particles with different masses, different from what we saw for the SU(2)L symmetry for529

the leptons. The three components of the SU(3) triplets are labeled by the color, which530

can be either red, blue, green, or a corresponding anticolor. The coupling constant in the531

SU(3) extension of the covariant derivative is called the strong coupling constant gs.532

It is necessary to mention that all coupling strengths in the standard model are not533

constant, but they vary with the energy scale of the probed interaction. This running534

of the coupling constants comes from quantum corrections to the interaction. Different535

from the electroweak coupling constants, the strong coupling decreases with the energy536

scale, which is known as asymptotic freedom [12, 13]. At lower energies, the large cou-537

pling makes it impossible to solve the equations of motions in the perturbation theory538

framework, and the quarks are subjet to color confinement. Therefore, quarks cannot539

be observed individually, but they are always bound together in color-neutral hadrons.540

This behavior dictates how quarks and gluons are measured at collider experiments.541

These particles always hadronize before interacting with the detector. The resulting542

hadrons decay further, causing in a spray of particles that is known as a jet.543

1.2 Physics phenomena beyond the standard model544

The standard model is an incredibly successful theory that can explain almost all phe-545

nomena observed in nature and does not make any predictions that contradict obser-546

vations. Still, are several directly or indirectly observed phenomena that remain unex-547

plained. These include neutrino masses, the matter-antimatter asymmetry in the Uni-548

verse, dark matter, dark energy, cosmic inflation, and gravity.549
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1.2 Physics phenomena beyond the standard model

That neutrinos have a mass was decisively concluded from neutrino flavor oscillation550

experiments at the Super-Kamiokande Observatory [14] and the Sudbury Neutrino Ob-551

servatory [15]. Flavor oscillation can only be explained if at least two neutrino genera-552

tions have a small nonzero mass. As discussed in Section 1.1.7, it would be necessary to553

have corresponding right-handed SU(2)L singlet to give masses to the left-handed neu-554

trinos via the Yukawa mechanism. Such low-mass electrically neutral SU(2)L singlets555

are undetectable. Therefore, it is not easy to test if neutrinos acquire mass in the same556

fashion as the other standard model particles. This is also highly disputed because of557

the many magnitudes between the charged lepton and neutrino masses. Possible so-558

lutions include more Higgs fields that live in different representations of the standard559

model symmetries or a theory in which the left- and right-handed neutrinos have vastly560

different masses. The neutrino might also be its own antiparticle (Majorana fermion),561

in which case it is possible to write a mass term that does not break gauge invariance562

without adding right-handed neutrinos. This possibility can be studied experimentally563

by measuring neutrinoless double-beta decays [16]. Any of these solutions would pro-564

foundly extend the standard model. Hence, it is hard to dispute that the neutrino masses565

are physics beyond the standard model.566

Our Universe contains much more matter than antimatter, which can only be explained567

if there are CP-violating processes that do not have the same probability after a si-568

multaneous charge conjugation and parity transformation. Such CP violation was first569

observed indirectly via kaon-antikaon oscillations and later directly measured in the570

quark sector, where the mixing of flavor and mass eigenstates can cause CP violation. In571

2020, CP violation in the lepton sector has been reported by the T2K collaboration with572

a statistical significance above 3 σ [17]. It is not clear yet whether CP violation is more573

significant in the quark or lepton sector, but the CP violation in the standard model is574

not sufficient to explain the matter-antimatter asymmetry in our Universe.575

The baryonic matter described by the standard model makes up only about 5 % of the576

Universe’s energy content. Another ∼27 % corresponds to dark matter, which has only577

been measured via the gravitational effects it causes. Two prominent dark-matter effects578

are the modified rotation velocity of galaxies as a function of the radius and gravitation579

lensing. After decades of searches, there is no indication that dark matter interacts via580

any force other than gravity, and the order of magnitude of the mass of potential dark581

matter particles is uncertain.582

The ongoing expansion of the Universe can not be explained by the baryonic and dark583

matter alone. The observed redshift of the Cosmic Microwave Background (CMB) – as584

measured by the Planck satellite [18] – necessitates an additional energy term, corre-585

sponding to the remaining ∼68 % in the energy balance. However, this can be modeled586

by introducing an intrinsic energy of space, called the cosmological constant.587

The two unexplained cosmological observations – dark matter and dark energy – are588

challenging to consolidate with the standard model’s existing particle content, even589

though they are often mentioned as motivations for standard model precision mea-590

surements at the collider energy frontier. There may be an energy desert between the591

electroweak and the Planck scale, meaning that no unknown particles have a mass592

somewhere in between. However, the Higgs boson discovery opened a new avenue593

that connects the energy frontier with cosmology that might even benefit from the en-594

ergy desert, as no additional physics needs to be considered in extrapolations to very595

high energy scales. Cosmological observations hint that brief exponential expansion of596

space took place around 10−36 after the Big Bang, seeding the formation of large-scale597

structures in our Universe [19]. The particle-physics explanation for this cosmic inflation598

is unknown, but scalar inflaton fields are ubiquitous in early Universe cosmology. Be-599
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Chapter 1 Theoretical foundation and motivation

ing the only scalar fundamental field that is experimentally confirmed, the Higgs field600

might have profound implications on primordial universe cosmology, and the other way601

around [20]. The possible metastability of the standard model vacuum expectation value602

might also have consequences on the evolution of the Universe.603

Gravity is challenging to model as a quantum field theory because the internal symme-604

try related to gravity is spacetime itself. However, gravity is much weaker than the other605

forces of nature, and quantum-gravitational effects would only appear near the Planck606

energy scale, which cannot be directly probed experimentally. For energies below, grav-607

ity is very well modeled by the theory of general relativity. Therefore, the standard608

model not including gravity is not a problem for our understanding of nature at acces-609

sible energy scales, even though quantum gravity is an intriguing theoretical challenge.610

It should be highlighted that general relativity is a gauge theory just like the standard611

model, so the two theories are not as far away from each other as one might think.612

This section outlined most avenues that can be taken to study new physics beyond the613

standard model. At the energy frontier, Higgs physics is particularly interesting, as the614

presence of a fundamental scalar field raises various questions. These questions concern615

the shape of the Higgs potential with its implications on vacuum stability, the connection616

between the Higgs field and cosmology, and also the problem whether a model with617

a fundamental scalar is even self-consistent at all energies [21]. Currently, the energy618

frontier is around the electroweak scale, presenting the opportunity to precisely measure619

interactions between the Higgs boson, the weak bosons, and the most massive fermion620

that dominates the quantum corrections for scalar fields, i.e., the top quark.621

1.3 Triboson production as a precision measurement622

The introduction to the standard model explained how the non-abelian electroweak623

gauge group leads to self-interactions among the weak bosons and how the interactions624

between the weak bosons and the Higgs fields are fundamental in electroweak sym-625

metry breaking. This enables a rich physics program in the electroweak sector, study-626

ing the production of vector bosons in proton collisions confirms the standard model’s627

gauge structure and the electroweak symmetry breaking process. Furthermore, physics628

beyond the standard model might affect the vector boson self-coupling, causing anoma-629

lous triple gauge couplings (aTGCs) or anomalous quartic gauge couplings (aQGCs).630

Limits of aTGCs can be inferred by measuring diboson production and Vector Boson631

Fusion (VBF) processes. To probe the quartic coupling of vector bosons and constrain632

the aQGCs, one can measure Vector Boson Scattering (VBS) or triboson production.633

Vector boson scattering probes the interaction of bosons emitted from two colliding634

quarks with two vector bosons in the final state. The two quarks can be measured in635

the detector as two jets at small scattering angles in both directions, which is the distinct636

signature to identify VBS processes. At leading order, the probability of VBS processes637

contains four powers of αEW if one does not consider the decay of the weak bosons.638

The same VVjj signature can also be caused by processes proportional to α2
EWα2

QCD, for639

example, if two gluons and two vector bosons are radiated from the interacting fermions.640

This QCD background is the main challenge in VBS measurements. However, the large641

angle between the jets for the purely electroweak process allows for a good separation642

of the VBS process, making it possible to isolate the vector boson self-interaction that is643

regularized by the Higgs boson.644

Triboson production – for which most relevant tree-level diagrams are shown in Fig-645

ure 1.3 – generally has lower cross-sections than VBS because of more kinematic con-646
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1.3 Triboson production as a precision measurement

(a) (b)

(c) (d)

Figure 1.3: Tree-level Feynman diagrams for the production of three massive vector
bosons. The solid line represents the fermions in the initial state, i.e., quarks in the case of
proton collisions. The wiggly lines indicate either a W or a Z boson, and the dashed line
stands for the Higgs boson. This figure highlights the trilinear gauge couplings (◦), the
quartic gauge coupling (•), and the interactions between Higgs and gauge bosons (⋄).

straints and the more massive final state, even though the probability is only propor-647

tional to α3
EW. Furthermore, the contributions from the radiation of weak bosons from648

the fermion line (as in Figure 1.3c) cannot be separated via the kinematic properties of649

additional jets. Still, probing the triboson final state that does not overlap with VBS and650

is kinematically very different is essential to complete the study of aQGCs at the LHC.651

Measuring the triboson final state also opens up several unique opportunities. Potential652

aQGCs are thought to be caused by new physics at higher energies beyond the elec-653

troweak scale, so probing a final state with a higher invariant mass than the diboson654

system in the VBS final state might be an advantage. With three vector bosons in the655

final state that were directly involved in the self-interaction process, more observables656

are available to probe the physics that might be at the origin of aQGCs. The role of the657

Higgs diagram is also different in triboson production. For VBS, the diagram with a658

Higgs boson in the T channel strongly interferes with the other diagrams, unitarizing659

the cross-section. For triboson production, the Higgs diagram – shown in Figure 1.3d –660

has an on-shell Higgs boson in the S channel, and the interference with the other dia-661

grams is negligible. The diagrams without the Higgs produce on-shell vector bosons,662

while one vector boson from the Higgs decay is highly off-shell. Because of this little663

overlap, one should make an disctinction between on-shell and Higgs mediated (or Higgs664

associated) triboson production.665

Before the latest data-taking runs of the LHC, triboson production could not be mea-666

sured because the process is very rare if one considers the leptonic final states, and the667

(semi)hadronic final states have ample background.668
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Chapter 1 Theoretical foundation and motivation

1.3.1 Triboson production at the LHC669

There were no searches for triboson production before the LHC era, and the LHC exper-670

iments so far carried out only a few measurements. The ATLAS experiment published a671

search for WWW production based on the LHC Run 1 dataset with
√

s = 8 TeV [22] and672

a seach for the more general WVV production with parts of the LHC Run 2 dataset [23],673

showing evidence for the WVV process. The CMS collaboration published a search for674

WWW production with data from the first Run 2 data-taking year [24].675

The cross-section for triboson production in proton-proton collisions at
√

s = 13 TeV676

are listed in Table 1.1, combining predictions for on-shell VVV production and the677

VH → VVV process. The predictions for on-shell VVV production include next-to-678

leading-order (NLO) QCD corrections. These are often the dominant corrections be-679

cause of the larger value of the interaction strength αQCD compared to αEW, the coupling680

strength of the electroweak interaction. Even if not considered in this thesis, it is impor-681

tant to mention that recently, computations of the VVV cross-sections that also include682

NLO electroweak contributions were published [25, 26, 27, 28] The VH → VVV cross-683

sections listed in Table 1.1 consider both QCD and electroweak corrections at NLO. The684

uncertainties on all the listed cross-sections are approximately 10 %.685

Quantity WWW WWZ WZZ ZZZ Reference

σpp→VVV non-VH (fb) 293.4 165.1 36.0 23.1 NLO QCD [29, 30, 31, 32]

σVH→VVV (fb) 216.0 188.9 55.7 14.0 NNLO QCD + NLO EW [33, 34, 35]

σtot. (fb) 509.4 354.0 91.6 37.1

BVVV→SS (%) 7.16 - - -

branching fractions from [36]

BVVV→3ℓ (%) 3.46 4.82 6.37 -

BVVV→4ℓ (%) - 1.16 0.81 3.22

BVVV→5ℓ (%) - - 0.39 -

BVVV→6ℓ (%) - - - 0.13

σtot. × BVVV→SS (fb) 36.4 - - -

σtot. × BVVV→3ℓ (fb) 17.6 17.1 5.83 -

σtot. × BVVV→4ℓ (fb) - 4.12 0.74 1.19

σtot. × BVVV→5ℓ (fb) - - 0.36 -

σtot. × BVVV→6ℓ (fb) - - - 0.05

σtot. × BVVV→SS × L 4987 - - -

σtot. × BVVV→3ℓ × L 2411 2343 799 -

σtot. × BVVV→4ℓ × L - 564 101 163

σtot. × BVVV→5ℓ × L - - 49.3 -

σtot. × BVVV→6ℓ × L - - - 6.85

Table 1.1: Summary of signal process cross-section, branching fractions, and total expected
number of events produced in the LHC Run 2 dataset, with an integrated luminosity

of L = 137 fb−1. The uncertainties on the cross-sections are typically 10 %. For the
branchings, the subscript SS stands for a pair of same-sign charged leptons. The full WWW
to dileptons final state cannot be measured because backgrounds are too dominant.

Table 1.1 also shows the branching fractions for final states with different numbers of686

charged leptons. Because of the abundant QCD background at lepton hadron colliders,687

final states with more charged leptons have a higher signal purity. Finally, the table688

shows the number of predicted events in all relevant final states with 137 fb−1 of collision689

14

charlot
Sticky Note
weren't searches at LEP?

charlot
Sticky Note
remove 'dataset'

charlot
Highlight

charlot
Highlight



1.3 Triboson production as a precision measurement

data, which corresponds to the LHC Run 2 dataset. A large fraction of the events is lost690

because not all leptons go in the detector’s fiducial volume. In the WWZ → 4ℓ channel,691

approximately 50 % of the events are not fiducially accepted by the CMS detector.692

Having at least one produced Z boson is very helpful for background suppression, as693

both charged leptons from the Z boson decay are reconstructed, and invariant-mass re-694

quirements can be imposed to select Z boson candidates purely. This makes the WWZ695

process very appealing for precise measurements, particularly in the four-lepton chan-696

nel where all the weak bosons decay leptonically. Processes with more leptonically-697

decaying Z bosons are much rarer and difficult to access even with the LHC Run 2698

dataset. Therefore, the WWZ → 4ℓ channel is particularly promising for triboson mea-699

surements, which is why it is in the focus of the measurements presented in this thesis.700

1.3.2 The effective field theory framework701

Many theories of Physics beyond the Standard Model (BSM) theories were developed702

in the last decades to explain the unexplained phenomena listed in Section 1.2, or make703

the standard model mathematically and philosophically more appealing by introducing704

new fields that make the theory have less numerical coincidences. However, it is not705

practical to test all of the numerous BSM models at the LHC. A more generic frame-706

work to search for BSM physics that became very popular is the effective field theory707

(EFT) framework [37, 38]. Complementing bump hunt analyses that look for new parti-708

cle resonances at the mass scale probed by the collider, the EFT framework allows for709

a consistent interpretation of process rate enhancements in the high-mass tails of distri-710

butions. In other words, energy scales that can not be probed directly because they are711

beyond the collision energy can still be probed indirectly.712

If a new particle with mass Λ would mediate an interaction between standard model713

particles with a dimensionless coupling constant f , the propagator that enters the scat-714

tering amplitude and generally depends on the scattering momentum p can be approx-715

imated by a constant if Λ2 ≫ p2:716

f 2

p2 − Λ2
= − f 2

Λ2

[

1 +
p2

Λ2
+

p4

Λ4
+ . . .

]

−−−−→
Λ2≫p2

− f 2

Λ2
. (1.30)

Hence, the BSM effect can be modeled with a coupling constant of mass dimension −2.717

If such dimensionful couplings are allowed in the Lagrangian of the theory – which has718

to be of mass dimension 4 – it is possible to introduce new dimensionful operators, albeit719

generally at the cost of the theory’s renormalizability for a finite number of expansion720

terms.721

Operators of odd dimension break lepton or baryon number conservation, so they are722

rarely considered. Therefore, as suggested by the example in Equation 1.30, the lowest-723

dimensional effective operators are of dimension 6. Operators that consistently extend724

the standard model to a standard model effective field theory (SMEFT) need to keep the725

Lagrangian invariant under the standard model gauge symmetries, so there is a limited726

set of operators Od
i of dimension d that might extend the standard model Lagrangian:727

LEFT = LSM + ∑
d>4

∑
i

fiOd
i

Λd−4
. (1.31)

The new coupling strengths f in the EFT Lagrangian are usually called Wilson coefficients.728

Some of the dimension 6 operators modify the trilinear gauge couplings, so the EFT729
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Chapter 1 Theoretical foundation and motivation

framework can be used to set interpretable limits on the aTGCs. The same connection730

exists between the dimension 8 operators and the aQGCs, so dimension 8 operators are731

vital for the general interpretation of VBS and triboson measurements. The relevant732

dimension 8 operators, as defined in [39], are:733

LS,0 =

[

(

DµΦ
)†

DνΦ

]

×
[

(DµΦ)† DνΦ
]

LS,1 =

[

(

DµΦ
)†

DµΦ

]

×
[

(DνΦ)† DνΦ
]

LM,0 = Tr
[

ŴµνŴµν
]

×
[

(

DβΦ
)†

DβΦ

]

LM,1 = Tr
[

ŴνβŴµν
]

×
[

(

DβΦ
)†

DµΦ

]

LM,2 =
[

BµνBµν
]

×
[

(

DβΦ
)†

DβΦ

]

LM,3 =
[

BµνBνβ
]

×
[

(

DβΦ
)†

DµΦ

]

LM,4 =

[

(

DµΦ
)†

ŴβνDµΦ

]

× Bβν

LM,5 =

[

(

DµΦ
)†

ŴβνDνΦ

]

× Bβµ

LM,6 =

[

(

DµΦ
)†

ŴβνŴβνDµΦ

]

LM,7 =

[

(

DµΦ
)†

ŴβνŴβµDνΦ

]

LT,0 = Tr
[

ŴµνŴµν
]

× Tr
[

ŴαβŴαβ
]

LT,1 = Tr
[

ŴανŴµβ
]

× Tr
[

ŴµβŴαν
]

LT,2 = Tr
[

ŴαµŴµβ
]

× Tr
[

ŴβνŴνα
]

LT,5 = Tr
[

ŴµνŴµν
]

× BαβBαβ

LT,6 = Tr
[

ŴανŴµβ
]

× BµβBαν

LT,7 = Tr
[

ŴαµŴµβ
]

× BβνBνα

LT,8 = BµνBµνBαβBαβ

LT,9 = BαµBµβBβνBνα

(1.32)

These operators group into scalar (or longitudinal) operators that only involve the scalar734

field and the covariant derivatives, transversal operator with only the gauge fields, and735

mixed operators that contain both covariant derivatives of the scalar field and the gauge736

fields. Triboson production and VBS measurements are both most sensitive to the trans-737

verse operators. Figure 1.2 indicates which operators affect a given quartic gauge cou-738

pling. It can be seen that the WWZ process, which involves the WWZZ coupling, is739

sensitive to most of the aQGC operators, except for LT,8 and LT,9, which give rise to740

fully neutral gauge couplings that are otherwise forbidden in the standard model.741

Nonzero aQGC operator values would be manifest in the tail of the distributions of742

observables sensitive to the scattering process’s energy scale, for example, the invariant743

mass of all leptons in the final state. With three bosons in the final states, it is also744
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1.3 Triboson production as a precision measurement

possible to extract more information that distinguishes the EFT contribution from the745

standard model contribution, most notably from observables sensitive to the angular746

separation between the bosons. A promising observable is, for example, the sphericity747

of the triboson momenta, or – more appropriate for hadron colliders – the transverse748

sphericity [40]. The WWZ process that has all the three weak bosons in the final state2,749

so it also opens up for the first time the possibility to compare the distributions of angles750

between different bosons in the same event selection. This might be very useful for the751

interpretation of a possible high-mass event excess. For example, the operators LT,0,752

LT,1, and LT,2 cause different angular distributions for the three bosons. The current753

best aQGC limits as measured by CMS are listed in Figures 1.4, 1.5 and 1.6, which also754

showcase some ATLAS results for comparison.755

WWWW WWZZ ZZZZ WWγZ WWγγ ZZZγ ZZγγ Zγγγ γγγγ

LS,0, LS,1 ! ! !

LM,0, LM,1
LM,6, LM,7

! ! ! ! ! ! !

LM,2, LM,3
LM,4, LM,5

! ! ! ! ! !

LT,0, LT,1
LT,2

! ! ! ! ! ! ! ! !

LT,5, LT,6
LT,7

! ! ! ! ! ! ! !

LT,8, LT,9 ! ! ! ! !

Table 1.2: Checklist showing which quartic gauge boson coupling is affected by a given
dimention 8 operator [39].

]-4aQGC Limits @95% C.L. [TeV
200 0 200 400

May 2020

aC summary plots at: http://cern.ch/go/8ghC

4/S,0f ss WW [-3.8e+01, 4.0e+01]
-1

19.4 fb 8 TeV

ss WW [-6.0e+00, 6.4e+00] -1
137 fb 13 TeV

WZ [-5.8e+00, 5.8e+00] -1
137 fb 13 TeV

WV ZV [-2.7e+00, 2.7e+00]
-1

35.9 fb 13 TeV

4/S,1f ss WW [-1.2e+02, 1.2e+02] -1
19.4 fb 8 TeV

ss WW [-1.8e+01, 1.9e+01] -1
137 fb 13 TeV

WZ [-8.2e+00, 8.3e+00] -1
137 fb 13 TeV

WV ZV [-3.4e+00, 3.4e+00]
-1

35.9 fb 13 TeV

Channel Limits ∫ dtL s

CMS

Figure 1.4: Limits on dimension 8 scalar/longitudinal parameters fS,i [41].

2The W+ and W− bosons are excitations of the same quantum field, so they count as separate bosons.
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200 0 200 400 600 800
]-4aQGC Limits @95% C.L. [TeV

Aug 2020

aC summary plots at: http://cern.ch/go/8ghC

4/M,0f WV [-7.7e+01, 8.1e+01] -119.3 fb 8 TeV
Z [-7.1e+01, 7.5e+01] -119.7 fb 8 TeV
Z [-1.9e+01, 2.0e+01] -135.9 fb 13 TeV
Z [-7.6e+01, 6.9e+01] -120.2 fb 8 TeV
W [-7.7e+01, 7.4e+01] -119.7 fb 8 TeV
W [-8.1e+00, 8.0e+00] -135.9 fb 13 TeV
ss WW [-3.0e+00, 3.2e+00] -1137 fb 13 TeV
WZ [-5.8e+00, 5.8e+00] -1137 fb 13 TeV

WW [-2.8e+01, 2.8e+01] -120.2 fb 8 TeV
WW [-4.2e+00, 4.2e+00] -124.7 fb 7,8 TeV

WV ZV [-6.9e-01, 7.0e-01] -135.9 fb 13 TeV
4/M,1f WV [-1.3e+02, 1.2e+02] -119.3 fb 8 TeV

Z [-1.9e+02, 1.8e+02] -119.7 fb 8 TeV
Z [-4.8e+01, 4.7e+01] -135.9 fb 13 TeV
Z [-1.5e+02, 1.5e+02] -120.2 fb 8 TeV
W [-1.2e+02, 1.3e+02] -119.7 fb 8 TeV
W [-1.2e+01, 1.2e+01] -135.9 fb 13 TeV
ss WW [-4.7e+00, 4.7e+00] -1137 fb 13 TeV
WZ [-8.2e+00, 8.3e+00] -1137 fb 13 TeV

WW [-1.1e+02, 1.0e+02] -120.2 fb 8 TeV
WW [-1.6e+01, 1.6e+01] -124.7 fb 7,8 TeV

WV ZV [-2.0e+00, 2.1e+00] -135.9 fb 13 TeV
4/M,2f WV [-5.7e+01, 5.7e+01] -120.2 fb 8 TeV

Z [-3.2e+01, 3.1e+01] -119.7 fb 8 TeV
Z [-8.2e+00, 8.0e+00] -135.9 fb 13 TeV
Z [-2.7e+01, 2.7e+01] -120.2 fb 8 TeV
W [-2.6e+01, 2.6e+01] -119.7 fb 8 TeV
W [-2.8e+00, 2.8e+00] -135.9 fb 13 TeV

4/M,3f WV [-9.5e+01, 9.8e+01] -120.2 fb 8 TeV
Z [-5.8e+01, 5.9e+01] -119.7 fb 8 TeV
Z [-2.1e+01, 2.1e+01] -135.9 fb 13 TeV
Z [-5.2e+01, 5.2e+01] -120.2 fb 8 TeV
W [-4.3e+01, 4.4e+01] -119.7 fb 8 TeV
W [-4.4e+00, 4.4e+00] -135.9 fb 13 TeV

4/M,4f WV [-1.3e+02, 1.3e+02] -120.2 fb 8 TeV
Z [-1.5e+01, 1.6e+01] -135.9 fb 13 TeV
W [-4.0e+01, 4.0e+01] -119.7 fb 8 TeV
W [-5.0e+00, 5.0e+00] -135.9 fb 13 TeV

4/M,5f WV [-2.0e+02, 2.0e+02] -120.2 fb 8 TeV
Z [-2.5e+01, 2.4e+01] -135.9 fb 13 TeV
W [-6.5e+01, 6.5e+01] -119.7 fb 8 TeV
W [-8.3e+00, 8.3e+00] -135.9 fb 13 TeV

4/M,6f Z [-3.9e+01, 4.0e+01] -135.9 fb 13 TeV
W [-1.3e+02, 1.3e+02] -119.7 fb 8 TeV
W [-1.6e+01, 1.6e+01] -135.9 fb 13 TeV
ss WW [-6.0e+00, 6.5e+00] -1137 fb 13 TeV
WZ [-1.2e+01, 1.2e+01] -1137 fb 13 TeV
WV ZV [-1.3e+00, 1.3e+00] -135.9 fb 13 TeV

4/M,7f Z [-6.1e+01, 6.3e+01] -135.9 fb 13 TeV
W [-1.6e+02, 1.6e+02] -119.7 fb 8 TeV
W [-2.1e+01, 2.0e+01] -135.9 fb 13 TeV
ss WW [-6.7e+00, 7.0e+00] -1137 fb 13 TeV
WZ [-1.0e+01, 1.0e+01] -1137 fb 13 TeV
WV ZV [-3.4e+00, 3.4e+00] -135.9 fb 13 TeV

Channel Limits ∫ dtL s
CMS
ATLAS

Figure 1.5: Limits on dimension 8 mixed parameters fM,i [41].

20 0 20 40
]-4aQGC Limits @95% C.L. [TeV

Aug 2020

aC summary plots at: http://cern.ch/go/8ghC

4/T,0f WWW [-1.2e+00, 1.2e+00] -135.9 fb 13 TeV
Z [-3.8e+00, 3.4e+00] -119.7 fb 8 TeV
Z [-7.4e-01, 6.9e-01] -135.9 fb 13 TeV
Z [-3.4e+00, 2.9e+00] -129.2 fb 8 TeV
W [-5.4e+00, 5.6e+00] -119.7 fb 8 TeV
W [-6.0e-01, 6.0e-01] -135.9 fb 13 TeV
ss WW [-4.2e+00, 4.6e+00] -119.4 fb 8 TeV
ss WW [-2.8e-01, 3.1e-01] -1137 fb 13 TeV
WZ [-6.2e-01, 6.5e-01] -1137 fb 13 TeV
ZZ [-2.4e-01, 2.2e-01] -1137 fb 13 TeV
WV ZV [-1.2e-01, 1.1e-01] -135.9 fb 13 TeV

4/T,1f WWW [-3.3e+00, 3.3e+00] -135.9 fb 13 TeV
Z [-4.4e+00, 4.4e+00] -119.7 fb 8 TeV
Z [-1.2e+00, 1.1e+00] -135.9 fb 13 TeV
W [-3.7e+00, 4.0e+00] -119.7 fb 8 TeV
W [-4.0e-01, 4.0e-01] -135.9 fb 13 TeV
ss WW [-2.1e+00, 2.4e+00] -119.4 fb 8 TeV
ss WW [-1.2e-01, 1.5e-01] -1137 fb 13 TeV
WZ [-3.7e-01, 4.1e-01] -1137 fb 13 TeV
ZZ [-3.1e-01, 3.1e-01] -1137 fb 13 TeV
WV ZV [-1.2e-01, 1.3e-01] -135.9 fb 13 TeV

4/T,2f WWW [-2.7e+00, 2.6e+00] -135.9 fb 13 TeV
Z [-9.9e+00, 9.0e+00] -119.7 fb 8 TeV
Z [-2.0e+00, 1.9e+00] -135.9 fb 13 TeV
W [-1.1e+01, 1.2e+01] -119.7 fb 8 TeV
W [-1.0e+00, 1.2e+00] -135.9 fb 13 TeV
ss WW [-5.9e+00, 7.1e+00] -119.4 fb 8 TeV
ss WW [-3.8e-01, 5.0e-01] -1137 fb 13 TeV
WZ [-1.0e+00, 1.3e+00] -1137 fb 13 TeV
ZZ [-6.3e-01, 5.9e-01] -1137 fb 13 TeV
WV ZV [-2.8e-01, 2.8e-01] -135.9 fb 13 TeV

4/T,5f Z [-9.3e+00, 9.1e+00] -120.3 fb 8 TeV
Z [-7.0e-01, 7.4e-01] -135.9 fb 13 TeV
W [-3.8e+00, 3.8e+00] -119.7 fb 8 TeV
W [-5.0e-01, 5.0e-01] -135.9 fb 13 TeV

4/T,6f Z [-1.6e+00, 1.7e+00] -135.9 fb 13 TeV
W [-2.8e+00, 3.0e+00] -119.7 fb 8 TeV
W [-4.0e-01, 4.0e-01] -135.9 fb 13 TeV

4/T,7f Z [-2.6e+00, 2.8e+00] -135.9 fb 13 TeV
W [-7.3e+00, 7.7e+00] -119.7 fb 8 TeV
W [-9.0e-01, 9.0e-01] -135.9 fb 13 TeV

4/T,8f Z [-1.8e+00, 1.8e+00] -119.7 fb 8 TeV
Z [-4.7e-01, 4.7e-01] -135.9 fb 13 TeV
Z [-1.8e+00, 1.8e+00] -120.2 fb 8 TeV
ZZ [-4.3e-01, 4.3e-01] -1137 fb 13 TeV

4/T,9f Z [-7.4e+00, 7.4e+00] -120.3 fb 8 TeV
Z [-4.0e+00, 4.0e+00] -119.7 fb 8 TeV
Z [-1.3e+00, 1.3e+00] -135.9 fb 13 TeV
Z [-3.9e+00, 3.9e+00] -120.2 fb 8 TeV
ZZ [-9.2e-01, 9.2e-01] -1137 fb 13 TeV

Channel Limits ∫ dtL s
CMS
ATLAS

Figure 1.6: Limits on dimension 8 transversal parameters fT,i [41].
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Chapter 2756

The CMS experiment at the Large Hadron757

Collider758

The Large Hadron Collider (LHC) is a collider for subatomic particles built and operated759

by the European Organization for Nuclear Research (CERN) underneath the French-760

Swiss border near Geneva. It primarily produces proton-proton (pp) collisions at the761

center of mass energy of 13 TeV, the current world record. It can also accelerate beams762

of heavy ions and regularly conducts lead-lead or proton-lead collisions. A large part of763

the existing CERN accelerator complex serves as an injector chain to feed the LHC with764

protons at an energy of 450 GeV. Superconducting magnets in the LHC then force the765

particle beams onto a circular trajectory, while superconducting radiofrequency cavities766

accelerate the beam on each turn.767

The accelerated particle bunches collide at four different interaction points, where par-768

ticle detectors measure the collision remnants. The four detectors specialize in different769

areas of high-energy physics. The LHCb experiment [42] is dedicated to the physics770

of hadrons that contain a bottom quark (B hadrons), for example, rare decays, excited771

states, and CP properties. The A Large Ion Collider Experiment (ALICE) detector [43]772

focuses on lead-lead collisions, studying strong interaction physics and the properties773

of quark-gluon plasma to understand the structure of hadronic matter. Finally, the774

two general-purpose detectors ATLAS [44] and CMS [45] reconstruct almost the com-775

plete collision final state, so they are often associated with a variety of questions within776

high-energy frontier physics. However, they were designed primarily to learn how the777

electroweak symmetry is broken at the TeV scale, be it via the Higgs mechanism or778

otherwise.779

In this thesis, LHC proton-proton collision data recorded by the CMS detector in 2016,780

2017, and 2018 have been analyzed. This period is referred to as LHC Run 2. Section 2.1781

reviews the design and performance of the LHC to an extent necessary for the under-782

standing of collision data. Section 2.2 gives a full overview of the CMS detector, which783

covers the various subdetectors and notions of the trigger and data acquisition system.784

2.1 The Large Hadron Collider785

The year 1984 is often mentioned as a milestone in the genesis of the LHC: the first786

LHC workshop took place in Lausanne, and the first LHC studies were presented to the787

International Committee for Future Accelerators (ICFA) [46]. Twenty-five years later,788

in 2009, the ALICE collaboration published the first scientific results based on LHC789

collision data [47]. In the context of the CMS and ATLAS experiments, which require790

a higher collision rate, the year 2011 marks the start of data-taking for physics. In791

the 2020s, the LHC will be upgraded to the High Luminosity LHC (HL-LHC), which792

goes along with significant detector upgrades. With the HL-LHC upgrade, the collider793

should also reach the nominal collision energy of 14 TeV.794
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Chapter 2 The CMS experiment at the Large Hadron Collider

2.1.1 The CERN accelerator infrastructure795

The European Organization for Nuclear Research (CERN) was founded in 1954 and796

operates a very successful family of hadron accelerators – among other facilities. The797

original Proton Synchrotron (PS) provided the 25 GeV beams for the Gargamelle ex-798

periment that discovered weak neutral current interactions in 1973. Another notable799

achievement of CERN related directly to the weak interaction was the W and Z boson800

discovery by the UA1 and UA2 experiments in 1983. This discovery was powered by801

the Super Proton Synchrotron (SPS)1, which can reach proton energies of 450 GeV.802

Different effects dominate beam dynamics in different energy ranges. There is no single803

accelerator design that is adequate for all energies. Hence, the PS and SPS now serve804

as sequential pre-accelerators for the LHC. The LHC resides in a 26.7 km underground805

tunnel that is, on average, approximately 100 m below ground level. Initially, the tunnel806

housed the Large Electron-Positron Collider (LEP), decommissioned in the year 2000.807

The protons are obtained from hydrogen by stripping off the electrons with electric808

fields. They consecutively pass through a linear accelerator (LINAC 2), the Proton Syn-809

chrotron Booster (PSB), the PS, and the SPS before finally entering the LHC. With the810

HL-LHC upgrades, the linear accelerator will be replaced with the new LINAC 4 [48].811

Instead of accelerating protons directly, the LINAC 4 will accelerate negative hydrogen812

atoms, which lose all electrons by going through a stripping foil in the PSB. Using H–
813

ions allows for charge-exchange injection to the synchrotron, where the beam can be814

accumulated over many turns [49]. This makes it possible to reach the beam brightness2
815

required by the HL-LHC.816

Figure 2.1 shows an overview of the CERN accelerator complex. One recent highlight817

besides the LHC is the Advanced WAKEfield Experiment (AWAKE), which conducts818

research and development on plasma wakefield acceleration. Another new highlight is819

the Extra Low ENergy Antiproton (ELENA) storage ring, which decelerates antiproton820

beams to the energy of 0.1 MeV for antihydrogen production. Having such electrically821

neutral anti-atoms enables the measurement of gravitational effects on antimatter.822

2.1.2 Design and parameters of the LHC823

In general, a circular particle accelerator like the LHC increases the energy of charged824

particles by sending them through radiofrequency (RF) resonator cavities. Dipole mag-825

nets force the particles onto a circular path such that they can repeatedly pass through826

the same accelerating field. Heavier particles like hadrons require stronger magnetic827

fields but only lose little energy via synchrotron radiation. Therefore, the LHC’s most828

important building blocks are the cylindrical vacuum vessels with the superconducting829

dipole magnets. A cross-section of such a component is shown in Figure 2.2. The parti-830

cles in the two parallel beam pipes travel in opposite directions to collide head-on at the831

interaction points. There are 1232 of these approximately 15 m long dipoles distributed832

along eight circular arcs. Liquid helium at 1.9 K cools down the niobium-titanium su-833

perconductor, which has to conduct up to 11.7 kA of electrical current. The magnetic834

field is ramped up from 0.535 T up to 7.8 T in the case of 6.5 TeV proton beams. The835

16 RF cavities are within one of the straight sections between the dipole arcs. Their836

field oscillates with around 400 MHz depending slightly on the proton energy, which is837

1Or, more precisely, the Super Proton–Antiproton Synchrotron (Sp̄pS), which is how the SPS was called
while it operated as a proton-antiproton collider.

2The beam brightness is the current per transverse emittance: B = I
8πϵxϵy
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2.1 The Large Hadron Collider

Figure 2.1: The CERN accelerator complex [50]. Note that after the second long LHC
shutdown in 2019–2020, LINAC 2 will be replaced with LINAC 4.

increased by 0.5 MeV over each turn. For comparison, the energy loss by synchrotron838

radiation is 7 keV per revolution for 7 TeV beams.839

Besides acceleration, the RF cavities have a bunching effect on the beam. The particle840

injection into the LHC is timed such that they are synchronized with the falling slope841

of the oscillating electric potential. At this phase, relativistic particles that are injected a842

bit ahead are accelerated slightly more. The radius of their trajectory extends because of843

the relativistic mass increase, and the stretched path causes the particles to fall behind.844

Particles that are initially behind are accelerated less, which brings them on a shorter845

trajectory so they can catch up. Therefore, the protons are stabilized in so-called RF846

buckets. The RF frequency is 35640 times higher than the accelerated hadrons’ revolu-847

tion frequency, so theoretically, there are as many RF buckets to fill. However, the PS848

provides protons with a bunch spacing of 25 ns, and one needs an abort gap in the bunch849

structure to have a time window for switching the kicker magnets in case of a beam850

abort. Hence, 2808 RF buckets are filled.851

Dipole magnets and RF cavities alone are not sufficient for a stable beam. A particle-852

beam is smeared in both longitudinal and transverse position-momentum phase space.853

In general, the spread of the beam in phase space (emittance) is be preserved – according854

to the Liouville theorem –, and the beta functions βx and βy describe the evolution of the855

relative transverse emittance. It was discussed before how RF cavities have a focusing ef-856

fect in the longitudinal direction. A focusing effect in one transverse direction is achieved857

with quadrupole magnets at the cost of defocusing in the other direction. Therefore, the858

magnetic lattice consists of alternating focusing and defocusing quadropole magnets,859
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Figure 2.2: Cross-section of LHC vacuum vessel with superconducting dipole magnet and
beam pipes [51].

resulting in a net focusing effect on the beam. Along most of the beamline, the beta860

functions oscillate with the spacing of the focusing and defocusing quadrupoles. The861

beta functions value at the interaction point, called beta star, is of particular importance862

for a high collision rate. Note that there also are sextupole, octupole, and decapole863

magnets in the LHC, which are mandatory to correct for undesired effects on the beam864

dynamics, such as the energy-dependent focusing of the quadrupoles (chromaticity) or865

dipole edge effects.866

The collision rate at the LHC is the product of the collision processes cross-section σ867

and the instantaneous luminosity L of the machine. For a Gaussian beam distribution,868

it is869

L =
N2

pnb frevγr

4πϵnβ∗ F. (2.1)

The meaning of most parameters is explained in Table 2.1, and γr is the relativistic870

Lorentz factor that is around 7460 for a beam energy of 7 TeV. The geometric factor F871

accounts for the crossing angle between the beams at the interaction point. If the beams872

profile is assumed to be circular in the transverse plane, this factor is873

F =

[

1 +

(

θcσz

2σ∗

)2
]−1/2

. (2.2)

The crossing angle θc is necessary to constrain the interaction region in the longitudinal874

direction. During an LHC fill, the number of protons per bunch decreases as they collide875

and – to a lesser extent – interact with the gas in the beam pipe. To ensure the luminosity876

delivered to the experiments is still approximately constant, the LHC can counter this877

effect by adapting the beta function or the beam overlap. If the instantaneous luminosity878

is high enough, multiple inelastic pp collisions can pile up in one bunch crossing. The879

average pileup is880

⟨PU⟩ = Lσ

nb frev
. (2.3)

For the high luminosity experiments CMS and ATLAS, the nominal luminosity of pp881

collisions is L = 1034 cm−2s−1, so the average pileup for an inelastic cross-section of882
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2.1 The Large Hadron Collider

79.5 mb [52] should be around 25. For some subdetectors, the response is longer than the883

bunch spacing of 25 ns. Therefore, from the point of view of the experiments, pileup is884

often categorized into in-time and out-of-time pileup, with different correction algorithms885

for both types (see Section 3.5 for a discussion of in-time pileup correction).886

Beam 7 TeV

RF system frequency 400.790 MHz

Bunch separation ∆t 25 ns

Number of bunches nb 2808

Number of protons per bunch Np 1.15 × 1011

Revolution frequency frev 11245 Hz

Transverse bunch size RMS at the interaction point σ∗ 16.7 µm

Longitudinal bunch size RMS σz 7.55 cm

Beta function at the interaction point β∗ 0.55 m

Crossing angle at the interaction point θc 285 µrad

Transverse emittance ϵn 3.75 µm

Synchrotron radiation loss/turn 7 keV

Table 2.1: LHC parameters for the nominal pp collision energy of 14 TeV [51].

Figure 2.3: The LHC schedule between 2011 and the 2040s [53]. Between the data-taking
periods, there are some long shutdowns (LS) and an extended end-of-year technical stop
before resuming operation in 2017. In the third long shutdown, the High Luminosity LHC
(HL-LHC) will be installed, and the ATLAS and CMS detectors will be upgraded to deal
with the increased luminosity.

2.1.3 Operations history and future887

On September 19th, 2008, a few days after the first beam circulation, a discharge of a888

faulty electrical connection inflicted severe damage to the collider, affecting 53 dipole889

magnets. The electrical resistance of the electrical connections between the dipole mag-890

nets was too high to sustain the current required for nominal beam energy, causing them891

to overheat and melt during a ramp-up test without beam. At this point, CERN had to892

decide if it should either replace all of the problematic connectors – causing further de-893

lays – or start operating at lower energy after minimal repairs. The management opted894

for a quick restart at a lower collision energy of 7 TeV in 2010, which explains the lower895
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Chapter 2 The CMS experiment at the Large Hadron Collider

initial collision energies in the LHC schedule (Figure 2.3). In 2012, the collision energy896

was raised to 8 TeV before the electrical connections were finally replaced in the first897

long shutdown that marked the end of the LHC Run 1. This has proven to be the right898

decision since the reduced energy was sufficient to detect the Higgs boson.899

For the LHC Run 2 between 2015 and 2018, the collision energy was not raised to the900

nominal 14 TeV because the training of the dipole magnets would have taken too long.901

Figure 2.4 shows the instantaneous and integrated luminosity delivered to the CMS ex-902

periment for both Run 1 and Run 2. The design luminosity of 1034 cm−2s−1 was not903

reached in 2015, while it has been significantly exceeded in the following years. Accord-904

ingly, only a few percent of the collisions recorded by CMS and ATLAS experiments in905

Run 2 was produced in 2015. Furthermore, the 2015 collisions are distinguished by their906

lower pileup, as shown in Figure 2.5. This asymmetric dataset size is undesirable for907

an experimentalist: the combination of datasets measured under different conditions in-908

troduces additional systematic uncertainties and requires dedicated simulations for the909

different conditions. The ATLAS collaboration nevertheless decided to combine all four910

years for most of their full Run 2 analyses. The CMS collaboration generally does not911

consider the 2015 dataset, which is also the case for this thesis’s analyses.912

After the current long shutdown (LS2), the LHC will enter another three years of data-913

taking (Run 3), during which the design luminosity is expected to be exceeded by at914

least a factor of two. With the upgrade to the HL-LHC before the subsequent Run 4, the915

collider should nominally reach an instantaneous luminosity of L = 5 × 1034 cm−2s−1,916

which is five times higher than the design luminosity of the original LHC. The total917

integrated luminosity delivered to each of the high-luminosity experiments before the918

long shutdowns is indicated in Figure 2.3. The ultimate target for a successful HL-LHC919

is 4000 fb−1, which would be around 21 times more than the luminosity collected so far920

at the end of Run 2.921

2.2 The CMS experiment922

The Compact Muon Solenoid (CMS) experiment is a large general-purpose particle de-923

tector at one of the four interaction regions of the LHC.924

The CMS concept was first discussed publicly in 1990 at the Large Hadron Collider925

Workshop in Aachen [54]. Initially, it was thought that the high-radiation environment926

of the LHC would prohibit the tracking of charged particles other than muons. How-927

ever, bending the muon trajectories with a powerful solenoid magnet – surrounding the928

calorimeters that measure the energy of particles other than muons – was already part of929

the early proposals. This compact design and the focus on muons gave the experiment930

its name: the Compact Muon Solenoid. Higgs physics has always been the main bench-931

mark that influenced the design decisions taken for CMS, even when it was not clear932

if the Higgs boson predicted by the minimal scalar sector would exist or if electroweak933

symmetry is broken by another mechanism.934

The prospect of measuring Higgs boson decays into four muons dictated the field935

strength of the solenoid and the dimensions of the experiment. The detector is 21.6 m936

long, has a diameter of 14.6 m and weighs 12,500 tons. Together with the 3.8 T magnetic937

field, this size allows for the measurement of muons with the necessary momentum938

resolution. A cutaway view of the detector is shown in Figure 2.6, where one can clearly939

see how the muon spectrometers that surround the superconducting solenoid make940

up most of the detector volume. Within the solenoid are the calorimeters and the in-941

ner charged particle tracker. As is the standard for collider experiments, the calorimeter942

24

charlot
Highlight

charlot
Sticky Note
No. The Higgs was discovered with 7 TeV + 8 TeV data, with a majoiur contribution from 8 TeV dataset. But yes having first data at 7 TeV was useful (although the H xsec rises very quickly with energy).



2.2 The CMS experiment

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

DDte (87C)

0

5

10

15

20

25

30

35

40

3
e
D
k
 D

e
lL
v
e
Ue

d
 L

u
P

Ln
o
V
Lt

y
 (
H
z/
n
b
)

× 10

DDtD included fUom 2010-03-30 11:22 to 2018-10-26 08:23 8TC 

2010, 7 7eV, PDx. 203.8 Hz/µb
2011, 7 7eV, PDx. 4.0 Hz/nb
2012, 8 7eV, PDx. 7.7 Hz/nb
2015, 13 7eV, PDx. 5.2 Hz/nb
2016, 13 7eV, PDx. 15.3 Hz/nb
2017, 13 7eV, PDx. 20.7 Hz/nb
2018, 13 7eV, PDx. 21.4 Hz/nb

0

5

10

15

20

25

30

35

40

CMS PeDk LuPLnosLty Per DDy, SS

(a)

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

1 JD
n

DDte (87C)

0

10

20

30

40

50

60

70

7
o
tD

l 
,n

te
J

UD
te

d
 L

u
m

Ln
o
V
Lt

y
 (
fb
−
1
)

× 50

DDtD included fUom 2010-03-30 11:22 to 2018-10-26 08:23 8TC 

2010, 7 7e9, 45.0 pb−1

2011, 7 7e9, 6.1 fb−1

2012, 8 7e9, 23.3 fb−1

2015, 13 7e9, 4.2 fb−1

2016, 13 7e9, 41.0 fb−1

2017, 13 7e9, 49.8 fb−1

2018, 13 7e9, 67.9 fb−1

0

10

20

30

40

50

60

70

CMS ,ntegrDted LumLnosLty DelLvered, SS

(b)

Figure 2.4: Peak luminosity (a) and cumulative luminosity (b) for proton-proton colisions
delivered to the CMS experiment during LHC Run 1 (2010–2012) and Run 2 (2015–2018).
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system is split between an electromagnetic calorimeter (ECAL) and a hadronic calorime-943

ter (HCAL). The ECAL is another subdetector that was strongly influenced by Higgs944

physics. It was designed to achieve the necessary diphoton mass resolution for the945

measurement of Higgs boson decays to two photons.946

With the very high collision rate of 40 MHz, it is not possible to reconstruct and store all947

collision events. Dedicated trigger hardware that decides which events should be kept948

is strictly necessary. A brief explanation of the trigger and data acquisition system will949

be given in this detector-hardware-oriented chapter, following the detector subsystem950

explanation. At the end of the chapter, an overview of CMS luminosity measurement951

is given. Chapter 3 will discuss how the information form the CMS subdetectors are952

combined to reconstruct the objects in the final states of collision events.953

Figure 2.6: A cutaway view of the CMS detector [55].

2.2.1 The CMS coordinate system954

The origin of the CMS coordinate system [45] is the nominal interaction point. The955

x-axis of this right-handed coordinate system points up to the surface. The y-axis points956

towards the center of the LHC ring and the z-axis consequently points towards the Jura957

mountains. Positions in the detector are often given in cylindrical coordinates. The polar958

angle θ is measured from the z-axis, and the azimuthal angle φ represents an anticlock-959

wise rotation in the x-y plane relative to the positive x-axis. Another coordinate that is960

very common in hadron collider physics is the so-called pseudorapidity used instead of961

the polar angle θ:962

η = − ln

[

tan

(

θ

2

)

]

. (2.4)
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Explaining the name, the pseudorapidity in the limit of a massless particle converges to963

the rapidity:964

y =
1

2
ln

(

E + pz

E − pz

)

. (2.5)

Most final state particles in hadron collisions come out at small angles relative to the965

beamline, which translates to an approximately uniform distribution in pseudorapid-966

ity. Accordingly, the distance between two particles in the detector, ∆R, is very often967

measured in the η-φ plane. Furthermore, differences in pseudorapidity are Lorentz968

invariant.969

In the following description of the CMS detector subsystems, any given coordinates970

refer to the global coordinate system that was defined in this section.971

2.2.2 Detector subsystems972

2.2.2.1 Solenoid magnet973

The CMS detector design was originally optimized for muon detection. An essential974

ingredient to get an excellent muon momentum resolution is a powerful magnetic field975

that bends the trajectory of charged particles. This field is generated by a solenoid since976

this design can best resist the magnetic forces exerted on the conductor by a very strong977

field. The CMS superconducting solenoid is made up of 2168 turns of a high-purity978

aluminum-stabilized conductor. Its length is 12.9 m at a radius of 3 m, it is cooled down979

to 4.6 K, and a current of about 18 kA runs through the coil to generate a 3.8 T magnetic980

field. The outer muon systems (see Section 2.2.2.5) are interleaved with an iron return981

yoke that contains the magnetic field inside the detector volume. Another advantage of982

the solenoid design is the homogeneous magnetic field in the barrel, which only bends983

the particles in the transverse plane. Two interesting design ideas related to the magnet984

problem were present in the first CMS concepts but were abandoned because of cost985

and engineering difficulties. One idea was to use extra toroid magnets in the forward986

regions for precise charge determination up to |η| < 4, and another idea was to use iron987

absorbers in the HCAL, which would have amplified the central value of the magnetic988

field to up to 6 T, further increasing the bending power [56].989

A map of the magnetic field generated by the superconducting solenoid at the central990

value of 3.8 T is shown in Figure 2.7. The magnet will presumably not be exchanged991

or upgraded during the remaining lifetime of CMS [57]. Some consolidation and up-992

grade work has been done before 2020, in particular, to minimize magnet strain from993

unnecessary field-ramping cycles [58].994

2.2.2.2 Inner charged-particle tracker995

The tracking detector is the detector subsystem closest to the interaction point. It mea-996

sures the helix trajectories that are described by charged particles in the magnetic field997

of the solenoid. These measured tracks are used to determine the particles’ momenta998

and charges and also allow for the reconstruction of primary and secondary particle999

interaction vertices. This vertexing is essential for the CMS physics program, as many of1000

the most interesting collision events at the LHC produce b quark jets from the decay of1001

heavy particles. Tagging these jets as well as other objects, like c quarks and τ leptons,1002
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Figure 2.7: Map of the magnetic field of the CMS detector (left) and the corresponding
field lines (left) at 3.8 T [59].

asks for track measurements as close to the interaction vertex as possible3. Vertexing1003

also makes it possible to reject tracks from pileup collisions. Among the other design1004

goals of the tracker was a high position resolution to match hits to tracks correctly and1005

a high granularity to maintain a low enough occupancy in the high-pileup LHC envi-1006

ronment. Furthermore, the tracker material budget should be minimized not to degrade1007

the calorimeter measurements. Putting the calorimeters inside the magnet coil has the1008

advantage of little material in front of them, and this advantage should not be nullified1009

by excessive tracker material. Initially, a tracker system with three subdetectors was1010

considered, with the outermost one based on Micro-Strip Gas Chambers (MSGCs) [61].1011

It was later decided that the simplest and most elegant way to meet the requirements1012

is an all-silicon system with a pixel detector at the center and a silicon strip detector1013

surrounding it. The design and performance of the tracking detector are detailed in1014

Reference [62]. Figure 2.8 shows the layout of the inner tracking system.1015

The pixel detector covers |η| < 2.5 and was replaced at the end of 2016 during the1016

technical stop of the LHC [63]. The previous pixel detector was also used throughout1017

Run 1 and is often referred to as the Phase 0 pixel detector, while the new one – meant1018

to serve until the end of Run 3 – is called the Phase 1 pixel detector. This change was1019

made to cope with the increasing luminosity of the LHC, maintaining equal or better1020

performance. The original design with three layers in the barrel and two discs in the1021

endcaps has been replaced by a design with four layers and three disks (Figure 2.9). The1022

radial coverage was increased as well. While the old pixel detector had barrel layers1023

at 4.4, 7.3, and 10.2 cm, the new one has layers at 3.0, 6.8, 10.2, and 16.0 cm. As a1024

result, the new pixel detector has improved momentum resolution, heavy flavor tagging1025

performance, and pattern matching capabilities. Another notable change is the reduced1026

material budget in the new Pixel detector, which is shown in Figure 2.10a. The material1027

budget of the old pixel detector is also put into the context of the full inner tracker1028

3Both the tagging of heavy flavor (b, c) jets and the tagging of τ leptons requires measurement of sec-
ondary vertices very close, albeit for slightly different reasons. For τ leptons (lifetime corresponding
to cτ = 87.11 µm), one wants to measure the vertex of the τ-decay directly [60]. For heavy flavor jets,
one is interested in the decay vertices of short-lived heavy flavor hadrons that emerge from the b and c
quark hadronization.
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Figure 2.9: Left: the layout of layers and disks in the old and in the new pixel detector.
Right: the barrel pixel layers of the old and new pixel detectors [63].

in Figure 2.10b. The silicon sensor thickness of 285 µm did not change with the new1029

detector.1030

The pixel detector is surrounded by a silicon strip detector, which consists of several1031

submodules (Figure 2.8). The Tracker Inner Barrel (TIB) has four layers with silicon1032

strips of dimension 10 cm x 80 µm, at a thickness of approximately 320 µm. It is com-1033

plemented by the Tracker Inner Disks (TID), with three disks on each side and the same1034

sensor thickness. The thickness is chosen as a trade-off between active volume and sus-1035

ceptibility to radiation damage. The particle flux that causes radiation damage reduces1036

with the distance from the interaction point. Therefore, the strips in the six layers of1037

the Tracker Outer Barrel (TOB) are thicker, with a thickness of approximately 500 µm.1038

Finally, the Tracker Endcaps (TEC) provides nine more disks on each side, equipped1039

with 500 µm sensors as well. The strips in the barrel detectors are oriented parallel1040

to the beam direction, and the strips in the disks of the endcap detectors are oriented1041

radially. Some layers and disks carry two detector modules back-to-back, where one is1042

rotated with a slight stereo angle relative to the other. The relation between hits from1043

both planes constrains the last coordinate (z in the barrel and r in the endcaps), albeit1044
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Figure 2.10: The material budget of the Phase 0 and Phase 1 pixel detectors compared and
put into confext of the full inner detector.

with a resolution that is around an order of magnitude worse than for the coordinate1045

perpendicular to the strips.1046

2.2.2.3 Electromagnetic calorimeter1047

The homogeneous crystal Electromagnetic Calorimeter (ECAL) has been part of the1048

CMS concept from the beginning, even before it was even thought possible to mea-1049

sure charged particles with an inner tracking detector in the LHC environment [54]. It1050

was designed with a firm emphasis on an excellent energy resolution to be maximally1051

sensitive to H → γγ resonances on top of an overwhelming exponential background.1052

The ECAL resides in the solenoid volume between the inner tracker and the hadronic1053

calorimeter. It is a homogeneous scintillating crystal calorimeter, relying on the elec-1054

tromagnetic shower formation in a dense material that is, at the same time, an active1055

scintillating medium. The ECAL is made up of a barrel part and two endcaps, as shown1056

in Figure 2.11. The barrel part (EB) covers |η| < 1.479 and contains 61,200 lead tungstate1057

(PbWO4) crystals that are read out by avalanche photodiodes (APDs). The two endcaps1058

(EE) cover 1.479 < |η| < 3.0 and contain 7324 crystals each, this time read out by vacuum1059

phototriodess (VPTs) which are more radiation hard than APDs. The endcap crystal1060

calorimeter is complemented by a two-plane silicon strip preshower detector (ES) with1061

two radiation lengths of lead in front of the first plane and one radiation length in front1062

of the second. The silicon sensors measure 6.2 cm x 6.2 cm with an active area of 6.1 cm1063

x 6.1 cm, divided into 19 strips.1064

If the transverse area for energy summing can be kept as small as necessary for accurate1065

energy measurement, the impact of pileup contributions can be minimized. For this1066

reason, the ECAL is highly granular in η and φ. The front face cross-section of the EB1067

crystals is around 2.2 cm x 2.2 cm, which approximately matches the PbWO4 crystals1068
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Figure 2.11: Transverse section through the CMS electromagnetic calorimeter [55].

Molière radius of 2.19 cm. The EE crystals have a slightly larger front face of 2.86 cm1069

x 2.86 cm. The choice of larger EE crystals seems to contradict with pileup rejection1070

being the primary motivator for the high granularity, as particles from pileup are more1071

abundant in the endcaps. Indeed, this increased EE crystal front face was not forseen1072

in the original ECAL design [64], but was only decided for the CMS Technical Design1073

Report in 2006 [55]. The purpose is to keep the number of readout channels in the1074

endcaps under control and compensate for the weaker light collection capabilities of the1075

VPTs. A width of 2.86 cm was just about possible for the crystal producers. The barrel’s1076

crystals are 22 cm long and the ones in the endcaps 23 cm, with one radiation length X01077

being approximately 0.89 cm.1078

In beam tests, the ECAL barrel was shown to have an energy resolution that fits the1079

typical functional dependence [45]:1080

(

σ

E

)2

=

(

S√
E

)2

+

(

N

E

)2

+ C2, (2.6)

S = 2.8 % GeV1/2, N = 120 MeV, C = 0.3 %.

The stochastic term S represents fluctuations in the amount of produced and collected1081

scintillating light. The noise term N corresponds to mostly electronic noise and pileup1082

contributions. The constant term C accounts for inter-calibration errors, nonuniformity1083

in the longitudinal light collection, and leakage of energy from the back of the crystal.1084

Measuring the energy resolution of the ECAL in the context of LHC Run 2 collisions1085

is more complicated than in beam tests, but it can be done using known dielectron1086

resonances. The ECAL resolution will be discussed more in Section 3.2.5 which covers1087

the electron reconstruction.1088

The ECAL performed very reliably during the LHC Run 2 [65]. The high radiation1089

environment and consequent transparency loss of the crystals necessitate constant mon-1090

itoring and updating of various calibration parameters. A laser system monitors the1091

transparency for light with a wavelength of 440 nm, which corresponds to the scintil-1092

lating light’s peak. The transparency loss, measured by the laser system, is shown in1093

Figure 2.12.1094

The most notable ECAL related change between Run 1 and Run 2 was done at the en-1095

ergy reconstruction level. The signal amplitude is no longer estimated using a digital1096

filter, but by a template fitting method dubbed multifit [67]. It accounts for pileup contri-1097

butions from other bunch crossings, the so-called out-of-time (OOT) pileup. The scintil-1098

lator decay time of about 40 ns is longer than the time between bunch crossings (25 ns).1099

Hence, to measure the bulk of the pulse shape, the ECAL reads out ten samples of 25 ns,1100
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Figure 2.12: Relative response to laser light (440 nm in 2011 and 447 nm from 2012 onward)
injected in the ECAL crystals, measured by the ECAL laser monitoring system, averaged
over all crystals in bins of pseudorapidity [66].

where the triggering bunch crossing corresponds to the 6th sample. The multifit fits up1101

to 15 pulse shapes simultaneously to disentangle the signal pulse from the pulses caused1102

by OOT pileup, solving a non-negative least squares (NNLS) problem in which all am-1103

plitudes are constrained to be positive. This algorithm is also used at the High Level1104

Trigger (HLT) where fast execution time is mandatory, which is why an adaptation for1105

Graphics Processing Units (GPUs) is envisioned for Run 3. Because the NNLS algo-1106

rithm is iterative, the GPU accelerated implementation of the multifit procedure might1107

also come with some changes to the algorithm. Often, the solution already converges1108

in the first few steps while only a few channels iterate for much longer, which is not1109

friendly to parallelization. It should be noted that not every channel is treated with the1110

full multifit reconstruction in each event: the ECAL uses a zero-suppression readout1111

and typically only reads out around 8 × 103 crystals per typical Run 2 event.1112

2.2.2.4 Hadronic calorimeter1113

Directly behind the ECAL and for the most part still within the magnet cryostat resides1114

the Hadronic Calorimeter (HCAL). Its job is to measure charged and neutral hadrons1115

of any kind to ensure a good resolution on jet energy and missing transverse energy1116

measurements. However, it should be kept in mind that in the CMS particle-flow recon-1117

struction, the charged hadrons energy is mainly estimated from track measurements.1118

Accordingly, the HCAL is mostly used for hadron identification and to measure the1119

energy of neutral hadrons. Most hadrons are able to pass through the ECAL and in-1120

teract in the brass absorber layers of the HCAL, creating a hadronic shower. The brass1121

layers are interleaved with plastic scintillator tiles to sample a fraction of the shower1122

energy deposit by converting it to visible light. The resolution attainable on hadronic1123

shower measurements is strongly limited by the non-Poissonian shower fluctuations1124

caused by the many possible hadronic interactions, shower leakage behind the HCAL,1125

and the electromagnetic shower component from potential π0 → γγ decays to which1126

the calorimeter responds differently. It is also possible – in particular for heavy-flavor1127
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Figure 2.13: Schematic views of the HCAL showing the HB, HE and HO calorimeters [68],
where (a) shows the original HPD readout segmentation and (b) shows the segmentation
that is envisioned for Run 3 with the SiPM readout. The "FEE" labels indicate the locations
of the front-end electronics. The HF calorimeter is not shown.

jets – that undetectable neutrinos are produced in the hadronic shower. Therefore, the1128

sampling calorimeter design is very typical for hadron calorimeters because of its cost-1129

effectiveness. The penalty from the sampling measurement on the resolution does not1130

weigh in too much compared to the effects described above.1131

The HCAL barrel (HB) contains 15 brass layers, covers the pseudorapidity range |η| <1132

1.4 and is segmented in 2304 towers of ∆η × ∆φ = 0.087 × 0.087. A few more scintillator1133

layers outside the magnet make up the outer barrel (HO) system that is sometimes also1134

referred to as a tail catcher. The HO extends up to |η| < 1.26. The hadronic endcaps1135

(HE) cover 1.3 < |η| < 3.0 and overlap slightly with the HB. There are 1152 modules1136

in each endcap, spread between up to 18 brass absorber layers. Below |η| < 1.74, the1137

tower segmentation matches the one in the barrel, while at high pseudorapidity, the1138

azimuthal segmentation is reduced by a factor of two. Each of the HCAL towers in the1139

barrel covers 5 × 5 ECAL crystals,1140

The plastic scintillator tiles of the HCAL are connected to the front-end electronics with1141

wavelength-shifting fibers. The signal is collected with Hybrid Photodiodes (HPDs).1142

Light collection efficiency and size constraints of the HPDs require the bundling of mul-1143

tiple fibers for a single HPD. However, the HPDs are gradually replaced with Silicon1144

Photomultipliers (SiPMs) that have higher efficiency and require fewer fibers bundled1145

together, allowing for a more granular readout. During the LS1, the replacement has1146

already been done for the HO. By the start of Run 3, all HPDs in the full HCAL will1147

be replaced, improving the longitudinal segmentation of the readout, as shown in Fig-1148

ure 2.13.1149

There are two additional calorimeters inside the detector that do not belong to the1150

ECAL or HCAL subsystems. The pseudorapidity range −6.6 < η < −5.2 is covered1151

by the Centauro and Strange Object Research Calorimeter (CASTOR), a electromag-1152

netic/hadronic Cherenkov sampling calorimeter. The CASTOR not only helps to vali-1153

date the modeling of the underlying event4 in hadron collisions, but also has its own1154

physics program of exotic searches and QCD phenomenology [69]. Located at z = ±1401155

m are the two stations of the Zero-Degree Calorimeter (ZDC), which is especially used1156

for heavy-ion studies [70].1157

4The underlying event is everything else that happens in the collision besides the primary high energy
scattering process.
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2.2.2.5 Muon detectors1158

The name of CMS, the Compact Muon Solenoid, suggests that the muon detection sys-1159

tem is central to the detector concept [71]. The muon system is the outermost subde-1160

tector system, interleaved with the iron return yoke for the magnetic field. On the one1161

hand, the inner tracking detector described in Section 2.2.2.2 is optimized for track sepa-1162

ration and vertexing near the interaction point, which demands the high resolution and1163

readout channel number that can be achieved with silicon detectors. On the other hand,1164

the muon system has to measure muon track sections outside the solenoid volume that1165

are long enough to measure the track curvature for muon momentum determination as1166

precisely as necessary. These measurements do not require such a high resolution for1167

individual measurement points, but rather a large detector volume. Gaseous detectors1168

are more appropriate than silicon detectors in this case.1169

Like most subdetectors covered in the previous sections, the muon system is segmented1170

into a barrel (|η| < 1.2) and endcap (0.9 < |η| < 2.4) region. A schematic to accompany1171

this overview of the muon system can be found in Figure 2.14. The example of the1172

ECAL has shown already how the different radiation levels in the barrel and endcaps1173

necessitate different readout electronics. Unlike the calorimeters, located within the1174

solenoid volume, the muon system is exposed to different magnetic field strengths in1175

the barrel and endcaps. The differences in the radiation level and the magnetic field1176

strength (Figure 2.7) illustrate why the CMS muon system uses different detector types1177

in barrel and endcap. The barrel is equipped with Drift Tubes (DTs), and the endcaps1178

are made of Cathode Strip Chambers (CSCs) that use different readout electronics. Both1179

regions are complemented by Resistive Plate Chambers (RPCs) operating in avalanche1180

mode, which have an excellent timing resolution of the order of 1 ns. In total, the muon1181

system amounts to about 25,000 m2 of detector surface.1182
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Figure 2.14: Schematic of a quadrant of the CMS detector, highlighting the muon system.
Text labels indicate the DTs, Resistive Plate Chambers (RPCs), and CSCs [55].

Like most gaseous detectors, the DT detector in the barrel records muon hits by measur-1183

ing the electronic avalanche that forms at the stretched anode wire when a muon ionizes1184

the gas in the detector. As can be inferred from Figure 2.14, which shows a quarter of1185

the CMS detector, the DT is segmented into five wheels with four stations each. The1186
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three inner stations each have 12 layers of wires, where 8 of them contain wires parallel1187

to the beam pipe, measuring the hit position in the r-φ plane. The other four layers have1188

perpendicular wires to measure the z-coordinate. In the outermost station, there are1189

only eight layers with wires parallel to the beamline. With this setup, the DT achieves a1190

hit position resolution of about 100 µm in the r-φ plane.1191

The CSC chambers all have concentric wires that extend in the r direction, and they1192

measure the remaining coordinate more indirectly than by wire position. The cathode1193

is segmented into strips perpendicular to the anode wires, and the mirror charge at1194

these cathode strips is measured. In this way, the CSC detector achieves a resolution of1195

about 75 to 150 µm in the φ direction and around 200 µm in the radial direction. This1196

resolution is similar to the one of the DT detector, hinting that the advantage of the1197

cathode strip measurements is not necessarily the position resolution but rather a better1198

timing resolution that makes the CSCs more suitable for triggering in the endcap region1199

where the muon density is higher than in the barrel.1200

When the information from the muon system is combined with the measurements of1201

the inner tracker, a momentum resolution for muons with 20 < pT < 100 GeV of about1202

1-2 % is reached in the barrel [59].1203

2.2.3 Trigger and data acquisition system1204

Handling the vast amount of data produced in hadron-collision experiments is a chal-1205

lenge. The proton bunches interact with each other in the detector every 25 ns, cor-1206

responding to a frequency of 40 MHz. The total data from the millions of the detec-1207

tor readout channels amounts to approximately 1 MByte per event, a number that is1208

growing with the increasing pileup and, therefore, increasing detector occupancy. The1209

trigger [72] and data acquisition system [73] must be able to cope with this data flux.1210

The bottleneck of the data acquisition is the speed at which the collision data can be writ-1211

ten to permanent storage. This limit amounts to around 800 events per second. Thus,1212

the collision events have to be filtered on the fly, reducing the event rate by multiple1213

orders of magnitude. CMS uses a two-stage filtering system, where a hardware-based1214

Level-1 (L1) trigger first reduces the 40 MHz rate to about 100 kHz. The second stage,1215

the software-based High Level Trigger (HLT), further reduces the rate to the storable1216

800 Hz.1217

The L1 trigger is implemented in field-programmable gate arrays (FPGAs) and application-1218

specific integrated circuits (ASICs). For more sophisticated algorithms, programmable1219

memory look-up tables (LUTs) are employed. It reads out the muon system and calorime-1220

ters with reduced granularity and then decides in 4 µs if an event is worth passing to1221

the HLT. Figure 2.15 gives an overview of the L1 trigger architecture, showing how1222

calorimeter and muon information is initially handled separately. The information is1223

then combined in the global trigger. To pass – or fire – the L1 trigger, the event must1224

fullfill the requirements implemented in one of the so-called trigger seeds in the trig-1225

ger menu. The L1 trigger system underwent a significant upgrade between 2015 and1226

2016, where some electronics were replaced, and more powerful FPGAs installed. The1227

new architecture allows for a sampling of the energy with the full granularity of the1228

calorimeter trigger readout, significantly improving the energy and position resolution1229

for reconstructed objects in the calorimeter. For the HL-LHC, it is foreseen to also do1230

track reconstruction with the inner tracker at L1 [74].1231

The HLT is implemented in software running on commercial computers, just like the full1232

event reconstruction. The HLT reconstruction is often called online reconstruction, while1233
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Figure 2.15: Structure of the L1 trigger system [75].

the offline reconstruction processes the events once the raw data has been stored. Unlike1234

the L1 trigger that uses a separate readout with reduced granularity, the full readout is1235

available for the HLT. This means that much of the reconstruction code can be shared1236

between online and offline reconstruction, most notably in the particle-flow reconstruc-1237

tion (explained in Section 3.1). While the offline reconstruction of one event takes about1238

one second, the online reconstruction runs for approximately 150 ms per event. Similar1239

to the L1 seeds, there are several HLT paths that an event can match. Examples of trigger1240

paths are the double-electron, double-muon, or lepton cross-trigger path, which require1241

two isolated prompt leptons passing certain energy thresholds. These lepton trigger1242

paths were used in the triboson analysis presented in this thesis (more detail given in1243

Section 6.2.1). The trigger paths are defined by a sequence of software modules5, which1244

either compute event observables or use event information for filtering decisions. For1245

the most efficient computing resource usage, the modules with the most stringent filters1246

are preferred to be at the beginning of the sequence, while computationally expensive1247

modules are placed towards the end.1248

The timing demands of the HLT often drive innovation in the reconstruction software.1249

A recent example is the seeding of electron candidates (see Section 3.2.1 for more details1250

on the electron seeding step). The new HLT algorithm for Run 2 considers more hits1251

in the pixel hit pattern when matching tracks with electromagnetic showers, exploiting1252

the additional layer of the pixel detector. However, more significant changes to the1253

HLT software will be introduced before Run 3. Some of the most performance-critical1254

tasks such as track pattern matching and ECAL pulse shape fitting are envisioned to1255

be accelerated with GPUs, which would be a first for CMS reconstruction software in1256

general.1257

Trigger seeds or paths can be prescaled, meaning that only an adjustable fraction of the1258

events passing a specific trigger selection is kept. Prescaling is often done for validation1259

5see Section 3.7 for more information on the CMS reconstruction software framework
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purposes or trigger paths that are very unrestrictive for specific physics goals. Some1260

events are also kept independently of any trigger decisions, resulting in a dataset that1261

is unbiased by the trigger. Such events are referred to as minimum bias events and are1262

used, among other things, for validation and QCD measurements.1263

If an event passes the final filter of one of the HLT paths, it is piped by the DAQ to one1264

of the data streams that fill the primary datasets that are ultimately stored on the CERN1265

Tier 0, which is the computing center at the top of the hierarchy of the Worldwide LHC1266

Computing Grid. Examples of primary datasets are double-muon or double-electron1267

samples.1268

A particular primary dataset selects a small fraction of the events for Data Quality Moni-1269

toring (DQM). In the first online validation, the general state of the detector is monitored,1270

including channel quality, synchronization, and data integrity. The online validation is1271

done from the CMS control center on the experimental site. The online validation follows1272

the delayed full event reconstruciton. Human validators scrutinize high-level quantities1273

such as energy spectra, particle multiplicities, and invariant masses. The output of the1274

DQM effort is a list of certified events that are ready to be analyzed.1275

2.2.4 Luminosity measurement1276

Measuring the instantaneous and integrated luminosity recorded with CMS is essential1277

for operating the experiment and analyzing its data. The online luminosity measure-1278

ment provides feedback to the LHC for tuning beam parameters and enables the mea-1279

surement of trigger rates on the detector side. This feedback allows for the DAQ and1280

trigger systems to adapt to the beam intensity, for example, by setting the prescaling1281

factors of individual trigger paths. A total of seven luminometers are used in CMS [76].1282

Three of them are primarily used for online monitoring and are read out by a dedicated1283

data acquisition system independent of the primary CMS readout: the Pixel Luminosity1284

Telescope (installed at the beginning of 2015), the Fast Beam Conditions Monitor, and1285

the already mentioned hadronic forward calorimeter (HF), but this time connected to1286

a separate readout. For the offline reconstruction, three more estimates are provided1287

via vertex counting and measuring the activity in the pixel detector and the DT muon1288

system. The method based on the pixel occupancy is the most accurate but cannot be1289

used online because of CMS trigger bandwidth limitations. Finally, the CERN radiation1290

monitoring system can also be used for a complementary luminosity measurement.1291

The calibration, linearity, and stability of the luminosity observables have to be studied1292

regularly to provide a systematic uncertainty estimate on the integrated luminosity for1293

each data-taking year. In Run 2, from which data were analyzed in this thesis, this1294

systematic uncertainty ranges between 2.3 % (2017) and 2.5 % (2016 and 2018).1295
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Chapter 31296

Reconstruction and simulation of collision1297

events with the CMS detector1298

For the analysis of proton collision events, it is essential to reconstruct the final-state par-1299

ticles with high precision and produce simulations for which the reconstruction perfor-1300

mance accurately represents the performance achieved in real collision data. The recon-1301

struction workflows for particle detector experiments are traditionally very subdetector1302

oriented, meaning that the different particles – or more generally physics objects – are1303

reconstructed in different subdetectors. Nevertheless, the best possible performance can1304

only be achieved when the information from all subdetectors is combined for individual1305

object reconstruction. The most famous example for the success of this particle-flow ap-1306

proach is the combination of tracker and calorimeter information for jet measurements,1307

which dramatically improves the energy resolution at low momentum.1308

It is usually not possible to unambiguously tell to what kind of particle a given detector1309

signature corresponds. However, an unambiguous reconstruction greatly simplifies the1310

bookkeeping of the energy distribution in the final state, allowing for consistent defini-1311

tions of jets and missing transverse energy. The CMS event reconstruction aims for such1312

a Global Event Description (GED). Section 3.1 explains this global event reconstruction in1313

the particle-flow paradigm.1314

The reconstruction of physics objects used in the triboson analysis is explained in ded-1315

icated sections. Section 3.2 focuses on electrons, Section 3.3 discusses the muon recon-1316

struction, and Section 3.4 covers the reconstruction of jets and missing transverse energy.1317

The global event reconstruction must make compromises in particle identification. For1318

example, it is easy to confuse a prompt lepton with a leptonically-decaying tau or a1319

nonprompt lepton within a jet, so the prompt lepton has to be tightened for the GED.1320

Hence, the vast majority of CMS analyses consider a priori all reconstructed leptons,1321

which is a superset of the reconstructed leptons that are also accepted as particle-flow1322

candidates by the GED reconstruction. This also applies to the triboson analysis.1323

When selecting prompt leptons for analysis, one usually considers the lepton’s isolation1324

in the event to suppress nonprompt background. For hadron collisions with a high1325

pileup rate, pileup contributions must be subtracted for the computation of isolation1326

variables. In CMS, two different correction schemes are used for leptons and muons. It is1327

difficult to conclude which correction algorithm is generally more performant, although1328

it would be desirable to have consistent isolation definitions for both types of leptons.1329

To contribute to this dicussion, this thesis includes a comparison of pileup correction1330

methods from a statistical viewpoint in Section 3.5.1331

Finally, this chapter explains how the simulation and reconstruction of collision events1332

is technically realized in Section 3.6 and Section 3.7 respectively.1333
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Figure 3.1: Transverse view of the CMS detecor, showing the signatures of the five physics
objects reconstructed by the particle-flow algorithm [77]: muons, electrons, charged
hadrons, neutral hadrons, and photons.

3.1 Global event reconstruction with the particle-flow1334

algorithm1335

The particle-flow (PF) reconstruction is responsible for identifying the five basic physics1336

objects in the event: muons, electrons, charged hadrons, neutral hadrons, and photons.1337

Their signatures in the detector subsystems are indicated in Figure 3.1. These five types1338

of PF candidates are then used for the reconstruction of the three higher level physics1339

objects: jets, missing transverse energy, and tau leptons. The PF candidates are also1340

used to compute isolation variables for leptons and jets.1341

To make use of the information from all subdetectors, the algorithm starts with the so-1342

called PF elements, which are some basic reconstructed signatures that will be combined1343

to PF candidates. The PF element types include tracks of different kinds, such as muon1344

tracks, displaced tracks, tracks from photon conversions, and tracks reconstructed with1345

the Gaussian Sum Filter (GSF) algorithm for electrons (see section Section 3.2). Further-1346

more, there are all the single-particle-like clusters from the different calorimeter systems1347

and two more elements dedicated to electron and photon reconstruction: the so-called1348

superclusters that are wider ECAL clusters corresponding to the signature of an electron1349

or photon that starts to interact in the tracker material, and identified occurrences of1350

bremsstrahlung interactions.1351

Having access to all PF elements, the PF block algorithm then loosely decides which ele-1352

ments might go together to make up a PF candidate, grouping the elements in PF blocks.1353

Different link algorithms are plugged into the block algorithm. These linkers focus on1354

one pair of PF element types at a time, defining the criteria that decide whether the1355

two elements are merged into a block. The purpose of the block algorithm is to reduce1356
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the number of element combinations that the actual particle-flow algorithm needs to1357

consider.1358

Most details about the particle-flow algorithm and the reconstruction of PF elements [77]1359

are not essential to understand the physics objects analyzed in this thesis. However, it1360

should be noted that electrons and muons play a special role in the algorithm. These1361

objects are reconstructed by separate algorithms, but the objects these algorithms pro-1362

duce are compatible with the PF elements. For example, an electron is a supercluster1363

matched to a GSF track. These complete objects are also handed to the particle-flow1364

algorithm, which decides where it preserves them as prompt electron or muon PF can-1365

didates or splits them up to PF elements that go into other PF candidates. Hence, the1366

full list of reconstructed electrons and muons are a superset of the electron and muon1367

PF candidates.1368

3.2 Electron and photon reconstruction1369

This section gives an overview of electron and photon reconstruction and identification1370

in CMS and discusses the performance with data taken in 2016 and 2017. The perfor-1371

mance in 2018 is similar to the 2017 performance, as the detector conditions and pileup1372

level did not change significantly. The figures for 2017 performance are the first public1373

electron performance results for this year. The 2016 data has been reprocessed with im-1374

proved ECAL calibrations [65], hence the potential of Run 2 data after scrutinizing it is1375

highlighted. Most plots in this section are taken from a detector performance summary1376

note published in May 2018 [78].1377

The treatment of electrons and photons with the CMS detector relies primarily on the1378

ECAL. Since the footprint of an electromagnetic object can also comprise traces in the1379

inner tracker, information from the silicon tracker must also be considered. A pixel1380

detector replacement became necessary between the 2016 and 2017 data taking peri-1381

ods [63]. The original one could not support the expectations-exceeding number of1382

pileup interactions, both from a bandwidth and radiation perspective. The new pixel1383

detector features an additional fourth layer of active modules in the barrel and an ad-1384

ditional third disk per endcap, resulting in a four-hit coverage in the whole tracking1385

region. The radius of the innermost layer has been reduced from 44 mm to 29 mm for1386

improved vertex resolution. The material budget in the endcaps has been reduced by up1387

to 50 %. This lowers the number of converting photons and bremsstrahlung-emitting1388

electrons, which are challenging for reconstruction algorithms. The tracking system1389

extends up to |η| = 2.5, defining the fiducial region for electrons and photons.1390

After the successful first operational run between 2009 and 2013 (Run 1), the Large1391

Hadron Collider is now back in data-taking and closing up the second operational pe-1392

riod from 2015 to 2018 (Run 2) at
√

s = 13 TeV and an ever-increasing pileup. The last1393

published papers on electron and photon performance with the CMS detector are dated1394

back to 2015, summarizing the performance at
√

s = 8 TeV during Run 1 [79, 80]. Since1395

then, the reconstruction algorithm was not changed as far as the underlying concepts1396

are concerned. Some improvements were made to better keep track of the energy flow1397

in the event, i.e.,, to avoid double counting of energy. This is essential for an accurate de-1398

termination of the missing transverse energy in the event, especially at elevated pileup1399

levels. Equally important is the steady refinement of the identification algorithms to1400

reduce the number of jets misidentified as prompt electrons or photons, as well as align-1401

ments and calibration efforts to keep the residual differences between data and Monte1402

Carlo (MC) simulated events at a minimum.1403
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Figure 3.2: Simplified schematic of the electron reconstruction workflow [83].

3.2.1 Reconstruction steps1404

Figure 3.2 gives a conceptual overview of the electron and photon reconstruction algo-1405

rithm, taking electrons as an example. On the ECAL side, the energy deposits in the1406

crystals get merged to clusters that topologically match the expectation from an individ-1407

ual particle impacting the calorimeter (single-particle-like clusters). The energy deposit1408

in one crystal may be split among more than one single-particle-like cluster. These clus-1409

ters get further combined into so-called superclusters, matching the pattern of an array of1410

clusters expected from an electromagnetic object that might have radiated or converted1411

before reaching the ECAL. In particular, that means the individual clusters are spread1412

in the azimuthal direction because of the magnetic field. These superclusters seed the1413

track building and fitting algorithm. Electrons suffer large radiative energy losses in1414

material, which are not Gaussian distributed but follow the Bethe-Heitler model [81].1415

Hence, electron tracks are reconstructed using a Gaussian Sum Filter (GSF) instead of1416

the widespread Kalman Filter (KF) [82]. The tracks are, in turn, used to refine the su-1417

perclusters. Clusters matching extrapolated track tangents at tracker layers are merged,1418

while conversions are recognized and fitted. The refined supercluster and electron track1419

make up what is called a reconstructed electron. The GSF-based track reconstruction1420

can also be seeded from a general track that is matched to a single-particle-like cluster,1421

complementing the reconstruction at low energies. This tracker-driven seeding is only1422

available for offline reconstruction and not at the trigger level. As indicated in Figure 3.2,1423

energy corrections via multivariate regression are inserted after most clustering steps,1424

instead of just inserting one energy regression at the end of the reconstruction. This is1425

because the intermediate reconstructed objects are used in other algorithms as well, like1426

the CMS particle-flow algorithm [77].1427

The reconstruction efficiency for electrons at the Z peak is about 96%, with a slight1428

increase in the endcaps in 2017 because of the new pixel detector with a reduced material1429

budget. The improved ECAL calibrations in the recent 2016 data reconstruction were1430

beneficial for the efficiency as well, on the full range of pseudorapidity. MC indicates1431

that the new pixel detector yields not only a higher electron reconstruction efficiency1432

but also an about 30% lower fake rate at the Z peak than in the previous year. This is1433

attributed to the more robust quadruplet-based track seeding algorithm, made possible1434

by the four-hit coverage, which reduces the number of fake tracks in general. So far,1435

the algorithm targeted a maximum efficiency at a fake rate that is still computationally1436

tolerable. It is only in the so-called identification (ID) step where the background gets1437

effectively rejected while keeping a signal efficiency that is tolerable for the analysis1438

at hand. This step will be explained later in more detail after discussing the charge1439

identification for electrons.1440
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(a) Charge identification by majority vote (b) Tight charge ID selection

Figure 3.3: Rate of correct charge identification for Z electrons as a function of the pseudo-
rapidity for all electrons where the charge is whichever two estimates agree on (a) and for
electrons where all three estimates agree (b) [78]. In both cases, electrons pass the loose
cut-based identification.

The reconstruction path of the High-Level Trigger follows the lines of the offline recon-1441

struction as close as possible to not complicate analysis work with differently-behaving1442

online and offline reconstruction efficiencies. The picture for photons is similar, except1443

that tracks can come from converted photons only.1444

3.2.2 Electron charge identification1445

The rates of correct electron charge identification were measured in 2016 data. Three1446

different charge estimates are inferred from the GSF track curvature, from the curvature1447

of the closest KF track, and from ∆φ between the cluster and the GSF track extrapo-1448

lated to the vertex. The default charge estimation for electron candidates is taken as1449

the majority vote of these three estimates. For Z electrons that pass a loose cut-based1450

selection, this gives misidentification rates at the 10−3 level in the barrel and around 2%1451

in the endcaps (Figure 3.3a), increasing with electron energy because of the tracks being1452

less curved. A very high rate of correct charge assignment can be obtained by requiring1453

all three charge measurements to agree (Figure 3.3b). Around the Z peak, this selec-1454

tion comes with an efficiency loss of 3 to 10 %, depending on the pseudorapidity. The1455

charge identification rates show very good data/MC agreement. It should be pointed1456

out that the charge misidentification rates are correlated with the ID selection. Tighter1457

IDs, specifically those requiring good track measurements and conversion rejection, will1458

have lower charge ID rates and better agreement of the three estimates.1459

3.2.3 Electron and photon identification1460

Everything described so far was common to almost all CMS analyses. However, each1461

analysis has its own efficiency and fake rate requirements. This is why two different1462

ID algorithms are implemented for both electrons and photons. The first is a sequential1463

cut-based selection with several working points for general use. The second algorithm1464
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relies on Boosted Decision Trees (BDTs) [84], particularly meant for maximum separation1465

down to low transverse momentum (pT). The BDTs are trained in several kinematic bins.1466

An overview of the performance of the identification step is given in Figure 3.4. The ID1467

variables can be grouped in shower-shape, track, track-cluster matching, conversion1468

identification, and isolation variables.1469

While the shower-shape variables rely on the energy deposits in the ECAL and HCAL,1470

the track variables rely on the GSF track and the nearest KF track. An interesting ex-1471

ample for a track variables would be fbrem = 1 − pin/pout, where pin and pout denote1472

the momentum estimate at the beginning and at the end of the reconstructed track.1473

Hence, the fbrem variable measures the momentum fraction lost by bremsstrahlung in1474

the tracker. Apart from being a powerful ID variable, it is an excellent tool to access the1475

material budget in data and compare it to MC. Data/MC discrepancies in this variable1476

during Run 1 hinted at a mismodeling of the material budget, which has been corrected1477

for in Run 2. The precise extrapolation of the electron trajectory to the calorimeter with1478

the GSF tracking algorithm and the little material between the tracker and the ECAL1479

result in powerful track-cluster matching variables, especially cuts on ∆η can be tight1480

as no magnetic field spreads out the energy clusters in this direction. The employed1481

conversion ID variables are the goodness of a potential conversion vertex fits and the1482

number of missing hits at the beginning of the track, separating prompt electrons from1483

nonprompt conversion electrons.1484

On the isolation side, the sequential cut IDs use the energy flow in a ∆R = 0.3 cone1485

around the object, corrected by an area–median pileup subtraction scheme. The BDT1486

algorithm for electrons, which uses isolation variables since 2017, instead takes the un-1487

derlying neutral hadron, charged hadron, and electromagnetic energy flow components1488

separately, plus a pileup estimate. This results in better performance compared to taking1489

only the pileup-corrected isolation sum as isolation input. Complex classifiers like BDTs1490

benefit from lower-level input variables, which they combine in a way that is adequate1491

to meet their target. Including isolation in the BDTs significantly improves the ID effi-1492

ciency at highly efficient working points (" 85%) compared to the traditional approach1493

where an isolation cut is applied on top of the BDT identification. Next to the new pixel1494

detector, which reduces the fake rate in the endcaps at the reconstruction level, the new1495

isolation-inclusive BDT selection is ensuring that the fake rate for electrons is at the same1496

level in 2017 as it was in the year before, despite the increased pileup. It should be noted1497

that isolation variables depend on the physics of the event. For example, they might be1498

less appropriate for studying electrons in boosted systems. Therefore, a flavor of the1499

BDT algorithm without isolation variables is available for these analyses as well.1500

3.2.4 Selection efficiencies in data versus simulation1501

Selection efficiencies can be measured with the so-called tag and probe method using1502

Z → e+e− events both in data and simulation. In this method, probes are taken from1503

events that are tagged by a well-identified electron selected by an invariant mass con-1504

straint (65 < mee < 115 GeV). Only a little background enters in this mass window1505

around the Z peak. Consequently, it results in a sample of mostly real electrons on1506

which selection efficiencies can be studied. The systematic effects considered are the1507

tag selection, MC generator differences, the shape of the background fitting function as1508

well as the signal shape (analytic fit or template from Monte Carlo). For photons, the1509

Z → e+e− sample is used analogously, the only difference being that the electrons are1510

reconstructed as photons without applying an electron veto based on tracker informa-1511

tion. The ratio of the identification efficiencies in data over MC (often called data/MC1512
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(a) Electron candidates with pT > 20 GeV (b) Electron candidates with 5 < pT < 20 GeV

Figure 3.4: ROC curves for the electron multivariate identification (Boosted Decision Trees)
and the cut-based selection working points for pT > 20 (a) and low pT (b) [78]. The signal
is from Drell-Yan+Jets Monte Carlo. The background consists of reconstructed electrons
from Drell-Yan+Jets Monte Carlo that do not match a generated electron within a cone of
size ∆R = 0.1. The signal efficiencies are not corrected for data/MC scale factors, which
affect more the BDT selection.

(a) (b)

Figure 3.5: Z → e+e− mass distribution (a) and fitted Z mass versus Z pT (b) where the
(sub-) leading electron satisfies pT > 25(20) GeV, pass the medium cut-based identification
and the pair is of opposite sign. The trigger requires a 23 and a 12 GeV online electron,
and the data has been re-reconstructed with improved ECAL detector calibrations. The
electron ECAL energy has been corrected post reconstruction to ensure good data/MC
agreement at the Z peak. The peak is fitted with the convolution of a Breit-Wigner and a
Crystal Ball function in the range 81 to 101 GeV to obtain the mass scale shift (∆M) and
resolution (σCB) [78].

scale factors) are typically around 0.95 in the barrel and 0.90 in the endcaps and in-1513

creasingly deviate from one as the selection is tightened. For photons, the scale factors1514

typically deviate less from one than in the electron case because the selection does not1515

rely as much on the new pixel detector, which is not modeled optimally at the time of1516

the initial 2017 calibration. The data/MC scale factors are another case where the re-1517

vised ECAL calibrations for 2016 data improved data/MC agreement. This is reflected1518

in almost all calorimetric ID input variables, in particular, more complex ones like the1519

electromagnetic energy flow isolation.1520
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The DC-DC converters providing low voltage for the new pixel detector modules state1521

failing in October 2017. This affected up to 10 % of the channels during data-taking1522

and raised concerns about efficiency losses in the reconstruction of electromagnetic ob-1523

jects. As the effect is not present in the simulation, the efficiency loss would also show1524

up in the data/MC scale factors for the identification step. The scale factor deviation1525

from unity indicates the maximum possible effect. The difference between the electron1526

and photon scale factors gives the scale of the issue since the photon identification re-1527

lies almost completely on calorimetric information. From comparing periods with and1528

without the DC-DC converter issue, the effect is estimated to be a few percent efficiency1529

loss at the identification step. This is thought to be due to degraded tracker resolution1530

affecting the ECAL-Tracker matching cuts.1531

3.2.5 Z → e+e− invariant mass with full energy corrections1532

To put the reconstruction and identification to the test, one can extract the Z peak from1533

data and Monte Calo simulation, as was done in Figure 3.5a for the recalibrated 20161534

reconstruction. The resolution, obtained by fitting a Breit-Wigner convoluted with a1535

Crystal Ball function, is approximately 1.8 GeV, which is very comparable with Run 1.1536

Data and MC agree in Figure 3.5a by construction, as the mass scale correction in data1537

and the resolution smearing in MC is calibrated exactly on the Z peak. Therefore,1538

the good data/MC ratio in Figure 3.5a serves more as a validation of the calibration1539

procedure. The scale and smearing are not calculated differential in Z boson pT, so1540

comparing the fitted Z mass as a function of the Z boson pT is a benchmark where data1541

and MC do not agree by construction. This is done in Figure 3.5b, which shows excellent1542

stability for the mass scale agreement versus the pT of the Z boson.1543

3.3 Muon reconstruction1544

Besides the undetectable neutrinos, muons are the only particles that can escape the1545

CMS detector, leaving a trace in the muon detectors. Even if highly-energetic hadrons1546

can punch through the HCAL, the iron return yoke ensures they rarely reach the out-1547

ermost muon stations. Therefore, the CMS detector measures muons very well. Sec-1548

tion 3.3.1 explains the basics of muon track reconstruction and momentum measure-1549

ments. Afterwards, Section 3.3.2 presents widely-used muon identification and isolation1550

criteria, motivated by their use in the WWZ analysis.1551

3.3.1 Muon track reconstruction1552

The first step in the muon reconstruction [85] is the reconstruction local to the muon1553

system. Standalone muons tracks are reconstructed only with the muon spectrometer.1554

Track segments are found among the DT and CSC hits. Together with the relevant RPC1555

hits, a fit of these track segments gives the kinematic parameters. Not all the track1556

segments – or track stubs – have enough hits to fit the kinematic parameters and their1557

uncertainties. These track stubs are kept independently of the standalone muon tracks1558

to combine them with inner tracker information later.1559

Muons are reconstructed from the standalone muon tracks, the track stubs, and the inner1560

tracker tracks in two ways. In the first outside-in approach, a tracker track is matched1561

to each standalone muon track if possible. The hits from both tracks are then fitted1562

46



3.3 Muon reconstruction

together, taking into account multiple scattering and the average energy loss along the1563

detector radius. Compared to tracker-only track fits, the resulting global muons can have1564

an improved momentum resolution for high-pT muons.1565

Then, there are tracker muons, which are reconstructed inside-out. All tracker tracks above1566

pT > 0.5 GeV are extrapolated to the muon system. If they are matched with a track stub,1567

they are promoted to muons without a refit that includes the muon stations’ hits. The1568

tracker muon reconstruction improves the reconstruction efficiency below pT # 5 GeV.1569

For muons with pT " 4 GeV, reconstruction efficiency is greater than 99 % for global1570

and tracker muons combined. The standalone muon tracks that are not matched to any1571

tracker track are promoted to standalone muon candidates. However, they are usually not1572

used because the momentum resolution is worse, and the fake rate is higher.1573

For global muons, the momentum of the global fit is only assigned if both the tracker fit1574

and the global fit result in pT > 200 GeV and agree within 2σq/p with the tracker-only1575

fit. Otherwise, the result of the tracker-only fit is assigned. One might wonder why1576

the muon system does not contribute significantly to the momentum measurement and1577

showcases reduced resolution for muons of regular energy. This might appear counter-1578

intuitive, given the muon system’s large lever arm and the high tracker occupancy. The1579

answer has to do with the high material budget of the muon system, more specifically1580

the iron return yoke. Multiple scattering and muon bremsstrahlung interactions in this1581

dense material deflect the muon from its trajectory. Furthermore, the bremsstrahlung1582

photons can cause further hits that confuse the track pattern matching.1583

3.3.2 Muon identification and isolation1584

The muon selection used in the WWZ analysis will be explained later when the analysis1585

is described, but it uses several standard selections from the CMS reconstruction.1586

After the loose muon selection, the next selection that is usually applied is the particle-1587

flow muon selection [86], which is optimized to identify both prompt muons and muons1588

in jets while maintaining a low fake rate from charged hadrons. The consideration of1589

muons in jets is important because the particle-flow candidates are used for jet clus-1590

tering, and mistaking muons for charged hadrons would underestimate the jet energy.1591

The particle-flow selection requirements are met by applying different criteria to iso-1592

lated and nonisolated muons and by considering calorimeter information. Explaining1593

the details of this selection would go beyond the scope of this overview.1594

The selection of global and track muons that pass the particle-flow selection is referred1595

to as the loose muon identification. When additional track-quality and muon-quality1596

requirements are included – such as fit χ2 and track segment matching variables –, one1597

obtains the medium identification that is also used in the WWZ analysis. The selection1598

efficiency of the medium ID is shown in Figure 3.6, differential in pT and η. In data, the1599

measured selection efficiency is generally around 98 %.1600

One more ingredient for muon selection is a relative isolation variable. Just as for elec-1601

trons, the isolation is the pT sum of charged hadrons, neutral hadrons, and photons1602

around the lepton. The charged hadrons can be corrected for pileup contributions via1603

vertex assignment, but the neutral components need to be corrected by pileup extrap-1604

olation. While the standard isolation for electrons extrapolates from the global pileup1605

estimate ρ, a local pileup extrapolation from the charged hadrons in the isolation cone is1606

done for the muons. This local charged-to-neutral extrapolation is called the ∆β correc-1607

tion. However, this ∆β correction is not used for the triboson analysis presented in this1608

thesis. Instead, a custom isolation variable explained later in Section 6.3.1 is used. Since1609
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Figure 3.6: Medium muon ID efficiency as a function of pT (left) and η for 2017 data and
MC simulation [87]. In the denominator are all tracker tracks with pT > 20 %. The drops at
high η are due to inactive muon chambers, which are not modeled in the simulation. The
dips around |η| = 0.2 are caused by the gaps between the wheels of the muon detector.
The ID efficiency is also studied as a function of the number of reconstructed vertices,
which shows that the efficiencies are not significantly affected by the pileup level.

it is often debated whether a local pileup extrapolation is better than a global extrapola-1610

tion or not, this chapter later compares both approaches from a statistical perspective in1611

Section 3.5, arguing that the level of correlation between charged and neutral energy in1612

hadron collisions is such that both extrapolation methods indeed perform similarly.1613

3.4 Jet reconstruction1614

As mentioned in Section 1.1.8, quarks and gluons produced in proton collision events1615

cannot be observed directly. They immediately hadronize, forming color-neutral states.1616

As the hadrons move through the detector and decay further, they produce a directed1617

group of particles called a jet. A jet can contain both neutral and charged hadrons and –1618

to a lesser degree – leptons. To infer the properties of the original parton (quark or1619

gluon), the measured particles need to be clustered to reconstruct the jets. CMS uses the1620

so-called anti-kT algorithm for jet clustering, described in Section 3.4.1. The momentum1621

of the original parton is, in principle, the sum of the jet constituent momenta. In prac-1622

tice, the momentum sum does not precisely represent the partons momentum because1623

neutrinos in the jet are not measured, not all low-pT particles are properly reconstructed,1624

and the nonlinearities in the detector response can cause a bias. Section 3.4.2 explains1625

how the jet energy is calibrated to counter these effects and how the jet energy resolu-1626

tion is smeared in simulation to match the resolution in data. Something closely related1627

to the jet reconstruction is the measurement of the missing transverse momentum, ex-1628

plained in Section 3.4.3. Finally, it is important to discuss the identification (or tagging)1629

of heavy-flavor b or c jets (Section 3.4.4). All these explanations are motivated by the1630

needs of the WWZ analysis presented in this thesis: jet reconstruction and especially1631

b tagging are essential to reject one of the main backgrounds, namely the tt̄Z process.1632

Missing energy measurements are essential to separate the ZZ background, which has1633

no intrinsic missing energy, unlike the WWZ signal.1634
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3.4.1 Jet clustering1635

In early hadron collider experiments, jets were clustered from energy deposits in the1636

calorimeters. The last-generation experiments, such as CMS, usually combine the calorime-1637

ter measurement with track information to get a better momentum resolution on charged1638

jet constituents. Specific to CMS, this means that the jet reconstruction uses the particle-1639

flow candidates that were explained in Section 3.1. As a result, the overall jet energy1640

resolution is improved, in particular at low pT [77].1641

The CMS collaboration uses the anti-kT clustering algorithm for jet reconstruction [88].1642

It is an iterative combination algorithm, where constituents are merged to jets based on1643

two distances:1644

dij = min
(

k
2p
T,i, k

2p
T,j

) ∆2
ij

R2
, with ∆ij =

√

∆y2
ij + ∆φ2

ij,

diB = k
2p
T,i.

(3.1)

Here, kT,i denotes the transverse momentum of particle i. The parameter p tweaks how1645

momenta and geometrical separation are compared and is set to p = −1 in the CMS1646

reconstruction. The radius parameter R steers the average angular size of the clustered1647

jets. For the CMS jet reconstruction, it is set to R = 0.4 by default. In parallel, jets1648

are reconstructed with to R = 0.8 for the clustering of wider so-called fat jets that aim to1649

capture boosted decay systems, for example, the hadronic decay of boosted W bosons.1650

For each pair of particles (i, j), the algorithms merges them if dij < max
(

diB, djB

)

.1651

A pseudo-particle then replaces the two merged particles with the two added momenta1652

as its momentum, and the algorithm proceeds with the next merging iteration. With the1653

choice of p = −1, the distance parameter dij is small if a high-momentum particle is1654

involved. This value ensures that the clustering is infrared safe1 and focused on hard1655

particles, merging the soft particles around them. The result is a set of cone-shaped jets1656

that are not too much affected by pileup energy deposits.1657

3.4.2 Jet energy scale and resolution corrections1658

The momentum of the jets clustered with the anti-kT algorithm is only a proxy for the1659

original quark or gluon momentum, as the jet energy is biased by missing neutrinos,1660

low-pT particles that are not reconstructed, and nonlinearities in the detector response.1661

To get the real parton momentum – or more precisely, the jet energy that would have1662

been obtained by clustering truth-level particles, a Jet Energy Scale (JES) correction has1663

to be applied [90]. The modeling of hadronization processes and hadronic showers that1664

form in the calorimeter is challenging, so the jet energy resolution after applying the JES1665

is lower in data than in simulation. This inconsistency is corrected for with Jet Energy1666

Resolution (JER) corrections. Consecutively, most steps of the JES are applied to both1667

data and simulation, while the JER corrections are only made for simulation.1668

The JES correction follows a factorized approach that is outlined in Figure 3.7. The1669

first step is the pileup subtraction step. Out-of-time pileup corrections are calibrated by1670

varying the bunch spacing and integration time of the calorimeter measurements. In-1671

time pileup corrections are done separately for charged and neutral particles. Charged1672

hadron particle-flow candidates that are not associated with the primary vertex are1673

removed before the clustering, often referred to as the Charged Hadron Subtraction1674

1If p = 1 (kT algorithm), the clustering would not be infrared safe [89].
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(CHS). Contributions from neutral particles are estimated by extrapolation from the1675

global pileup estimate ρ. This is the same area-median method also used for electrons,1676

but this time the target area is not a fixed isolation cone but the actual jet area. The jet1677

area is computed by artificially adding many infinitesimal soft particles around the jet1678

before redoing the clustering and checking the area from which the soft particles have1679

been included [91].1680

Reconst ructed
Jets

M C + RC

M C

Pileup

M C

Response (pT , )

di j et s

Residuals( )

/ Z+ jet , M JB

Residuals(pT )

M C

Flavor

Calibrated
Jets

Applied to simulat ion

Applied to data

Figure 3.7: Steps of jet energy correction (JEC) for data and simulation [90]. The corrections
marked with MC are derived from simulation only. RC stands for random cone, and MJB
denotes an analysis with multijet events. The flavor corrections are optional and not used
in the analysis presented in this thesis. Hence, they are not explained further.

Next follows the detector response calibration. The energy of gen-jets that are clustered1681

from all generator-level particles is compared to the reconstructed jet energy in simu-1682

lated multijet events. Response calibration factors are then computed in bins of pT and1683

η. The last two steps of residual corrections are only applied to data, correcting for dif-1684

ferences between data and simulation. The first set of η-dependent residual corrections1685

is calibrated by analyzing dijet events, making use of the momentum balance in the1686

event. The second set of residual corrections is calibrated with Drell-Yan events where1687

the Z boson or photon is recoiling against a jet. Once again, momentum conservation is1688

exploited, but this time to get pT-dependent corrections. This pT-dependent calibration1689

is made possible by the superior momentum resolution for the leptons from the Z boson1690

or photon decays.1691

After the jet energy’s central value is calibrated, there are still differences between data1692

and simulation in the jet energy resolution. This mismatch is corrected by smearing the1693

simulated jet four-momenta by a factor cJER. This factor is inferred from a calibrated1694

data-to-simulation scaling factor sJER and the pT resolution σJER observed in simulation.1695

If the reconstructed jet can be matched to a gen-jet, the smearing factor is computed1696

such that it worsens the agreement of preco
T with p

gen
T :1697

cJER,matched = 1 + (sJER − 1)× preco
T − p

gen
T

preco
T

. (3.2)

In case there is no matching gen-jet, the smearing factor is obtained from a random1698

Gaussian variable N (0, σJER) around zero with variance σ2
JER:1699

cJER,unmatched = 1 +N (0, σJER)×
√

max(0, s2
JER − 1). (3.3)

The reason for the two different prescriptions is that a deterministic algorithm is pre-1700

ferred if possible.1701

3.4.3 Missing energy reconstruction1702

The fundamental particles that interact in proton collisions are quarks or gluons that1703

only carry a random fraction of the proton’s momentum. Therefore, the longitudinal1704
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momentum sum of the final state particles in proton collisions is unknown on an event-1705

by-event basis. Nevertheless, the transverse momentum sum of the colliding partons is1706

zero because the protons collide head-on in the detector. Subsequently, if one sums all1707

the four-momenta of the detected particles in the event, a nonzero transverse compo-1708

nent indicates undetected particles. The only particles of the standard model that are1709

not detected by the CMS detector are neutrinos. Accordingly, the missing transverse1710

momentum p⃗T
miss is the only signature of neutrinos:1711

p⃗T
miss = −

NPF

∑
i=1

p⃗(i)T . (3.4)

The absolute value of p⃗T
miss is often referred to as MET for missing transverse energy,1712

or simply as pmiss
T . In Equation 3.4, the summing is, in principle, done over the re-1713

constructed particle-flow candidates in the event. For the actual computation of the1714

particle-flow based MET, the particle-flow candidates that ended up in jets are not con-1715

sidered directly, but instead, the jet momentum is taken with all the corrections dis-1716

cussed in Section 3.4.2 applied. This special treatment of jets ensures that the MET1717

value is not affected by neutrinos in jets from hadron decays but only by prompt neutri-1718

nos. In hadron-collision experiments, it is very challenging to achieve a fair resolution1719

on p⃗T
miss because low-energy particles might not be reconstructed, and the precision on1720

the measured particles is limited. The missing transverse momentum algorithms and1721

their performance is explained in detail in Reference [92].1722

The particle-flow (PF) MET above is not the only MET definition used in CMS. A simpler1723

alternative is a calorimeter-based MET. The most sophisticated MET definition available1724

relies on the so-called pileup per particle identification (PUPPI) algorithm, which pre-1725

dicts a probability for each PF candidate to originate from a pileup interaction. For the1726

analysis in this thesis, the particle-flow MET was consistently used.1727

3.4.4 Tagging of heavy-flavor jets1728

The identification or tagging of heavy-flavor jets aims to distinguish b or c quark jets1729

from jets caused by gluons or light-flavor quarks. To study such heavy-flavor jets, one1730

first needs a reliable definition of heavy-flavor jets that can be applied to the simulation,1731

where this definition should preferably not depend on any additional parameters such1732

as a maximum distance between the jet and the generator-level parton. In CMS, the1733

flavor for a jet is defined at the hadron-level. The generator-level b and c hadrons that1734

are not themselves daughters of b or c hadron decays are included in the jet-clusterin1735

step, with their momenta scaled down to infinitesimal values. A heavy-flavor jet is then1736

defined as a jet that picked up such a generator-level heavy-flavor hadron. If a b hadron1737

is included, the jet is defined as a b jet, even if c hadrons are clustered too. If c hadrons1738

but no b hadrons are included, the jet is deemed a c jet. A light-flavor jet is a jet with1739

no such ghost b or c hadrons included, but still matching to a gen-jet. All other jets are1740

categorized as pileup jets.1741

From an experimental perspective, several features distinguish a heavy-flavor from a1742

light-flavor jet. The b or c hadrons decay a few mm to cm away from the primary ver-1743

tices, forming secondary vertices that can be reconstructed from the decay products’1744

displaced tracks. The mass of heavy-flavor hadrons is roughly one order of magnitude1745

above the mass of light-flavor hadrons2. Therefore, the invariant mass of all decay prod-1746

ucts from the secondary vertex provides valuable information. The leptonic branching1747

2The average mass of b hadrons lies around 5 GeV and that of c hadrons around 2 GeV. Light-flavor
hadrons such as pions and kaons have a mass of several 100 MeV
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fraction is also higher for heavy-flavor hadrons than for light-flavor hadrons. About1748

20 % of b jets contain at least one soft electron or muon. This number reduces to 10 %1749

for c jets.1750

The state-of-the-art heavy flavor tagging algorithms used in CMS are combining sec-1751

ondary vertex and displaced track information in a machine-learning model to obtain1752

probabilities that a jet belongs to a given flavor category. The recommended model for1753

Run 2 analysis used in this thesis’s analysis is the DeepCSV tagger. This tagger uses a1754

multiclassifier deep neural network to predict normalized probabilities p(bb/b/c/udsg).1755

Here, the bb output class corresponds to jets with at least two clustered b hadrons. For1756

typical b tagging use such as in the WWZ analysis, the b-tagging score is defined as1757

p(bb) + p(b).1758

The DeepCSV tagger is not the latest and greatest b-tagging model that was developed1759

in CMS. The next-generation DeepFlavor or DeepJet tagger uses high-level jet and vertex1760

observables and information on all PF candidates in the jets, instead of limiting the1761

track information to six tracks like in the case of DeepCSV. It also has two additional1762

output categories: one for b jets with leptons and one for gluon discrimination. The1763

ROC curves that indicate the performance of the DeepCSV and DeepFlavor taggers are1764

shown in Figure 3.8, which also shows how the DeepCSV performance improved with1765

the new pixel detector.1766
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Figure 3.8: ROC curves showing the performance of the DeepCSV and DeepFlavor b tag-
ging algorithms [93]. The jets for these curves are from simulated tt̄ events with pT
> 30 GeV and |η| < 2.5. Here, b jets are defined as b jets from gluon splitting to two
b quarks. The absolute performance for other definitions is not necessarily the same, but
the figure clearly shows the relative improvement related to the Phase 1 pixel detector
(green to red) and the improvement with the DeepFlavor algorithm (red to blue).

3.5 Statistics of in-time pileup extrapolation1767

At the LHC experiments, the reconstruction algorithms have to be made robust to pileup1768

contamination of the event. One can use vertex or timing information to reject any ob-1769
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jects that originate from pileup collisions. However, it is not possible to reject pileup1770

contributions to all observables. Energy deposits from neutral particles in the calorime-1771

ters are particularly troublesome3, as no tracks are available to assign the energy de-1772

posits to collision vertices and ignore them if the corresponding track originates from1773

a pileup vertex. This missing information on neutral pileup deposits is problematic1774

for the computation of MET, jet energies, or isolation variables. In this situation, one1775

usually extrapolates to the neutral energy deposit from a correlated observable, which1776

can be the charged energy deposits in the same region or an observable related to the1777

global level of pileup in the event. In this section, we will discuss the general statistical1778

challenges that underly this extrapolation problem and review the two pileup correc-1779

tion techniques used for lepton isolation variables in CMS. At the end of this review, it1780

should become evident why it has been challenging to choose a one-fits-all technique1781

within the CMS collaboration and how the pileup correction for the lepton isolation1782

variables used in this thesis analysis was chosen.1783

It is handy to have a framework to estimate the performance of different estimators and1784

compare them. Let us label the random variable that corresponds to the local pileup1785

contribution that we want to estimate in a given event X1. Another random variable X21786

shall be the observable that we use to extrapolate X1. The number of particles from1787

pileup in a given area follows a Poisson distribution, which will approach a Gaussian in1788

the high pileup limit. Therefore, it is reasonable to study the general case of extrapola-1789

tion between normal-distributed variables. The conditional distribution of X1 given X21790

in the case of a bivariate normal distribution is a well-known result [94]:1791

(X1|X2 = x2) ∼ N
(

µ1 +
σ1

σ2
ρ
(

x2 − µ2
)

,
(

1 − ρ2
)

σ2
1

)

, (3.5)

where µ{1,2}, σ{1,2} and ρ are the expectation values, standard deviations and correlation1792

coefficients of X1 and X2. If all parameters would be available, we could compute the ex-1793

pected value of the conditional probability distribution with Equation 3.5 and interpret1794

it as a pileup contribution measurement. The variance of the conditional probability1795

would correspond to the uncertainty of this unbiased measurement. However, the ex-1796

pectation values and standard deviations depend on the number of pileup collisions in1797

the event. As they are unknown in this statistical treatment of a single event, we have to1798

think of another estimator that does not require this information.1799

Fortunately, the ratio r = µ1
µ2

is independent of the pileup level in the event, so the best1800

estimate we can come up with is x̂1 = rx2. As this is not the mean value of the con-1801

ditional distribution, there must be an additional bias or variance term. The additional1802

bias is zero, which can be noticed from the linearity of the expectation value:1803

E [rX2 − X1] = rE [X2]− E [X1] =
µ1

µ2
µ2 − µ1 = 0. (3.6)

For the variance, we use Equation 3.6 and the definitions of variance and covariance:1804

Var (rX2 − X1) = E
[

(rX2 − X1)
2
]

− E [rX2 − X1]

= r2E
[

X2
2

]

+ E
[

X2
1

]

− 2rE [X1X2]

= r2
(

σ2
2 + µ2

2

)

+
(

σ2
1 + µ2

1

)

− 2r
(

ρσ1σ2 + µ1µ2
)

.

(3.7)

3This will change in the future with the HGCAL, which has a timing resolution at the order of tens of
picoseconds for energy clusters.
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All terms with mean values cancel out. One can further define rσ = σ1
σ2

to write down a1805

simple equation for the variance of the extrapolation estimator:1806

Var (rX2 − X1) =

(

1 +
r2

r2
σ
− 2

r

rσ
ρ

)

σ2
1 =

(

1 − ρ2
)

σ2
1 +

(

r

rσ
− ρ

)2

σ2
1 . (3.8)

This final result was written in two different forms. The first one clarifies that the vari-1807

ance is linear in the correlation, and the second one highlights that the variance is strictly1808

greater than the variance of the conditional probability distribution, as expected.1809

Many possible conclusions can be drawn from Equation 3.8. It was constructed to be the1810

variance of a local pileup extrapolation estimate, but nothing speaks against checking1811

the limit of a global pileup extrapolation. This limit corresponds to µ2 ≫ µ1, which1812

means r → 0. Using further the absence of correlation to local fluctuations, the variance1813

of global extrapolation estimates is simply σ2. This result can also be obtained from1814

another perspective: a global pileup estimation has minimal variance because it sums1815

over a large area, so it can be interpreted as a very accurate measurement of µ1, where µ11816

is at the same time used as the pileup estimate. Therefore, the variance of the global1817

pileup extrapolation estimate is equal to the variance of X1, which is again σ2
1 . With these1818

insights, we can write down the variance improvement for a local extrapolation relative1819

to a global extrapolation, further simplified with the Poissonian relation (rσ =
√

r). The1820

variable X1 will be renamed to X for a cleaner notation:1821

Var
(

X̂local − X
)

Var
(

X̂global − X
) = 1 − ρ2 +

(√
r − ρ

)2
. (3.9)

We can also estimate the benefit of combining a local and global estimate by again1822

interpreting the global estimate as a measurement of µ1. In this case, one knows all1823

parameters of the bivariate distribution and can use the actual conditional expectation1824

value as the estimator. The variance is then given by Equation 3.5 and the improvement1825

relative to the global estimate is:1826

Var
(

X̂combined − X
)

Var
(

X̂global − X
) = 1 − ρ2. (3.10)

There are two things to note before interpreting Equations 3.9 and 3.10. First, they do1827

not depend on the global pileup level, but only on ratios and the correlations of local1828

fluctuations. Hence, these results not only apply to the statistical description of a single1829

event but also multiple events with an arbitrary distribution of pileup. Second, it does1830

not matter what statistical processes are involved in the measured energy per particle,1831

as the particles are independent. Therefore, the additional variance would scale with1832

the number of particles, which is how the variance from the Poisson distribution scales1833

already. In other words, rσ does not depend on the processes related to the individual1834

particles, as long as the Poisson assumption is valid.1835

Equations 3.9 and 3.10 are shown in Figure 3.9 as a function of ρ for r = 1 and r = 0.5 to1836

visually aid the interpretation. The case r = 0.5 is of interest because it corresponds to1837

the neutral-proportional-to-charge (NpC) pileup subtraction (there are two times more1838

charged than neutral particles on average). Plugging r = 0.5 in the equations leads to1839

two important predictions about the theoretical limitations of the NpC approach:1840

1. The correlation between the energy measured from neutral and charged particles1841

must be greater than ρ > 0.35 for the NpC estimate to have a smaller variance than1842

the global extrapolation.1843
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(a) (b)

Figure 3.9: Expected variance improvements of the local (Equation 3.9, solid line) and the
combined (Equation 3.10, dashed line) pileup extrapolation compared to the global esti-
mate (dotted line) for r = 1 (a) and r = 0.5 (b). The variable ρ should be interpreted as the
correlation coefficient of the local fluctuations that are exploited for the local extrapolation.

2. By combining the local extrapolation with the global extrapolation, one can max-1844

imally reduce the statistical measurement uncertainty to 93.5 % of the univariate1845

extrapolation4.1846

The first prediction explains why the local pileup extrapolation usually performs worse1847

than the global extrapolation. In minimum bias events recorded by CMS, the correlation1848

between neutral and charged hadrons for typical cone sizes used for jets and isolation1849

variables is less than 35 %. The second prediction is in agreement with recent simulation1850

studies on the use of charged-track information to subtract neutral pileup [95], which1851

obtained σcombined ≃ 0.96 σglobal for the combination with optimal weights.1852

Finally, it is essential to understand the main limitations of the model, most importantly,1853

to know in which direction any predicted values probably change in reality. From the1854

measurement of charged particle spectra in minimum-bias events [96], one can infer that1855

at a mean pileup of 20, there are around 15 charged particles in typical isolation cones1856

of ∆R = 0.3, so the assumption of a Poisson process in the Gaussian limit is reasonable.1857

Assuming that the global observable is an exact measurement of the number of pileup1858

interactions is acceptable too, as the statistical uncertainty is very low compared to1859

any local observable. The most questionable assumption is that the ratio of charged to1860

neutral particles is uniformly 2 to 1, mostly because the track reconstruction efficiency1861

is not uniform in pseudorapidity. There are also subtleties related to hadron masses: the1862

charged-over-neutral ratio is different for transverse and longitudinal components [95].1863

Therefore, in reality, the global extrapolation method will probably have more of an1864

advantage than this model predicts.1865

After this discussion of pileup extrapolation from a statistical perspective, comparing1866

global pileup extrapolation methods like the area-median method to local methods like1867

the NpC subtraction, it should be clear why local pileup extrapolation is challenging.1868

4The difference between the combined extrapolation and either the global or local extrapolation is largest
around ρ ≈ 0.35 (see Figure 3.9b). The variance is reduced by a factor 0.874, which reduces the standard

deviation by a factor
√

0.874 = 93.5 %.
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3.6 Simulation of proton-proton collisions1869

The large dimensionality of the final state of proton-proton collisions makes Monte1870

Carlo techniques very appropriate for simulating such collision events. This is why the1871

terms simulation and Monte Carlo (MC) are often used interchangeably in HEP jargon.1872

The event simulation chain comprises several steps. The first step is the simulation1873

of the hard scattering event, predicting the distribution of final-state particles directly1874

after the interaction with the high momentum exchange. The resulting particles can1875

further split via QCD and electromagnetic interactions, which is simulated in the parton1876

showering step. A thorough introduction to parton-shower event generators is given1877

in Reference [97]. Next, the hadronization of the quarks and gluons at the end of the1878

parton shower to color-neutral hadrons is simulated. The parton remnants that did not1879

participate in the hard scattering can take part in soft interactions. These multi-parton1880

interactions make up the underlying event, which is modeled as well. At the end, the1881

interaction of the final stable particles with the detector and its electronic response is1882

simulated in a detailed detector simulation. All these steps will be elaborated on in the1883

following.1884

The simulation of any hard scattering process requires a precise description of the Par-1885

ton Density Functions (PDFs) fi(x, Q2) of the proton, which encode the probability to1886

find a given parton i with momentum fraction x at the probed momentum scale Q2.1887

These PDFs are extracted from various measurements, such as deep inelastic scattering,1888

Drell-Yan, and multijet measurements by collaborations like NNPDF [98], whose results1889

are used for the CMS event simulation. The PDFs are convoluted with the partonic1890

cross-sections, which are evaluated up to some order in perturbation theory. The max-1891

imum order is usually not the same for different simulated processes, as higher-order1892

corrections are very computationally expensive, and not all measurements demand the1893

same level of precision. The uncertainty from truncating the perturbation series is esti-1894

mated by varying the factorization scale µF that regulates ultraviolet divergences, as well1895

as the factorization scale µF that regulates infrared and colinear divergences and is also af-1896

fecting the PDFs. Usually, the higher the maximum order in the perturbation expansion,1897

the smaller the impact of these scale variations. The nominal value of these parameters1898

is usually the energy scale of the simulated process.1899

The partons from the hard scattering can undergo a chain of softer interactions that are1900

still in the perturbative energy regime. This showering can happen both in the initial1901

state or the final state and is not considered in the hard scattering simulation to limit1902

the complexity of the computation. Instead, the simulation of the parton shower recur-1903

sively evaluates the probabilities for gluon radiation and colinear splittings of gluons1904

into quark pairs until non-perturbative energies are reached. A parton shower simu-1905

lator that is widely used for CMS simulations is Pythia [99], which can also evalu-1906

ate hard scattering probabilities at leading order but is usually interfaced with more1907

specialized event generators such as MadGraph5_aMC@NLO [100]. For the simulation of1908

processes with multiple partons in the final state, the parton showering has to be ac-1909

curately matched to the matrix element computation to avoid double-counting. This1910

affects, for example, the simulated DY+Jets samples that are used for the optimization1911

of the electron identification described in Chapter 5. In the CMS collaboration, the MLM1912

matching scheme [101, 102] is usually used for leading-order simulations, while the FxFx1913

method [103] is employed for NLO simulations.1914

The hadronization of the parton shower to color-neutral hadrons cannot be predicted1915

with perturbation theory. Instead, it is simulated with phenomenological models that1916

are tuned to measured data. A common model that is also implemented in the Pythia1917
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library is the Lund string model [104, 105]. This model predicts an energy potential1918

that increases linearly with the distance between quarks as they move apart. The field1919

lines of this potential form a narrow flux tube connecting the quark pair, hence the1920

name string model. If the potential energy is high enough, the string can be broken by1921

a newly created quark-antiquark pair if the initial invariant mass is large enough. This1922

process is repeated until only hadrons of on-shell mass remain. The full Lund sting1923

model includes additional mechanisms to account for correlations among the flux tubes1924

and to describe the baryon generations. It also produces no bottom and charm quarks,1925

so all bottom and charm quarks originate from the hard scatter or gluon splitting in the1926

parton-shower step. For the simulation of the underlying event, one must consider the1927

proton remnants’ hadronization, additional parton scattering processes that are most1928

probable at low momentum exchange, and the color connections between the partons1929

from the hard scattering and the underlying event. Just like the hadronization process,1930

the underlying event simulation cannot be predicted without tuned parameters. For the1931

simulation of proton-proton collisions in 2017 and 2018, the CMS collaboration extracted1932

the new TuneCP5 parameters [106] for the simulation of the underlying event with1933

Pythia.1934

A complete description of the CMS detector is implemented in the GEANT4 [107] frame-1935

work that rigorously tracks the interactions and energy loss of particles up to a minimum1936

energy threshold. The model includes both passive and active detector material and an1937

accurate description of the magnetic field. The electronic response of the detector mod-1938

ules to the energy deposits is simulated in detail. At this point, the energy deposits from1939

pileup simulations are mixed in, as the signals from pileup interactions and the hard1940

scattering can interfere. From the electronic response onward, recorded and simulated1941

events are reconstructed in the same way. This complete approach is referred to as a full1942

simulation (fullsim), as opposed to a fast simulation (fastsim), where the simulation is1943

simplified by high-level parametrizations to save computing time. Only fullsim samples1944

are used in this thesis, so the fastsim approach is not explained further.1945

3.7 CMS reconstruction software1946

The CMS Software (CMSSW) framework [108] is designed following the Event Data1947

Model (EDM) and allows for configurable implementations of event processing loops.1948

In this EDM paradigm – sketched in Figure 3.10 –, initial event data is taken from an ar-1949

bitrary source, for example, a data file or directly from the detector backend. A sequence1950

of software modules implemented as C++ plugins then produces more event data and1951

filters the events before an arbitrary output module writes selected event data to usually1952

a file, in a way specified by the output module. The producer and filter modules declare1953

what event data they require before the event loop is started, and the producer modules1954

additionally report which event data they produce. The core framework then infers in1955

which order the modules need to be run. The event products are usually instances of1956

custom C++ classes that are serialized by the ROOT I/O system [109]. All modules are1957

configured in the Python programming language.1958

The framework supports multithreading, meaning that it can run several producers in1959

parallel on multiple streams that may get executed on different CPU threads. For this1960

reason, the event data modules may inherit from different base classes, depending on1961

their compatibility with multi-threaded execution. A one module is only instantiated1962

once and processes all events strictly one after the other. This is useful for analysis plug-1963

ins that need to accumulate information from complete datasets, such as histogramming1964
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Figure 3.10: Visualization of the event data model. The source and output modules are
shown in orange. The yellow rectangle in the center stands for the pool of event data
produced and consumed by the producer modules in blue. Filter modules, indicated by a
green triangle, only consume event data but do not produce any event data.

modules. Then, there are stream modules that get instantiated per stream. Most of the1965

modules implemented in CMSSW are stream modules. However, their disadvantage is1966

that the module cannot accumulate information about the full dataset and that module1967

configurations are instantiated redundantly. The latter can be a problem in particular1968

for modules that take much space in memory, for example, modules that make an in-1969

ference with machine-learning models. One can also implement a global module, which1970

is only instantiated once and then used by all streams concurrently. This implies that1971

such modules cannot change their state during the event loop without causing race con-1972

ditions. In other words, the modules must be immutable. For many algorithms used in1973

the reconstruction, this is not given. Many algorithms are implemented in a FORTRAN-1974

inspired style, where most helper variables and objects are instantiated at the beginning1975

of the event loop and then mutated during the event processing.1976

Besides being appropriate for multithreading environments, immutable modules are1977

often easier to understand and maintain. They are also less error-prone because in-1978

formation cannot leak from one event to another. Hence, global modules were always1979

preferred when a large fraction of the electron reconstruction and identification mod-1980

ules were revisited in this thesis to implement the multivariate electron identification,1981

as well as for optimization, refactoring, and cleaning of obsolete modules. This work set1982

precedents for implementing complex algorithms in immutable plugins, besides mak-1983

ing the electron reconstruction chain much more transparent. This is one example of the1984

software-related work done in this thesis for the benefit of the CMS collaboration.1985

The CMSSW framework manages not only event data products but also so-called event1986

setup products. These include detector geometry, calibration, and magnetic field infor-1987

mation. The event setup products are valid not for one event, but for an interval of1988

validity. Most of them are not produced on the fly but stored in the conditions database.1989

The global tag set of a dataset specifies which version of the conditions data was used1990

for the event processing, allowing for the selection of different detector and data-taking1991

scenarios. Before Run 3, the producers were not required to declare which event setup1992

data they need, so the framework had to run all event setup producers first. Now, event1993

setup requirements have to be declared before the event loop, enabling the concurrent1994

production of event data and event setup products. This evolution confirms CMSSW’s1995

position as a cutting-edge, multithreading HEP software framework.1996
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Chapter 41997

Machine learning fundamentals1998

Many research fields employ statistical learning – more frequently called machine learn-1999

ing. In Section 4.1.1, this chapter first explains the basics of machine learning prob-2000

lems, as encountered in this thesis, while connecting the vocabulary of the experimental2001

High Energy Physics (HEP) community with common machine learning terminology.2002

This introductory review is inspired by Reference [110]. Both the optimization of the2003

multivariate electron identification and the triboson analysis make use of the Boosted2004

Decision Tree (BDT) classification algorithm, where the BDTs are trained with the XG-2005

Boost open-source library [84]. Section 4.2 reviews BDTs and the XGBoost algorithm,2006

in particular, its hyperparameters that are often referred to in this thesis. A particular2007

machine-learning related problem that occurs several times in this thesis is the issue of2008

sample reweighting for the training of classification models. This subject is discussed2009

in Section 4.3 at the end of this chapter, which presents some insights that are seldomly2010

discussed in the literature.2011

4.1 Introduction to machine learning2012

When solving problems with computing machines, one usually starts with some input2013

data and an algorithm to run on this data. The result of the computation is some output2014

data. For supervised machine learning, the relation between the algorithm and the output2015

data is inverted. One starts off with example inputs and outputs, and the machine runs a2016

supervised-learning algorithm to produce a new algorithm – or model – that predicts the2017

output for unseen inputs. Supervised machine learning models are usually categorized2018

into regression and classification models. For regression, the output data are continuous2019

variables, while for classification, the target is a discrete class. This section explains how2020

to train classification models, as done in this thesis on several occasions.2021

4.1.1 Training a machine learning model2022

It is instructive to introduce some general machine learning methodology at the example2023

of regression problems before discussing classification. For a regression problem, one2024

aims to predict a continuous variable with one or more predictor variables. The pre-2025

dictors are usually called features or input variables, and the predicted variable is called2026

target or regression value. The prediction is done with a model or regressor of the analysts2027

choice, for example linear regression. One uses a training dataset to fit or train the model2028

to example data. This fit involves the optimization of a loss function, for example, the2029

mean squared error of the prediction.2030

If the model has too many parameters or the training dataset is too small, the model2031

might be overtrained (more on this in Section 4.1.3). Therefore, one should not use the2032
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Chapter 4 Machine learning fundamentals

full available dataset for training, but hold out a fraction to test the performance of the2033

model on unseen data. Most machine learning algorithms profit from large training2034

datasets, so the testing dataset is typically smaller than the training dataset.2035

Usually, a model has not only parameters that are fit to the training data but also pa-2036

rameters that steer the fitting process or control the shape of the model. Examples are2037

the weights of regularization terms in the loss function or the maximum number of2038

leaves in a decision tree. There are several ways in which these hyperparameters can be2039

optimized, for example, via grid search, random search, genetic algorithms, or Bayesian2040

optimization.2041

The hyperparameter performance needs to be validated in a dataset that was not used2042

for the training. However, this hyperparameter tuning is itself subject to overtraining2043

effects. Usually, a dataset of similar size as the test dataset is used as the validation2044

dataset for hyperparameter tuning, while the actual test set is only allowed to serve2045

for a final performance evaluation after all model-parameters and hyperparameters are2046

fixed. To make most of the dataset used for training and hyperparemter validation,2047

one often uses a scheme called k-fold cross-validation, visualized in Figure 4.1. In k-fold2048

cross-validation, the model is trained k times, each time with a different slice of the2049

data held out. This slice, or fold, serves as the validation dataset. When averaging2050

over the different splits, one obtains a performance metric that uses the full statistical2051

power of the dataset while the size of the training dataset for each split is maximized.2052

The number k is usually limited by computational time. The k-fold cross-validation was2053

used in this thesis to tune the hyperparameters of the multivariate electron identification2054

with Bayesian optimization, which is explained later in Section 5.6.2.2055

Figure 4.1: Visualization of k-fold cross-validation from [111].

4.1.2 Classification problems2056

The previous section introduced some machine learning terminology for regression2057

problems. However, in this thesis, machine learning was mostly applied to classification2058

problems, where the model has to predict the correct assignment to different groups2059

or classes in the dataset. Examples are the separation of true reconstructed particles2060

from fakes in a detector and the separation of recorded collision events according to the2061

underlying interaction process.2062
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4.1 Introduction to machine learning

The simplest form of classification problems is binary classification with only two classes.2063

A classification model usually predicts a probability for each sample that may or may2064

not reflect the actual probabilities in the application. The important bit is that this pre-2065

dicted probability – or score – encodes information that can be used with an appropriate2066

cut or working point for a discrete class assignment. If one wants to assess the per-2067

formance of a classifier without fixing a working point, one might study the receiver2068

operating characteristic (ROC) curve. For the ROC curve, the true positive rate is plotted2069

against the false-positive rate. A diagonal corresponds to no separation power, while a2070

curve far from the diagonal indicates high separation power. These ROC curves will be2071

shown often in Chapter 5, which discusses the optimization of the multivariate electron2072

identification algorithm for CMS. To compress the ROC curve in a single number that2073

can be easily compared for performance evaluation, it is common to calculate the Area2074

Under Curve (AUC). Being a performance metric independent of the working point, the2075

AUC is very often the target of hyperparameter optimization. The area ranges between2076

0.5 and 1.0, where an area closer to one is better. Note that using the AUC as a per-2077

formance metric also has disadvantages. Sometimes, the shape of the ROC curve will2078

depend on the algorithm and its hyperparameters, so a larger AUC does not necessarily2079

mean that the false-positive rate for a fixed true positive rate is higher. Therefore, it still2080

makes sense to use working-point-dependent performance metrics such as the error rate2081

if it is clear where the working point will be.2082

The training of classification models is often equivalent to a regression of the log-odds,2083

which correspond to log
(

p
1−p

)

for binary classification. Therefore, one needs to do a2084

conversion from the log-odds to probabilities at the end of the model, which is usually2085

called the logistic transformation or the sigmoid function:2086

p̂(x) =
1

1 + e−ẑ(x)
. (4.1)

This is a common concept for classification models, no matter if they are based on linear2087

models (logistic regression), decision trees, or neural networks. The interpretation of2088

classifier scores as log-odds is important for Section 6.7 that discusses how to get the2089

most information out of the classification score for signal extraction.2090

4.1.3 The bias-variance tradeoff2091

The bias-variance tradeoff is a concept closely related to the already mentioned overtrain-2092

ing. A machine learning classifier never makes exact predictions, but predictions that2093

spread away from the true value with a mean squared error (MSE) that decomposes2094

into three terms. The first term, the bias term, is nonzero is the model does not have2095

enough degrees of freedom to accurately learn the target for every point in the feature2096

space. This can be easily understood with the extreme case of a univariate regression2097

model with no degrees of freedom that always predicts zero. If model should predict2098

some noiseless functional dependence y(x), the model predictions will have a variance2099

Var(x) = y(x)2.2100

The second term in the MSE is the variance. It appears when the model has too many2101

degrees of freedom and learns to reproduce the noise fluctuations in the training dataset.2102

For machine-learning models, this term rarely vanishes completely and is even present2103

also for models with too few degrees of freedom, as these degrees of freedom might2104

be spent to fit the noise in the training dataset if the true functional dependence is not2105

well represented by the model. Accordingly, there is usually a sweet-spot in model2106

complexity where the bias and variance are minimal, while for too complex models,2107
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Chapter 4 Machine learning fundamentals

the variance is high (overtraining or overfitting), and for too simple models, the bias1 is2108

high (underfitting). This is the bias-variance tradeoff that needs to be considered in the2109

optimization of any hyperparameter that controls the model complexity. The last term2110

in the MSE is the noise in the data, which can not be predicted and is always part of the2111

MSE for any problem.2112

(a) (b)

(c)

Figure 4.2: Fitting noisy data that follows a polynomial dependence on a single feature
x with a regression tree for different values of the minimum samples per leaf, which is
inversely proportional to the complexity of the model. Here, the fit with one sample per
leaf clearly overfits the data (a), the model with 50 samples per leaf is not complex enough
(b), and 10 samples per leaf are adequate to approximate the polynomial (c).

Figure 4.2 visualizes the overfitting and underfitting effects when modeling noisy data2113

with a regression tree. The exact value of the bias and variance depends on the point2114

in feature space. Figure 4.3 shows the values of the different terms of the MSE for2115

different values of the model-complexity-controlling hyperparameter that was varied2116

for this demonstration – the minimum number of samples from the training dataset in2117

any leaf of the regression tree. If the minimum number of samples is one, the model2118

perfectly fits the noise in the training data, so the MSE is twice the noise. As the number2119

of minimum samples per leaf is increased to values beyond the sweet-spot, the bias term2120

rises.2121

1and depending on the situation, also the variance
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4.2 Boosted decision trees and the XGBoost algorithm

Figure 4.3: The decomposition of the MSE in the training and testing samples of the model
predictions at x = 0.8 for the same example as shown in Figure 4.2. Note that in order to
evaluate the bias (blue) and variance from the noise in the training dataset (orange), one
must repeat the generation of toy data and the model fitting multiple times. The noise in
the data (green) is independent of the fitted model. Here, MSE stands for mean squared
error.

As Figure 4.3 shows both the MSE on the training and testing dataset, it conveys another2122

important message: even for the hyperparameter value that makes the model fit best,2123

the overtraining – which manifests itself as the difference between the train and test2124

MSE – is not necessarily vanishing. In general, the sweet-spot of best test performance2125

is not necessarily the point at which overtraining is minimal.2126

4.2 Boosted decision trees and the XGBoost algorithm2127

The XGBoost algorithm [84] to train decision tree ensembles is used several times in this2128

thesis to tackle classification problems. Hence, it is worth to take a look at how this2129

algorithm works also to understand the hyperparameters that were optimized for the2130

Boosted Decision Tree (BDT) training in this thesis. Section 4.2.1 introduces the concept2131

of decision trees and how gradient boosting can be used to train decision tree ensembles.2132

Section 4.2.2 lists and explains the XGBoost hyperparameters that were considered in2133

the hyperparameter optimizations in this thesis.2134

4.2.1 Gradient boosting for decision trees2135

A single decision tree should now be easy to understand, as we have already seen one2136

in the previous section about the bias-variance tradeoff. As usual, one needs a loss2137

function that will be optimized, such as the MSE for regression or the error rate for2138

classification. Decision trees are grown iteratively, starting with a constant prediction2139

that minimizes the loss function. Next, the training algorithm has to find the split in2140

feature space that minimizes the loss function if separate constant predictions are made2141

in the two leaves after the split. The splitting is repeated until some stopping criterion is2142

met, for example, if the number of samples in a leaf would fall under a threshold, or if2143

the improvement of the total loss function by splitting is not greater than the increase of2144

an added penalty term that regularizes the model complexity.2145
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In many cases, the variance of a model can be reduced by combining multiple models2146

with few degrees of freedom (weak learners) to an ensemble model. The intuition is that2147

because it is easier to learn the actual relation between the target and the feature than2148

learning the more erratic noise, a model first fits the actual relation before fitting the2149

noise. If the weak learners are given the opportunity to learn different things about2150

the data, for example, by randomizing the training dataset, they learn – in the best2151

case – different aspects of the true relation without wasting any degrees of freedom to2152

fit noise. Hence, combining them might result in a better model than training a single2153

learner with many degrees of freedom that tend to be used to learn about the noise.2154

Boosting means that the weak learners are trained in an iterative fashion, where each2155

added learner learns to correct for the mistakes of the existing ensemble. A boosting2156

method for decision trees that used to be very popular in the HEP community is the2157

AdaBoost (Adaptive Boosting) algorithm [112]. In AdaBoost, wrongly predicted training2158

examples get a higher weight when fitting the next weak learner. This very intuitive2159

idea behind AdaBoost certainty helped to boost its popularity. Gradient boosting [113]2160

is a more general2 technique where every added weak learner is chosen such that it2161

improves the loss function in the direction of its steepest gradient.2162

The loss function for the XGBoost algorithm when a new tree is added to the ensemble2163

in the iteration t is:2164

L(t) =
n

∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω( ft). (4.2)

Here, l is an arbitrary per-instance loss function, for example, the squared error for re-2165

gression or the logistic loss for classification. The new tree should make predictions2166

ft(xi) that correct for the residue between the predictions of the existing ensembl, ŷ(t−1)
i ,2167

and the ture target values yi. The summing is done over the n samples in the training2168

dataset. The term Ω( ft) is a regularization term that will be discussed in Section 4.2.2,2169

which covers the hyperparameters. To optimize this objective, the second-order approx-2170

imation of Equation 4.2 is used:2171

L(t) ≈
n

∑
i=1

[

l(yi, ŷ(t−1)
i ) + gi ft(xi)) +

1

2
hi f 2

t (xi)

]

+ Ω( ft), (4.3)

where gi and hi are the first and second order gradients of the loss function at ŷ(t−1)
i .2172

The algorithm successively adds branchings of splits to the tree structure, as long as the2173

loss function L(t) reduces. The optimal predictions in each leaf can be computed from2174

the gradients, as explained in detail in the XGBoost reference [84].2175

One of the caveats of boosting and the successive finding of splits is that the best tree2176

structure might not necessarily be found by only looking one step ahead. However, it2177

is impossible to enumerate all possible tree structures, making the greedy optimization2178

a necessary compromise. The specialty of the XGBoost algorithms is speed, which is2179

achieved with several optimizations. Some of these optimizations are enabled by ap-2180

proximations. The most distinct optimization is the approximate greedy algorithm. An2181

exact greedy algorithm would enumerate all possible splits for all possible features to2182

find the best next split. In the approximate algorithm implemented in XGBoost, the fea-2183

ture values are first histogrammed with quantile-based bins, such that the enumeration2184

only needs to be done over the much fewer histogram bins.2185

2AdaBoost is, in fact, a special case of gradient boosting with a particular loss function (exponential loss).
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4.2 Boosted decision trees and the XGBoost algorithm

4.2.2 Hyperparameters of the XGBoost algorithm2186

The pernalty term in the loss function (Equation 4.2) contains three regularization hy-2187

perparameters:2188

Ω( f ) = γT +
1

2
λ∥w∥2 + α∥w∥1 . (4.4)

In this penalty term, ∥w∥2 is the sum of squared predictions of weights in each leaf (L22189

norm),∥w∥1 is the sum of absolute values of the weights (L1 norm), and T is the number2190

of leaves in the tree. The parameters γ, λ, and α are the hyperparameters, where λ is also2191

called the L2 penalty and α the L1 penalty. The parameter γ corresponds to a fixed cost2192

for adding a new split, keeping the model complexity under control. The parameters λ2193

and α regularize the actual weights in the leaves. For classification, this means that the2194

predictions are more conservative. The effect of the square in the L2 norm is that more2195

extreme predictions are penalized more severely. Since many other hyperparameters2196

are not abbreviated with greek letters, the regularization parameters will be referred to2197

as gamma, lambda, and alpha hereafter.2198

Three more parameters that control the model complexity directly are n_estimators,2199

max_depth, and min_child_weight. The effect of the min_child_weight parameter,2200

which is a lower bound for the weight sum of training instances in each leaf, was2201

already shown in Section 4.1.3 where is served as an example to illustrate the bias-2202

variance tradeoff. The maximum depth of the tree, max_depth, limits the number of2203

possible splits before arriving at a leaf. Finally, n_estimators is the number of boosting2204

rounds, so it is equivalent to the number of trees in the final decision tree ensemble.2205

In Section 4.2.1, it was argued that even without boosting, separately-trained weak2206

learners could be combined to a more powerful ensemble with less variance if they2207

are allowed to learn different aspects of the training dataset. This can be enforced by the2208

random selection of features and training instances for the training of each weak learner.2209

This is also implemented in XGBoost, complementing the gradient boosting approach.2210

The parameter colsample_bytree controls the size of the random selection of features2211

used in a given boosting round. The default value of 1.0 means no random selection,2212

so all features are used for each tree by default. Analogously, the subsample parameter2213

controls the random sampling of training examples, also with a default value of 1.02214

Finally, the scale_pos_weight parameter scales the weights of all instances of the pos-2215

itive class in the loss function. The use and implications of this parameter and the2216

implications of per-instance reweighting – also possible with XGBoost – are presented2217

in the next section.2218
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4.3 Sample reweighting for classification2219

There are various applications of machine learning in HEP in which assigning non-equal2220

weights to the different classes or even to the individual samples is appropriate. One2221

of the actively studied applications of reweighting is the decorrelation of the features2222

with model parameters. A recent example is the tagging of H → bb events with clas-2223

sifiers trained with reweighted samples such that the bb̄ invariant mass distribution is2224

uniform [114]. Therefore, the classifier is not biased towards the standard model Higgs2225

boson mass.2226

Another scenario in which sample reweighting is often considered is imbalanced train-2227

ing data or training data in which the classes are weighted differently than in the en-2228

visioned application. For use cases in HEP, this is more the norm than the exception:2229

training data is often simulated, and the number of events per sample is determined by2230

computing resource constraints, which are different for each sample. The applications2231

of statistical learning in this thesis are also affected by this problem, which was first2232

encountered during the multivariate electron identification optimization. Therefore, the2233

subject of reweighting for applications other than decorrelation will be discussed in the2234

following.2235

Often, many more training examples are available from the positive class than from the2236

negative class. This asymmetry is prevalent when dealing with the separation of physics2237

processes: the signal is often generated in abundance, while preselection cuts often limit2238

the background sample size (often just called statistics).2239

A few options come to mind:2240

1. apply no weights at all2241

2. discard samples from class with excess to even them out, do not reweight2242

3. normalize such that the summed weights within each class are equal2243

4. normalize each class to actual priors in the application, for example, cross-sections2244

5. apply weights from Monte Carlo event generators to individual events2245

To make an educated choice, one has to keep in mind several key points:2246

1. Every reweighting comes with a reduction of effective statistics. Hence, the per-2247

formance of complex classifiers which require extensive training datasets can be2248

impaired.2249

2. It is possible to calibrate the predicted probabilities a posteriori, so reweighting2250

during the classifier’s training is not strictly necessary to obtain meaningful prob-2251

abilities at the end of the inference pipeline3. However, for many applications –2252

like the identification of particles with a particle detector – the actual numeric2253

value of the predicted probability is not of interest, so uncalibrated probabilities2254

are not necessarily a problem.2255

3. The application of per-class weights can positively affect the performance at a2256

given working point, a benefit that might outweigh the penalty imposed by the2257

reduced statistics. This effect is particularly interesting for simple classifiers with2258

few model parameters because of the absence of the statistics penalty.2259

3Beware that the calibration of probabilities is not trivial by itself, and might deteriorate final classification
performance. This impairment is most apparent for histogram-based methods, where the information
within a given bin is lost.
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4.3 Sample reweighting for classification

Essentially, this means that if interpretable probabilities are not a requirement, per-class2260

weights are a mechanism to improve classification performance. They should be con-2261

sidered even for a training dataset that is a priori balanced, which was a lesson learned2262

in this thesis. Traditionally, per-class weights are often only considered in the context of2263

imbalanced datasets to balance the prior probabilities, while the effects on differential2264

classification performance are less understood. Therefore, this section elaborates on the2265

effects of per-class reweighting on the performance at a given working point, possibly2266

explaining some observations made during the optimization of the multivariate electron2267

identification.2268

(a) (b)

Figure 4.4: Illustration of the effect of class reweighting on the decision boundary obtained
by logistic regression on a toy dataset designed to show a maximal effect size.

The effect of scaling up either the positive or negative class can be illustrated with a sim-2269

ple logistic regression example, but it generally applies to any classifier using a logistic2270

loss function, for example, XGBoost or neural networks. Consider the two-dimensional2271

example data shown in Figure 4.4a, where both classes are balanced. They cannot be2272

separated without taking the correlation of the two features into account, which a lo-2273

gistic regression cannot do. The logistic regressions decision boundary is a straight line2274

through the center of mass, with an arbitrary slope determined by statistical fluctua-2275

tions. The ROC curve of this classification is indicated as the black line in Figure 4.4b. If2276

one class is weighted much higher, the convexity of the logistic loss forces the decision2277

boundary to be such that the distances to each sample of this class are comparable. In2278

general, one might suspect that the decision boundary might turn out to be parallel to2279

the first principal component of the class with the much higher weight4. In other words:2280

the asymmetry of class weights breaks the symmetry of the decision boundary, which2281

now has to choose a location where misclassification of the dominant class is avoided. In2282

practice, this means that if false positives are penalized more, the performance improves2283

for tight working points and vice versa, without impacting the area under the curve (see2284

Figure 4.4b).2285

This differential effect is also manifest for more complicated toy datasets. The ROC2286

curve in Figure 4.5 shows the result of the same exercise for a randomly generated2287

classification dataset.2288

This line of thought should explain why the scale_pos_weight parameter value as-2289

sumed a specific optimal value from the set
{

1,
nneg

npos

}

considered for the electron identi-2290

4A proof of this heuristic conjecture might be the subject of future work.
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Figure 4.5: Effect of class reweighting on the ROC curve obtained from logistic regression
using a randomly generated toy dataset.

fication. The electron identification aims for a high background rejection at loose work-2291

ing points, for which a high signal weight should be favorable. Indeed, the maximum2292

of the two considered values, which is different for the low- and high-pT training bins,2293

maximized the background rejection at 90 % efficiency.2294

On a more general note, we can conclude that class scaling is an interesting hyperpa-2295

rameter for classification models with a logistic loss function if a specific working point2296

is targeted. In particular, it has the potential to improve significantly the capabilities2297

of the widely used logistic regression. For more complex models, the effect might be2298

less dramatic, as it is counterweighted by reduced effective training sample size, and2299

the model might fit the data so well that it is already optimal for all working points.2300

Therefore the efficacy of artificially scaling the class weights should be studied on a2301

case-by-case basis.2302
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Multivariate electron identification2304

Electrons and muons have a long enough lifetime to interact with the detector directly,2305

making them easier to measure than tau leptons. Hence, the term lepton in an exper-2306

imental context often only refers to electrons and muons, including their antiparticles.2307

As muons are tracked in dedicated muon stations, they can be measured more precisely2308

than electrons. Most electrons start interacting in the inner tracker and might leave more2309

than one single-particle cluster in the ECAL, or they might even produce more than one2310

track if the emitted bremsstrahlung converts to an electron-antielectron pair.2311

For multilepton analyses such as the fully leptonic WWZ analysis with four leptons in2312

the final state, the lepton selection efficiency enters the event selection efficiency at the2313

fourth power. Therefore, a highly optimized electron identification is important to main-2314

tain a good signal efficiency at a low-enough fake rate. For this reason, the optimization2315

of the multivariate electron identification based on Boosted Decision Trees (BDTs) –2316

which will be referred to as electron Multivariate Analysis (MVA) – was an essential part2317

of this thesis.2318

The LHC Run 2 had already completed one Run 2 data-taking year in 2016 before this2319

thesis started. Hence, this work focuses on the adaptation for 2017 data and simu-2320

lation. Section 5.1 explains the general strategy and requirements for electron MVA2321

training. Section 5.2 shows the dominant effects of the new pixel detector on electron2322

track observables, motivating the retraining for 2017 data-taking. This reoptimization is2323

described in Section 5.3, which elaborates on the newly added input variables and other2324

changes. After this initial electron MVA update, new detector calibrations required a2325

retuning, which has been taken as a window of opportunity to move the training from2326

the previous framework to XGBoost [84], a highly optimized gradient boosting algo-2327

rithm whose speed allowed for optimization with a more extensive training sample.2328

Section 5.4 discusses the XGBoost training, giving a detailed performance overview of2329

the resulting MVA that became the standard within CMS for the full Run 2 dataset. Sec-2330

tion 5.5 comments on the software implementation of the BDT score evaluation, which2331

is of general interest beyond the electron MVA. Finally, Section 5.6 presents a study on2332

hyperparameter tuning with Bayesian optimization that pushes the XGBoost training2333

to its limit. Section 5.7 concludes on the electron MVA studies and discusses how the2334

multivariate electron identification could evolve for Run 3.2335

5.1 General training strategy and requirements2336

The CMS experiment identifies electrons with BDTs since the LHC Run 1 [80], and2337

this strategy was steadily improved. True prompt electrons are separated from the2338

background, which can be either nonprompt electrons (i.e., electrons in jets or from2339

converted photon) or reconstructed electrons entirely unrelated to any real electron.2340

Electrons from tau leptons decays are not considered.2341
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Chapter 5 Multivariate electron identification

In Run 1, the BDTs were trained with electron candidates from real Z+jets data. The2342

electrons from the Z boson candidate were taken as the signal. The additional elec-2343

trons from jets or pileup in the same Z+jets events represent the background. Kinematic2344

cuts were applied on the Z candidate to suppress contributions from diboson processes,2345

where the additional electron would have been a real one. Furthermore, a dedicated2346

MVA was trained for electrons that pass the trigger thresholds to ensure optimal selec-2347

tion in the remaining phase space. For the 2016 Run 2 training, it was concluded that2348

using real measurements for the training has no exact benefit, and electron candidates2349

from Z+jets events simulated with MadGraph5 [100] at leading order were used instead.2350

The impact of having a dedicated training for triggering electrons was also found not2351

significant, so it was discontinued.2352

The set of input variables (or features as they are referred to in the machine learning2353

community) group into cluster shape, track, track-cluster matching, and isolation plus2354

pileup variables. The BDTs are trained in six training bins, indicated in Table 5.1.2355

Label Description Selection

EB1 10 regular pT inner barrel pT ≥ 10 GeV and |η| < 0.8

EB2 10 outer barrel pT ≥ 10 GeV and 0.8 ≤ |η| < 1.479

EE 10 endcaps pT ≥ 10 GeV and 1.479 ≤ |η| < 2.5

EB1 5 low pT inner barrel 5 ≤ pT < 10 GeV and |η| < 0.8

EB2 5 outer barrel 5 ≤ pT < 10 GeV and 0.8 ≤ |η| < 1.479

EE 5 endcaps 5 ≤ pT < 10 GeV and 1.479 ≤ |η| < 2.5

Table 5.1: The BDT training bins. The separate barrel and endcap models are motivated by
the considerably different feature distributions and background populations. The further
split inside the barrel is motivated by a jump in the material budget around η = 0.8 (see
Figure 2.10b). The split in pT is more for historical reasons: most analyses do not require
electrons below pT = 10 GeV, and the low pT bins were added for analyses that require to
go to such low energy, for example, Higgs to four leptons (H → 4ℓ). The limit of |η| < 2.5
is imposed by the tracker acceptance.

The BDTs return a continuous score so that each analysis could choose an appropri-2356

ate working point for its selection in principle. However, each working point requires2357

dedicated scaling factors that correct data/MC disagreements, so the working point2358

determination is done right after the training. The final electron MVA selections are2359

provided together with the corresponding scaling factors to the collaboration. Table 5.22360

lists the required working points, which are all used in the triboson analysis covered by2361

the later chapters of this thesis1.2362

Label Description

wp80 80 % signal efficiency in DY+Jets MC for electrons with pT > 20 GeV

wp90 90 % signal efficiency in DY+Jets MC for electrons with pT > 20 GeV

wpLoose for multilepton analyses, with the signal efficiency matched to the efficiencies of
the H → 4ℓ analysis in Run 1 in each of the six training bins

Table 5.2: Working points required for the electron MVA.

1Although the tightest 80 % efficient working point was not employed in the WWZ analysis that is ex-
plained in this thesis, the is was used in the WWW analysis
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5.2 Effect of the new pixel detector on electron observables

5.2 Effect of the new pixel detector on electron observables2363

During the extended LHC technical stop at the end of 2016, the CMS pixel detector has2364

been replaced (see Section 2.2.2.2). The new pixel detector has one more sensor layer2365

in both barrel and endcaps, affecting the number of measured hits in both KF and GSF2366

tracks. Figure 5.1a shows that the average number of hits in the closest KF track as a2367

function of η has increased by one for real electrons, as expected. Unlike the number of2368

GSF track hits, the number of KF track hits for fake electrons has not increased, making2369

NKF a more discriminating variable in 2017.2370

The new pixel detector’s other main feature is a reduced material budget in the endcaps2371

(see Figure 2.10a), resulting in reduced bremsstrahlung and photon conversion activity2372

in this region. An observable very sensitive to conversion patterns in the pixel detector2373

is Nmiss. hits, the number of hits missing at the beginning of the track even though its ex-2374

trapolation predicts it would have passed through active detector material. This number2375

is low for prompt electrons but higher for nonprompt background electrons from pho-2376

ton conversions. However, it can also be nonzero for prompt electrons if they lost most2377

of their energy by bremsstrahlung early, and it is a conversion leg of the bremsstrahlung2378

photon that gets reconstructed as the electron. The pseudorapidity profile of Nmiss. hits2379

shown in Figure 5.1b suggests that such conversions are suppressed in 2017 with the2380

reduced material budget. Hence, Nmiss. hits gained a lot of separation power. Naturally,2381

the reduced material budget also affects the conversion vertex fit quality and fbrem, the2382

fraction of momentum lost between the inner and outer track measurements. Shower2383

shape and cluster-track matching variables underwent only minor changes, but the large2384

shifts in the track variables demanded a retuning of the electron MVA for 2017 data.2385
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Figure 5.1: The electron variables for which the differences between 2016 and 2017 due to
the new pixel detector are most visible: the average number of KF track hits (left) and the
average number of missing expected inner hits (right) as a function of the supercluster η.

With the additional pixel layer, the seeding of track reconstruction can require up to four2386

matching hits in the pixel detector. Asking for this additional hit decreases the combina-2387

torial background, and therefore, the track reconstruction is much purer. Accordingly,2388

the new detector reduces the number of fake electrons reconstructed per event, illus-2389

trated in Figure 5.2 by the number of background electrons per event as a function of2390

the number of pileup interactions. Since the combinatorial background scales superlin-2391

early with pileup activity, the difference is most prominent for high pileup at low pT.2392

In conclusion, the new pixel detector improves the discrimination power of track observ-2393

ables for electron identification and reduces the number of electron fakes in general.2394
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Chapter 5 Multivariate electron identification
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Figure 5.2: Number of reconstructed fake electrons per event as a function of the pileup
for the different detector conditions of the Run 2 data-taking years in simulated DY+jets
MC events. The fakes with 5 ≤ pT < 20 GeV are shown on the left, the ones with pT > 20
GeV on the right. No identification is applied.

5.3 First optimization of the electron MVA for 2017 data2395

The first optimization of the electron MVA for 2017 data focused on the adaptation to2396

the updated detector conditions. The BDT training setup was not changed relative to2397

the 2016 optimization, done with the gradient boosting BDT method implemented in2398

the Toolkit for Multivariate Data Analysis with ROOT (TMVA) [115]. Since the training2399

hyperparameters were also not changed, k-fold cross-validations for hyperparameter2400

optimization was not employed. Instead, the DY+Jet sample was split into one training2401

set and one testing set, where the testing set was used for the performance evaluation2402

that included the figures presented in this section. In each training bin, the testing set2403

nominally includes 50 % of all electrons, but as the training set was limited to 200,0002404

electrons from each class per bin, the testing set is larger than half of the full sample.2405

The features used in the electron MVA are presented in Table 5.3. They have been2406

extended twice since Run 1. At the beginning of Run 2, the number of hits in the2407

GSF track and the conversion rejection variables Nmiss. hits and Pconv have been added,2408

resulting in a roughly 50 % reduction in background rate [116]. The pileup estimate2409

ρ and the three particle-flow isolation components were added within the scope of this2410

thesis. Both models with and without the isolation variables were provided since several2411

analyses require separate identification and isolation selections to allow for background2412

extrapolations from sidebands.2413

With the high average pileup in 2017 and the prospect of a further increase in 2018,2414

selection efficiencies that are robust to changing pileup levels were required. Adding2415

the pileup estimate ρ does not substantially affect the integrated signal and background2416

rates of the electron MVA, but it makes the selection efficiency more uniform as a func-2417

tion of the pileup. This effect is visible in the endcaps and shown in Figure 5.3.2418

The three particle-flow isolation components are the charged hadron, neutral hadron,2419

and photon transverse momentum sums. Their total sum is usually used as the isola-2420

tion variable for electron selections (see Section 6.3.1), with the two neutral components2421

corrected for pileup with the area-median method discussed in Section 3.5. Since a2422

global pileup estimate has been added to the input features, the three isolation compo-2423

nents can be added individually. Like this, the BDT itself has the opportunity to learn2424

an appropriate pileup correction and make use of the correlations between the identifi-2425

cation and isolation variables. Indeed, adding all the isolation components resulted in a2426

slightly better performance than adding only the combined isolation.2427
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5.3 First optimization of the electron MVA for 2017 data

Cluster shape

σiηiη cluster shape variance in the η direction

σiϕiϕ cluster shape variance in the φ direction

∆ηSC supercluster width in η

∆ϕSC supercluster width in ϕ

H/E ratio of HCAL and ECAL energy in 5 × 5 footprint around the seed

1 − (E5×1/E5×5) circularity variable with a 5 × 1 window in iηiϕ around seed

R9 = E3×3/ESC E3×3 is the energy in the 3 × 3 matrix around the seed

EPS/Eraw contribution of preshower to uncorrected SC energy (endcaps only)

Track information

fbrem fraction of momentum lost between inner and outer track

NKF numer of hits in nearest Kalman Filter track within ∆R = 0.3

NGSF number of hits of the GSF track

χ2
KF reduced fit χ2 of nearest Kalman Filter track within ∆R = 0.3

χ2
GSF reduced χ2 of the GSF fit

Nmiss. hits number of expected but missing inner hits

Pconv. conversion probability obtained from the χ2 of the conversion fit

Track-cluster matching

ESC/pin ratio of SC energy and inner track momentum

Eele/pout comparing outer track momentum and energy of closest PF cluster

1/Etot − 1/pin energy-momentum agreement

∆ηin = |ηSC − ηin| distance in η between energy-weighted SC center and inner track
extrapolation

∆ϕin = |ϕSC − ϕin| same distance in ϕ

∆ηseed = |ηseed − ηout| distance between seed cluster and outer track extrapolation to
calorimeter

Isolation (optional)

∑chr.,∆R=0.3 pT pT sum of charged PF hadrons from primary vertex within cone

∑neu.,∆R=0.3 pT pT sum of neutral PF hadrons within cone

∑pho.,∆R=0.3 pT pT sum of PF photons within cone

Pileup

ρ global pileup estimation variable computed with the fastjet package [117]

Table 5.3: Electron observables that are used as inputs to the multivariate identification.

The full picture of how the combination with the isolation affects the selection perfor-2428

mance is presented in the ROC curves in Figure 5.4 for all six training bins. These figures2429

also indicate the fake rates for the MVA trained for 2016 data in 2016 DY+jets simula-2430

tions as a performance reference. As the number of fakes in 2017 is already reduced2431

before the identification step because of the improved reconstruction with the new pixel2432

detector, Figure 5.4 shows the number of fakes per simulated event instead of the false2433

positive rate of the classification for meaningful comparison.2434
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Chapter 5 Multivariate electron identification

Figure 5.3: Effect of adding the pileup estimate ρ to the input variables of the electron
MVA for endcap electron candidates with pT > 10 GeV and within the tracker acceptance.
The performance of the existing training for 2016 data is validated on DY+Jets samples
simulated with 2016 (blue) and 2017 (orange) detector conditions. The efficiencies of the
retrained 2017 MVA on 2017 simulation are shown for the original feature set (red) and
with the added pileup estimate ρ (green).

The ROC curves for the 2016 selection are also shown with the pileup distribution2435

reweighted to the 2017 distribution, indicating how the electron selection would likely2436

perform without the upgraded detector. This metric is also useful to understand why2437

the selected fakes per event have increased for high efficiencies in the low pT endcap2438

bin: the benefits of the new pixel detector do not entirely compensate for the effect of2439

pileup increase.2440

For the new 2017 MVAs, Figure 5.4 shows the ROC curves for both the models with and2441

without the isolation variables. To understand how the MVA with isolations compares2442

to the traditional 2-step sequential approach – with the isolation cut applied after the2443

MVA cut –, ROC curves for the sequential selection are shown. For a fair comparison, the2444

sequential selection must be optimized for each point on the ROC curve. A 2D scan over2445

both cuts results in a two dimensional manifold of points in the ROC space. The ROC2446

curve of the optimal sequential combination is the lower bound of this population.2447

The combination of identification and isolation and observables in the MVA (inclusive2448

approach) consistently improves over the sequential approach for selection efficiencies2449

greater than 80 %, which is the relevant interval for electron selection. For high selection2450

efficiencies in the pT > 10 GeV bins, the inclusive approach results in a 15 % fake rate2451

reduction for very high efficiency. The improvement is up to 20 % for the low pT training2452

bins, with the most considerable effect in the endcaps. Therefore, it was decided to use2453

the combined training for multilepton analyses like Higgs to four leptons and to provide2454

both models as the recommended electron MVA selections for 2017 data.2455

The last change made for this first retuning relates to the kinematic reweighting of the2456

training electron candidates. In 2016, the loose working point (see Table 5.2) was realized2457

with a model in which no per-electron weights were applied. However, the classifier for2458

the two other working points was trained with the signal distribution reweighted to the2459

background distribution in pT and η, causing a smoother pT turn-on for a fixed working2460

point and allowing for the inclusion of pT and η among the input variables, without2461

introducing a kinematic bias. Since any sustainable improvement should go along with2462
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5.3 First optimization of the electron MVA for 2017 data

(a) EB1 low pT (b) EB1

(c) EB2 low pT (d) EB2

(e) EE low pT (f) EE

Figure 5.4: ROC curves with fakes per event instead of false positive rate for the initial
retuning of the electron MVA for 2017 data. The black line corresponds to the 2016 MVA
applied on simulated 2016 DY+jets samples and serves as a reference for the bottom panel
comparisons. The dashed black line shows almost the same, except for the sample being
reweighted to match the pileup distribution of the 2017 runs. The performance of the
retuned electron MVA on the 2017 sample is shown for models with (orange) and with-
out (blue) particle-flow isolation components. The green line indicates the best possible
background rejection that can be achieved by cutting first on the MVA and then on the
combined isolation.
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Chapter 5 Multivariate electron identification

Figure 5.5: Effect of kinematic reweighting in pT and η and including said observables in
the training on the pT-differential fake rate for uniform signal efficiency.

simplification, only a model without kinematic reweighting was trained for 2017, and2463

the desired turn-on behavior for the 80 % and 90 % efficient working points has been2464

achieved by working points that have an exponential rise in pT.2465

The choice to leave out the kinematic reweighting was made after a careful study of the2466

effect on differential performance, presented in Figure 5.5. It shows the background ef-2467

ficiency at several signal efficiency contours both for a model trained without kinematic2468

reweighting and a model trained with kinematic reweighting and pT and η among the2469

input variables. As expected, the absence of reweighting results in a slightly better fake2470

rejection around the Z-peak, while reweighting the signal to the exponentially falling pT2471

distribution of the background specializes more in the low pT region. These differences2472

are minor. Therefore, it was concluded that one single training is sufficient. Similar2473

effects differential in η were found to be negligible, as the η distributions of signal and2474

background are much more similar than the pT distributions.2475

More performance plots and details on the exponential working point fits are not shown2476

for this first optimization of the electron MVA for 2017 because it was not the final retun-2477

ing. Updated detector calibrations required another round of optimization, which is ex-2478

plained in the next section that concludes with a thorough final performance overview.2479

5.4 Reoptimization of the electron MVA with XGBoost2480

After the 2017 data-taking and the initial event reconstruction, various detector cali-2481

brations have been improved. This included updated ECAL calibration constants and2482

retuned pixel matching cuts2. These changes affected the electron identification observ-2483

ables. Hence an update of the electron MVA was required. This opportunity was taken2484

2see Section 3.2.1 for an explanation of electron seeding.
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5.4 Reoptimization of the electron MVA with XGBoost

Figure 5.6: The total number of electron candidates from simulated DY+jets events avail-
able for the electron MVA training in each of the six training bins. The numbers corre-
spond to only half of the full sample since the other half was designated for the perfor-
mance tests.

to explore the XGBoost [84] algorithm as the BDT training engine to replace the previ-2485

ously used gradient boosting algorithm implemented in TMVA. This section explains2486

the motivation for this decision, elaborates on the choice of hyperparameters, and con-2487

cludes with several performance metrics of this final 2017 electron MVA.2488

In the TMVA based training framework used for all previous electron MVA optimiza-2489

tions, the number of electrons per signal or background class was limited to 200,000 in2490

each training bin to keep the training time under control. However, the DY+jets simu-2491

lated samples provide much more electron candidates even when only using half of it2492

for the training and the rest for testing. The numbers of available electron candidates2493

are visualized in Figure 5.6. Except for the true electrons in the low pT bins, the number2494

of electron candidates greatly exceeds 200,000. This raises questions on how the electron2495

MVA would improve with more training data. This question is difficult to answer with2496

the TMVA training, as the much larger sample size asks for a reoptimization of model2497

hyperparameters, which was not feasible with the very long TMVA training times.2498

The XGBoost algorithm implements several performance optimizations, for example,2499

an approximation of the best splitting values with quantile-based histograms. Training2500

in the high pT bins takes only a few hours on 16 CPU threads for the full training2501

data, making a grid search over a few hyperparameters possible. The optimization2502

done separately for each training bin started with a coarse grid over max_depth and2503

min_child_weight, before manually choosing finer grids around the most promising2504

regions. This is illustrated in Figure 5.7 for the EB1 training bin. The number of boosting2505

rounds was determined with a 10-rounds early stopping criterion on the test AUC with2506

an upper bound of 1000 rounds. The final parameters were chosen such that the training2507

performs better than a reference TMVA training for all signal efficiencies while causing2508

only very little overtraining. After this first 2D grid search, max_depth has been fixed and2509

a second 2D search was performed over gamma and the previously identified promising2510

interval for min_child_weight. The whole procedure was done for both unweighted2511

training samples and for a per-class reweighting with the scale_pos_weight parameter2512

to balance the a priori very imbalanced dataset.2513

For this reoptimization, the new DY+Jets sample – which was twice as large as the2514

sample with the original calibrations used in Section 5.3 – was split into training, val-2515
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Chapter 5 Multivariate electron identification

idation, and testing subsamples. The training and hyperparameter validation samples2516

each amount to 25 %, with the remaining 50 % making up the testing sample. The large2517

testing sample enabled detailed differential performance studies differential in pT, η, or2518

the number of reconstructed vertices shown at the end of this section.2519

Figure 5.7: A visualization of the manually guided grid search hyperparameter optimiza-
tion over the min_child_weight and max_depth parameter in the EB1 training bin. The
color encodes the test AUC, the fill area the ratio between test and train AUC, and the
star distinguishes the models which performed better than the reference TMVA training
for all signal efficiencies.

As shown in the ROC curves in Figure 5.8 and expected from the number of electron2520

candidates, it was not difficult to find parameters that perform better than the TMVA2521

training for the high pT training bins, where the number of both signal and background2522

electrons exceeded 200,000. The impact is a roughly 10 % reduction in fake rate, with2523

no increase in relative overtraining.2524

For the low pT training bins, the XGBoost models are comparable with the TMVA mod-2525

els. This suggests that the performance is limited by the number of samples in the less2526

populated class since it was below the limit for the TMVA trainings in these bins.2527

The best found hyperparameters are listed in Table 5.4. One unexpected find was the2528

role of scale_pos_weight. The usual recommendation for unbalanced datasets is to2529

balance their weights by scaling the positive class’s weight with nneg/npos, so it was2530

unexpected that the unweighted training dataset results in a better background rejection2531

in the signal efficiency interval of interest for the electron MVA. Section 4.3 discusses2532

sample reweighting for the training of classification models and proposes a possible2533

explanation on why not reweighting might indeed be the better choice for models that2534

are intended to be used at a relatively loose working point.2535

Section 5.3 mentioned that the 80 % and 90 % efficient working points were scaling with2536

an exponential turn-on in electron pT to achieve a more uniform selection efficiency:2537

wp(pT) = C − A × exp
(

pT/B
)

. (5.1)

Figure 5.9 shows these fits, demonstrating that the exponential function is well suited2538

to yield differential selection efficiencies that match the uniform working points of the2539

2016 electron MVA, trained with kinematic reweighting.2540

Finally, the Figures 5.11, 5.13, and 5.14 show the signal and background efficiencies for2541

all working points.2542
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5.4 Reoptimization of the electron MVA with XGBoost

(a) EB1 low pT (b) EB1

(c) EB2 low pT (d) EB2

(e) EE low pT (f) EE

Figure 5.8: The ROC curves for the electron identification.
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Size (NoIso) Size (Iso) TMVA size

EB1 5 4 500 10 nbkg/nsig 259 269 47 KB 48 KB 1.1 MB

EB2 5 4 2000 15 nbkg/nsig 310 288 44 KB 42 KB 1.1 MB

EE 5 4 2000 15 nbkg/nsig 446 486 76 KB 84 KB 1.1 MB

EB1 10 4 500 0 1 1000 1000 165 KB 162 KB 1.1 MB

EB2 10 4 500 0 1 1000 1000 164 KB 163 KB 1.1 MB

EE 10 4 500 0 1 1000 1000 212 KB 210 KB 1.1 MB

Sum 708 KB 709 KB 6.6 MB

Table 5.4: The hyperparameters found with the manually guided grid search.

(a) EB1 (b) EB2

Figure 5.9: Illustration of how the 80 %
and 90 % efficient working points were
derived. The dashed line indicates the
required working points to match the
signal efficiency of the 2016 MVA for ev-
ery pT value. This is then fitted with
Equation 5.1 for the low pT and high
pT bins separately to obtain the working
point function. Note that the isolation-
inclusive training did not exist in 2016,
so the efficiency target for both 2017 se-
lections was the same.

(c) EE
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5.4 Reoptimization of the electron MVA with XGBoost

(a) EB1 (b) EB2

Figure 5.11: The signal and background
selection efficiencies of the retuned elec-
tron MVA for both models and all work-
ing points in simulated DY+jets data as
a function of pT.

(c) EE

Figure 5.13: The signal and background selection efficiencies of the retuned electron MVA
for both models and all working points in simulated DY+jets data as a function of η.

81



Chapter 5 Multivariate electron identification

Figure 5.14: The signal and background selection efficiencies of the retuned electron MVA
for both models and all working points in simulated DY+jets data as a function of the
number of true collision vertices.

5.5 Implementation in the CMS reconstruction software2543

The implementation of the electron MVA for Run 2 in the C++ reconstruction frame-2544

work was completely rewritten in the scope of this work. Previously, each MVA training2545

had been hardcoded in a separate C++ class, making it very difficult to understand their2546

differences and to ensure a consistent definition of input variables. The new implemen-2547

tation uses the reflection capabilities that the ROOT framework adds to C++ classes.2548

This makes it possible to define how input variables are obtained from the electron ob-2549

ject in a single text file for all MVAs, used by a single C++ implementation to look up2550
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Figure 5.15: The response of the BDTs trained for the electron identification with TMVA
(top) and XGBoost (bottom) to signal and background. The left plots show the direct
BDT response, i.e., the sum of responses from each decision tree, and the right plots show
the response after the logistic transformation 1/

(

1 + exp(−x)
)

, linearly mapped to the
interval between -1 and 1. Note that the values are usually extremely close to ±1, which
is undesirable for distributions that need to be fitted and for encoding in a floating-point
format.

how to get all variables required by a given MVA.2551

The MVA implementation stores the final BDT score in a single-precision floating-point2552

number, while the XGBoost library uses double-precision. Since this score was subjected2553

to a logistic transformation and the electron classification is generally very discriminat-2554

ing, most values are very close to ±1. This causes precision issues that sometimes lead2555

to the wrong decision for extreme working points. Since the numeric value of the final2556

score – which can be interpreted as a probability – is not essential for the electron MVA,2557

the logistic transformation is now skipped, which makes the score distribution much2558

smoother, as shown in Figure 5.15. Accordingly, all working points were determined2559

for the score before the logistic transformation. A move to double-precision would have2560

been prohibited by the restrictive space constraints of CMS event data files.2561

The CMS software implementation of decision tree inference is highly optimized. The2562

full intermediate and terminal node information about individual decision trees is flat-2563

tened into a structure of arrays, ensuring a high data locality that maximizes caching2564

efficiency. Since the number of trees is usually much higher than the number of nodes2565

in one tree, it has been expected that the cache efficiency can be further improved by2566

storing the whole forest in contiguous memory. This resulted in another 20 % improve-2567

ment in single-thread inference speed. This further optimized BDT inference engine was2568

measured to be four times faster than the official XGBoost implementation – written in2569

C – and twice as fast as other popular open-source inference engines. The CMS soft-2570

ware implementation, including the contiguous memory optimization, has been made2571

available in an easy-to-use open-source package that got attention from academic and2572

non-academic data scientists and analysts [118].2573
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5.6 Hyperparameter tuning with Bayesian optimization2574

Section 5.4 explained how an improved electron MVA was trained with the XGBoost2575

algorithm. This included a manual optimization of hyperparameters to improve rela-2576

tive to the TMVA training in each of the six training bins. A manual hyperparameter2577

optimization was seen as more appropriate than a fully automatic grid search or ran-2578

dom search, as one training takes several hours, and it would be wasteful to train at a2579

point in hyperparameter space that can be predicted to be inferior based on the results2580

from other trials. This section presents a more sustainable automatic solution based on2581

Bayesian optimization.2582

5.6.1 Bayesian optimization with Gaussian processes2583

Most optimization algorithms use the gradient of the function they aim to optimize,2584

either by computing it directly or estimating it with small variations of the function’s2585

arguments. When the function is very costly to evaluate, which applies to an expensive-2586

to-train classifier’s performance metric, such an estimate of the gradient is not feasible.2587

Instead, one needs an optimization algorithm that can work without the gradient and2588

that generally minimizes the number of function evaluations.2589

Bayesian optimization fulfills these requirements by approximating the function with a2590

probabilistic model [119]. This surrogate model is updated with each function evaluation2591

and an acquisition function is determines which point is evaluated next. When choos-2592

ing the surrogate model and the acquisition function, one must consider the trade-off2593

between exploration and exploitation. In other words, the algorithm must balance be-2594

tween evaluating points in unexplored regions of the search space to avoid getting stuck2595

in a local optimum and points near the best among the points explored so far to find2596

the true optimum more precisely.2597

A common choice for the surrogate model is a Gaussian process [119, 120]. It has2598

been chosen for this work because it has a more formal mathematical basis compared to2599

other established approaches like the tree-structured Parzen estimator [120]. The general2600

familiarity of researchers with Gaussian distribution makes it also very intuitive.2601

A Gaussian Process (GP) generalizes multivariate normal distributions to infinite di-2602

mensions. In practical terms, this means that it is a field of stochastic processes Φ that2603

describes a bivariate normal distribution for any pair of points:2604

(

Φ(x)

Φ(y)

)

∼ N

⎛

⎝

(

µ(x)

µ(y)

)

, Σ(x, y)

⎞

⎠ . (5.2)

The mean µ and covariance Σ are neither scalar values nor a vector and a matrix, but2605

functions. For this reason, Gaussian processes are sometimes referred to as distributions2606

over functions. If we sample the process at the point y, the conditional processes at every2607

other point x make up another Gaussian process since the conditional probability of a2608

multivariate normal distribution is also a normal distribution3:2609

Φ(x) | Φ(y) ∼ N
(

µx + ΣxyΣ−1
yy (φ(y)− µy), Σxx − ΣxyΣ−1

yy Σxy

)

. (5.3)

In the context of Bayesian optimization, drawing the value φ(y) means to evaluate the2610

function we want to minimize. Computing the parameters of the conditional probability2611

3Function arguments were moved to subscripts for a more compact notation.
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distributions corresponds to the surrogate model updating step. We also need to define2612

an initial Gaussian process as a prior, where a simple choice is a uniform mean at zero2613

and an exponential kernel with parameters θ1 and θ2 as the covariance function:2614

µ(x) = 0,

Σ(x, y) = θ1 exp

(

− θ2

2
(x − y)2

)

.
(5.4)

In the following study, the covariance function is the Matérn kernel [121]:2615

ΣMatern(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)

, (5.5)

where r is the distance between the two points, and Kν is a modified Bessel function.2616

The parameters were set to l = 1 and ν = 2.5. The Matérn kernel is a standard choice2617

for machine learning applications and is employed in the code used for the Bayesian2618

optimization in this work, aptly named BayesianOptimization [122]. Note that there2619

are also other similar open-source packages like hyperopt [123], which uses a tree-based2620

surrogate model and supports optimization on distributed systems.2621

Some possible acquisition functions that can be used together with Gaussian processes2622

are the upper confidence bound, the expected improvement, and sometimes the probability2623

of improvement. The upper confidence bound is a profile of the Gaussian process at a2624

given quantile, and the next point to evaluate will be at the maximum of this confidence2625

bound. A common choice is the 2σ confidence bound, but in general, it should be2626

adjusted for a good trade-off between exploration versus exploitation, with quantiles2627

further in the tails favoring exploration. The expected improvement is the expected2628

value of the improvement at a given point x under the condition that the value φ(x)2629

assumed by the Gaussian process will be above the current best value φ∗:2630

EIφ∗(x) =
∫ ∞

φ∗
(φ(x)− φ∗) p(φ(x)|φ(y1), ..., φ(yn)) dφ(x). (5.6)

Finally, the probability of improvement is similar to Equation 5.6, but it is only the inte-2631

gral over the probability. Here, the expected improvement acquisition function has been2632

chosen because it requires no additional parameter and is intuitive to understand.2633

5.6.2 Training and optimization setup2634

This study’s goal was to demonstrate how the XGBoost performance for the electron2635

MVA would improve if the Bayesian optimization optimizes several hyperparameters.2636

The hyperparameters in the search space are listed in Table 5.5. To break the overdeter-2637

mination of the first point, a few initial points have to be chosen randomly. Here, we2638

draw four points from a uniform distribution in the allowed parameter space. The same2639

four points were used for each training bin to suppress variations in the optimization2640

path due to random choice. Additionally, the default parameter values, as given by2641

XGBoost, were evaluated, as these are tuned to perform generally well. Afterwards, the2642

Bayesian optimization is trying to maximize the test AUC for 50 iterations.2643

During the training, the performance is evaluated with three-fold cross-validation to2644

use the sample’s full statistics for the test metric (see Section 4.1.1). Since the best2645

hyperparameter values adapt to a specific training sample size, the final model trained2646

with the best-found hyperparameters also leaves out one-third of the training data.2647
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The number of boosting rounds (n_estimators in XGBoost) takes a unique role among2648

the hyperparameters as it can be determined dynamically during the training. If the2649

test metric fails to increase for 100 rounds, the optimal number of boosting iterations is2650

determined to be the round before the improvement halts. If this does not happen, it is2651

limited to 3000. Nevertheless, even with the early stopping, the optimization may choose2652

points for which the training takes a disproportionally long time, even if it becomes2653

apparent that the test AUC does not converge well. Therefore, some mechanisms need2654

to be introduced to abort the training based on the previous round’s results.2655

Another training halt criterion considers that overtraining increases monotonically and2656

that the AUC has an upper bound of one:2657

AUCtrain − AUCtest > 1 − AUC∗
test. (5.7)

AUC∗
test is the best test AUC observed so far. Put in words: if the overtraining – ex-2658

pressed as the difference between the train and test AUC – is larger than the residue of2659

AUC∗
test, AUCtest can not exceed AUC∗

test, even if variations in the training sample would2660

eventually be fit entirely. Note that the comparison with past information means that2661

the order of evaluation is making a difference, but since it only affects points that are2662

far from the maximum, this is presumably not harmful.2663

The overtraining criterion can successfully abort the training of models prone to over-2664

train, but another criterion needs to be implemented to stop the training of overly regu-2665

larized models. These points have the problem that they converge very slowly, and the2666

regular early stopping is triggered very late as the absence of overtraining causes the2667

test AUC to keep increasing by tiny amounts instead of reaching a sweet-spot before2668

decreasing again. These alarmingly slow convergence cases can be caught early, con-2669

sidering that the evolution of the AUC is generally concave. A straight line is fit to the2670

test AUC of the last ten rounds and is extrapolated to provide an upper bound to the2671

AUC in the future. If this fit predicts that AUC∗
test will only be reached in an overly long2672

time of at least five times the training time corresponding to the default parameters, the2673

training is stopped.2674

One final change with respect to the manually optimized training described in Sec-2675

tion 5.4 was the clipping of the training data. Since training time scales approximately2676

linearly with the training data size, signal and background have been balanced by throw-2677

ing away electron candidates such that both classes are balanced (see Figure 5.6 for the2678

number of electron candidates in each training bin). This clipping was considered to2679

be the least harmful way to bring the training time to a level that does not prohibit2680

Bayesian hyperparameter optimization since classifier performance is usually limited2681

by the number of samples in the less abundant class.2682

This hyperparameter optimization took one week on 16 CPU cores for all six training2683

bins, and the custom early stopping criteria were triggered several times. The study was2684

done only with the isolation variables included because of the long run time and the mi-2685

nor impact of removing a small fraction of features on the optimal hyperparameters.2686

5.6.3 Results and interpretation2687

The results of the Bayesian optimization study are presented in three figures. Table 5.52688

lists the best hyperparameters found for each training bin. Figure 5.16 visualizes the2689

evolution of the test AUC during the optimization. Finally, Figure 5.17 shows the ROC2690

curves in each of the six training bins, comparing them to various references.2691
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default 6 1 0 0 1 1 1 - -

parameter bounds min 2 1 0 0 0 0.1 0.5 - -

max 15 20 10 10 10 1 1 - -

optimized EB1 5 4 15.38 3.46 8.82 4.17 0.63 0.97 760 29

EB2 5 5 10.46 4.56 6.45 7.33 0.99 1.00 561 35

EE 5 13 11.38 6.86 10.00 8.69 0.95 0.98 378 62

EB1 10 14 7.18 5.27 9.64 9.59 0.78 0.98 249 200

EB2 10 14 6.36 9.93 9.15 3.12 0.87 0.97 418 186

EE 10 11 1.56 2.14 9.79 9.55 0.69 0.94 282 394

Table 5.5: XGBoost hyperparameters subjected to Bayesian optimization with their de-
fault values, the bounds for the optimization, and the optimized values for each training
bin. The integer parameter max_depth is treated as a continuous parameter in the sur-
rogate model and rounded to the nearest integer value for model training. Note that
n_estimators is not optimized directly by the Bayesian optimization but determined by
early stopping to be the boosting round after which the test AUC did not improve for 100
rounds. The final column presents the number of intermediate and terminal nodes in all
decision trees to indicate the model’s complexity. Results were obtained for the training
with particle-flow isolation variables.

The hyperparameters in Table 5.5 can be sorted in three groups. The randomization2692

parameters colsample_bytree and subsample strongly lean towards the absence of ran-2693

domization, particularly for the random sampling of training instances per tree. On2694

the other side, the group of regularization parameter gamma, alpha and lambda strongly2695

favors high values far from the default value and sometimes close to the upper bound.2696

The third group of parameters – max_depth, min_child_weight and n_estimators – is2697

most directly related to model complexity. They allow for a comparison of the relative2698

model complexity with expectations, raising confidence in the educated choices of the2699

Bayesian optimization. Model complexity should scale with the number of training2700

examples. Concretely, this means that the low pT barrel bins presumingly require the2701

least complex models, followed by the low pT endcap bin, the high pT barrel bins, and2702

finally the high pT endcap bin. Even though the table shows that the model complexity2703

parameters follow this trend, it is most obviously reflected in the number of tree nodes2704

in the models, as indicated in the table.2705

The evolution of the test AUC in Figure 5.16 shows the exploration versus exploita-2706

tion behavior of the optimization. There are several plateaus, hinting that the expected2707

improvement leaned towards exploitation in this study.2708

The ROC curves in Figure 5.17 show how the optimization translates to an improved2709

background rejection, measured in an independent test sample that took no part in2710

the hyperparameter optimization. The optimized models reject up to 10 % more back-2711

ground than the other models in the low pT bins. The same is true for the high pT bins,2712

where the XGBoost models generally outperform the TMVA models because of the more2713
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Figure 5.16: Evolution of the test AUC with the training iteration of the optimization for
the high pT training bins. The first round corresponds to the default XGBoost parameters
and serves as a reference, followed by four random points and the Bayesian optimization.

extensive training datasets. Hence, the Bayesian optimization approach was a success,2714

also since it can run fully automatically and thus has no high development cost after2715

the initial investment made in this work. From a different perspective, this study also2716

shows that the default XGBoost parameters generally work well for the electron MVA2717

and that other limiting factors should be addressed, like the relatively small sample size2718

for the low pT bins.2719

With these ROC curves that integrate over a relatively large kinematic phase space,2720

additional checks are vital for the correct interpretation. Because signal and background2721

are distributed differently in pT and η, it is mandatory to check the ROC curves also for2722

thin slices of the phase space to make sure the presumed improvement does not stem2723

from a better separation in kinematics, but really from a better separation at a given2724

point in the pT-η plane. These checks were done, and they confirmed that improved2725

fake rejection is also manifest in differential phase space, supporting the validity of the2726

integrated comparisons.2727
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(a) EB1 low pT (b) EB1

(c) EB2 low pT (d) EB2

(e) EE low pT (f) EE

Figure 5.17: ROC curves for the Bayesian optimized electron MVA (red), the default XG-
Boost hyperparameters (green), the manually optimized XGBoost training generally used
in CMS for Run 2 analysis (yellow) and a model trained with TMVA like in the past as
the reference for the ratio plot (blue). Note that the manually optimized training uses all
available electron candidates instead of clipping them to balance signal and background
classes (for the other XGBoost models) or limiting them to 200,000 per class (TMVA train-
ing). All trainings include the isolation variables.
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5.7 Conclusion and outlook2728

The reconstruction of electrons with the CMS detector aims for a maximal signal effi-2729

ciency, and only computational resource and storage limitations impose constraints on2730

the fake rate. Therefore, a performant identification of real electrons after the offline2731

reconstruction is essential. For multilepton analyses like the triboson measurements,2732

the electron selection is one of the limiting factors, making the multivariate electron2733

identification a crucial part of this thesis.2734

The multivariate electron identification has been reoptimized for 2017 data-taking, pri-2735

marily to make the best use of the new pixel detector. The conditions in 2018 were very2736

similar, and the new optimization strategies described in this chapter made the reopti-2737

mized MVA very competitive with the 2016 MVA. Therefore, analyses of the complete2738

CMS Run 2 dataset that employ a multivariate electron identification generally use the2739

manually optimized XGBoost training presented in this chapter.2740

Besides improvements in the training algorithm, the new training added a global pileup2741

estimate to the input variables, making the response more independent of the pileup2742

level. It further provides two different classifiers, where one additionally includes the2743

particle-flow isolation sums. The two different algorithms allow for more flexibility in2744

the analysis. One can choose between the more performant combined MVA or place2745

sequential cuts on the identification and isolation to enable more possible sideband2746

studies.2747

Finally, this work explored the Bayesian optimization of the XGBoost hyperparameters.2748

The optimization showed the potential to reduce the background rate in simulated sam-2749

ples by another 10 %. Even though the CMS collaboration has not adopted this final2750

optimization of the electron MVA, the training framework served other purposes. Col-2751

laborators who optimized the full electron reconstruction and identification pipeline for2752

low-energy electrons – lepton flavor universality measurements with B-meson decays –2753

used it successfully with only minor modifications4.2754

Studies with DY+jets MC events simulated with Run 3 conditions revealed that retrain-2755

ing for future data-taking would be necessary, with innovation opportunities in differ-2756

ent areas. The input variables should be revisited, possibly using the finer longitudinal2757

readout segmentation of the HCAL (see Section 2.2.2.4). The increased noise in the2758

ECAL and particularly the ECAL endcaps asks for a redefinition of some shower shape2759

variables, namely those with noise cuts in their definition, like σiηiη and σiϕiϕ.2760

The multivariate electron identification uses many high-level variables from tracker and2761

ECAL information, which is a perfect use case for classification with BDTs. Nevertheless,2762

the image-like nature of the ECAL measurements makes it an appealing use case for2763

convolutional deep neural networks. In general, major innovation might be possible2764

with a more holistic approach to electron reconstruction and identification, keeping2765

in mind that BDT classifiers with similar input variables are also used upstream in2766

the reconstruction. Recently, CMS collaborators started an effort to perform the ECAL2767

clustering with neural networks instead of clustering in η-φ-windows. These efforts2768

could be a good starting point for future work on multivariate electron identification2769

because they present the opportunity to connect cluster identification variables with the2770

clustering step itself.2771

The training with XGBoost plus Bayesian optimization defines an excellent reference for2772

performance evaluation for any future development.2773

4One further improvement was the selection of the initial points with Latin hypercube sampling.
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Chapter 62774

Analysis of triboson production in the2775

standard model2776

The central subject of this thesis was to measure the production of three massive vector2777

bosons (W or Z bosons) in the multilepton final state. Such processes are starting to get2778

accessible by the LHC experiments with the integrated luminosity recorded during the2779

LHC Run 2. The CMS experiment has published a search for the production of WWW2780

events at
√

s = 13 TeV in the past [24], based of the data collected in 2016 (35.9 fb−1).2781

The observed significance for WWW production was 0.60 standard deviations (1.78 stan-2782

dard deviations expected), and limits on anomalous quartic gauge couplings were set.2783

The latest heavy triboson result published by the ATLAS collaboration analyzed data2784

recorded between 2015 and 2017 (79.8 fb−1) and combined a WWW analysis with an2785

analysis that targeted the WVZ final state, where V can be either a W or Z boson [23].2786

This ATLAS analysis established evidence for the heavy triboson final state with a sig-2787

nificance of 4.1 standard deviations, where 3.1 standard deviations were expected.2788

In this chapter, the WWZ analysis that is part of a complete VVV analysis in the –for2789

the most part – fully leptonic final state with the CMS detector will be presented. The2790

data are the total 137.2 fb−1 of collisions recorded with the CMS detector in Run 2.2791

For this thesis, the focus was chosen to be on the WWZ final state because it is the2792

most promising and most versatile among the massive triboson final states, even though2793

its cross-section is lower than the one of WWW production. The fully reconstructed2794

Z boson allows for a restrictive event selection based on invariant lepton-pair masses,2795

strongly suppressing the reducible backgrounds1. The WWZ cross-section is larger than2796

the one of the processes with more Z bosons. Unlike the WWW process, it also allows2797

probing anomalous quartic couplings that involve Z bosons. The results presented in2798

this chapter will confirm this sensitivity ranking.2799

The triboson analyses published by CMS and ATLAS mentioned earlier consider as the2800

signal the general VVV final state, even if two bosons are off-shell from Higgs decays,2801

where the Higgs was produced in association with a third boson (VH → VVV). Hence,2802

to be consistent and comparable with previous results, this analysis considers the gen-2803

eral WWZ final state as the signal. However, the final analysis flow will also be used to2804

obtain results for on-shell production only.2805

This chapter first gives an overview of the WWZ analysis steps and briefly outlines the2806

other triboson final state analyses to give the full picture. Afterwards, the basic building2807

blocks, such as object selections, simulated samples, and trigger paths, are explained.2808

Then, the event preselection and the BDT-based event classification are elaborated. This2809

will be followed by an in-depth discussion on signal extraction strategies in general and2810

the histogram-based signal extraction method used in the analysis in particular. An ex-2811

planation of the background estimation and systematic uncertainties follows. Lastly, the2812

1As the WWZ events are mainly identified by the number of leptons, true four-lepton backgrounds are
referred to as irreducible and background with non-reconstructed or fake leptons as reducible.
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Chapter 6 Analysis of triboson production in the standard model

combined fit with the analyses targeting the remaining VVV final states is explained,2813

and the final results are presented.2814

6.1 Analysis overview2815

In the fully leptonic decay mode, the WWZ state decays to four charged leptons: two2816

same-flavor opposite-sign leptons from the Z boson and two additional leptons from2817

the W boson decays. Hereafter, the charged leptons are referred to a simply leptons. In2818

addition, there is missing transverse momentum in the event, denoted pmiss
T . It comes2819

from the two neutrinos among the W boson decay products. The most abundant back-2820

ground process is the ZZ diboson production that has a much higher cross-section.2821

Therefore, requiring the W candidate leptons to be of different flavors is vital to reduce2822

the background. The other main background is the tt̄Z process, which also contains two2823

intermediate W bosons from the top quark decays, but it can be separated with means2824

of b-tagging. Hence, the most sensitive phase space region is the four-lepton final state2825

with one Z candidate pair, two different flavor leptons, and no b jet candidates. This2826

is the primary signal region in this analysis. Two Boosted Decision Trees (BDTs) are2827

used in this region to discriminate against the remaining background, and the signal is2828

extracted in a two-dimensional histogram of these BDTs.2829

The region with a second Z candidate is overwhelmingly populated by ZZ events.2830

Nonetheless, the WWZ signal can be isolated using the missing transverse momentum2831

primarily. Accordingly, a third BDT separates the signal from the ZZ background in this2832

region, and some signal can be extracted from the tail of the BDT distribution.2833

After the ZZ and tt̄Z backgrounds, the analysis is affected by reducible backgrounds that2834

are three-lepton processes with one additional fake lepton in the event, mostly from WZ2835

production. For this reason, the analysis employs relatively tight lepton selection criteria2836

for the two leptons from the W decays, strongly suppressing the fake lepton background,2837

which is – being an instrumental effect – particularly challenging to model.2838

The four-lepton final state covers in principle also WZZ with a hadronic W boson decay,2839

but the event selection geared towards ZZ suppression leaves almost no trace of this2840

process. The four-lepton analysis is, for this reason, mainly a WWZ analysis.2841

The other triboson processes are accessed via final states with a different number of2842

leptons in the event, where the number of leptons is counted after requiring them to2843

pass loose identification and isolation criteria. A five-lepton analysis targets WZZ, and2844

a six-lepton analysis targets the ZZZ process. These final states have a high purity but a2845

low signal rate. Hence no discrimination with BDTs is done. The WWW process is mea-2846

sured in the two- and three-lepton final states. In the three-lepton final state, the main2847

background are four-lepton processes involving a Z boson with a non-reconstructed2848

lepton. Hence, the events are categorized by the number of same-flavor opposite-sign2849

(SFOS) lepton pairs, where events with zero SFOS pairs are the most sensitive. The2850

two-lepton analysis accepts events with one or more jets from one hadronic W decay.2851

The one jet category is important because one of the jets from the W boson decay might2852

be too soft to pass the pT thresholds, in particular for WH → WWW events. If there are2853

at least two jets, the events are further categorized by the invariant mass of the jet pair2854

that matches best a W boson candidate: one category for mjj within 15 GeV inside the2855

W mass window and one for the opposite case. Both the two-lepton and three-lepton2856

analyses require high lepton energy thresholds and tight lepton identification and iso-2857

lation criteria to suppress background from nonprompt leptons in particular.2858
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6.2 Analysis samples2859

6.2.1 Trigger selection2860

For the signal regions in the WWZ analysis, double-electron triggers, double-muon trig-2861

gers, and a cross trigger that fires on one electron and one muon are used. For the2862

double-muon trigger, one muon must have a transverse momentum higher than 17 GeV,2863

and another muon must be above 8 GeV. In the case of the double-electron trigger, the2864

thresholds are 23 GeV and 12 GeV. For the cross trigger, there can either be a muon with2865

pT > 23 GeV and an electron with pT > 12 GeV, or an electron with pT > 23 GeV and a2866

muon with pT > 8 GeV.2867

The trigger information is available in the simulated samples, so the same trigger re-2868

quirements as for data-taking are taken for simulation. To be not too sensitive to trigger2869

turn-on effects, possibly not accurately modeled in the simulation, a selection that is2870

slightly tighter than the trigger thresholds is applied at analysis level, where all the2871

thresholds mentioned before are raised as follows:2872

8 GeV → 10 GeV,
12 GeV → 15 GeV,
17 GeV → 20 GeV,
23 GeV → 25 GeV.

The remaining difference between data and simulation is taken into account as a sys-2873

tematic uncertainty.2874

6.3 Object selection2875

6.3.1 Lepton isolation variable2876

The default lepton isolation variables used in CMS analyses are based on the particle-2877

flow (PF) measurements. The added transverse momenta of the measured photons,2878

neutral hadrons and charged hadrons in a cone of ∆R < 0.3 (∆R < 0.4 for muons) are2879

devided by the leptons transverse momentum2. Since there is no vertexing information2880

available to correct the two neutral components for pileup contributions, pileup correc-2881

tion is done on a statistical basis. Within the CMS collaboration, the standard corrections2882

for electrons use the area-median method, often called the effective-area method. The2883

standard muon isolation is corrected by extrapolation from the charged-hadrons that are2884

not associated with the primary vertex, commonly called ∆β correction. In this analysis,2885

it was concluded that the effective-area method is superior even for muons, as shown2886

in Figure 6.1. As anticipated in Section 3.5 that discussed pileup extrapolation in detail,2887

the effective-area method generally works better for smaller cone sizes with a limited2888

correlation between the charged and neutral pileup components. Therefore, a smaller2889

cone size of ∆R < 0.3 can be used for muons, like for electrons, which improves the fake2890

discrimination power of the relative isolation variable.2891

To get the relative lepton isolation, only the photon and hadron PF candidates are2892

summed, skipping the PF electron and muon candidates. However, additional leptons2893

in a cone around the lepton to isolate often mean that the lepton is probably part of the2894

2∆R =
√

(

∆φ
)2 +

(

∆η
)2

93

charlot
Sticky Note
at L2879 you mention 0.4



Chapter 6 Analysis of triboson production in the standard model

background from jet fragmentation or low-mass resonaces – or in some cases not well2895

reconstructed. In this analysis, this is dealt with by considering the PF lepton candidates2896

in the isolation sum at the object-level and later with a threshold on the invariant mass of2897

opposite-charge lepton pairs (as explained in Section 6.4). Both for electrons and muons,2898

the corresponding PF objects are a subset of the full set of reconstructed electrons and2899

muons available for analysis. If the PF lepton candidates are added to the relative iso-2900

lation, the fake lepton rejection power increases. In particular, this is due to improved2901

rejection of lepton pairs from B meson decays such as B → ℓDX → ℓℓ′X. Figure 6.12902

also indicates the ROC curve for this final isolation variable dubbed Irel,R=0.3,EA,Lep for2903

muons. A similar improvement was observed for electrons.2904

Accordingly, the final definition of the lepton isolation variable is2905

Irel,R=0.3,EA,Lep =
1

pT

⎡

⎢

⎣ ∑
ch. had.

pT + ∑
leptons

pT + max

⎛

⎝ ∑
neu. had.

pT + ∑
photons

pT − EA(η, φ)ρ

⎞

⎠

⎤

⎥

⎦
.

(6.1)
Depending of the context, pT denotes the transverse momentum of the lepton to isolate2906

or the PF candidates. The abbreviation EA stands for the effective-area, the extrapolation2907

factor for the estimation of the local neutral pileup energy deposit from the global pileup2908

estimate ρ. Since the pileup contribution density depends on the location in the detector,2909

the effective area is calibrated in bins of lepton η. To avoid the self-contribution of the2910

target lepton to the isolation sum, the PF lepton candidates are required to be ∆R >2911

0.0005 away from the lepton to isolate. This isolation definition has already been used2912

in the WWW search [24], which is now part of the more inclusive triboson analysis.2913

Figure 6.1: Prompt lepton versus fake muon efficiencies for different definitions of
the muon isolation variable: the ∆β corrected relative isolation which is standard for
muons (IsoRel,R=0.4,DB), the relative isolation corrected with the effective-area method
(IsoRel,R=0.3), and the effective-area-corrected isolation with the added PF lepton compo-
nent (IsoRel,R=0.3,Lep).

6.3.2 Common veto lepton selection2914

To ensure that no events are double-counted by entering the selections for multiple final2915

states, a common lepton selection is applied at the beginning of the analysis chain. This2916
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6.3 Object selection

selection is referred to as the common veto lepton selection because it is so loose that it2917

merely vetoes the obvious fakes without introducing a sizable signal efficiency loss. The2918

cuts of the common veto selections for electrons and muons are shown in Table 6.1,2919

including a lower energy threshold of pT > 10 GeV. Note that higher energy thresholds2920

will be applied later on in the four-lepton analysis (see Section 6.4). However, it is2921

important to keep in mind the pT > 10 GeV threshold in the veto selection because it2922

has an effect on the number of counted leptons, which decides to which analysis the2923

event gets assigned.2924

The selection efficiency of the common veto ID, as well as the data-to-simulation agree-2925

ment, is shown in Figure 6.2 for the 2018 dataset, confirming the high signal efficiency2926

of the selection. For lepton selections, the measured data-to-simulation efficiency ratio2927

is usually translated to a scale factor plus an associated systematic uncertainty. How-2928

ever, since the common veto ID is not the final lepton selection, the corresponding scale2929

factors are not used but only monitored for validation purposes.2930

Common veto selection Electron Muon

ID MVA no iso., loose WP loose

|η| < 2.5 < 2.4

pT > 10 GeV > 10 GeV

|dz| < 0.1 cm < 0.1 cm

|dxy| < 0.05 cm < 0.05 cm

Irel,R=0.3,EA,Lep < 0.4 < 0.4

Table 6.1: Common electron and muon veto selection used in the analysis. The electron ID
is the MVA elaborated on in Chapter 5. The loose muon ID selects global muons or tracker
muons that are also accepted by the particle-flow reconstruction (i.e., the muon is also a
PF candidate). The limitations in η are coming from the tracker acceptance for electrons
and the acceptance of the muon system. The variables dz and dxy are the longitudinal and
transverse impact parameters relative to the reconstructed primary interaction vertex. The
isolation variable is the relative EA-corrected particle-flow isolation with added PF lepton
candidates (see Section 6.3.1).
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Figure 6.2: The selection efficiency of the common veto ID for electrons in 2018 data,
measured in simulation and data with the tag and probe technique as a function of pT
and η. The bottom panel shows the data-to-simulation agreement. There are no significant
qualitative differences between 2018 and the two other years.
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Chapter 6 Analysis of triboson production in the standard model

6.3.3 Selections for W and Z candidate leptons2931

After selecting four-lepton events with the common veto ID, further selection criteria2932

are needed to select the WWZ signal events purely. There are two distinct identification2933

criteria to classify the leptons as Z candidates or W candidates. The Z candidate selec-2934

tion is the least restrictive because the invariant mass requirement can further reduce2935

fakes. The W candidate selection operates at a tighter working point, resulting in almost2936

complete suppression of fake lepton background (processes with ≤ 3 true leptons plus2937

one reconstructed fake lepton). Since reconstructed fake leptons are a detector effect,2938

the fake lepton background is more challenging to model correctly in simulation, which2939

motivates these selection criteria.2940

The specific cuts for both the Z and W candidate selections are listed in Table 6.2 for2941

electrons and in Table 6.3 for muons. Besides tightening the ID working points and iso-2942

lation cuts, these selections introduce a cut on the so-called impact parameter significance2943

|IP3D/σIP3D |, which is the closest distance between the lepton track and the reconstructed2944

primary vertex divided by its measurement uncertainty. Cutting on impact parameters2945

and also on |IP3D/σIP3D | is standard for analyses that target prompt leptons. In particu-2946

lar, the |IP3D/σIP3D | cut in this analysis is motivated by an improved rejection of leptons2947

from tau decays.2948

Electron Z candidate (ZID) W candidate (WID)

Veto ID Common veto ID Common veto ID

ID MVA without iso., loose WP MVA with iso. 90% WP

|IP3D/σIP3D
| < 4 < 4

Irel,R=0.3,EA,Lep < 0.2 < 0.2

Table 6.2: Final electron selections in the WWZ analysis. The MVA selections are the ones
developed in this thesis, explained in Chapter 5.

Muon Z candidate (ZID) W candidate (WID)

Veto ID Common veto ID Common veto ID

ID medium medium

|IP3D/σIP3D
| < 4 < 4

Irel,R=0.3,EA,Lep < 0.25 < 0.15

Table 6.3: Final muon selections in the WWZ analysis. Compared to the loose muon ID in
the common veto selection, the medium ID adds track- and muon-quality requirements.

Impact parameters and also the impact parameter significance are among the variables2949

that are the most challenging to model correctly in simulation. Figure 6.3 shows the2950

|IP3D/σIP3D | distributions for all leptons in four-lepton events in the ZZ control region2951

(defined later in Section 6.5). These distributions suggest a satisfactory agreement be-2952

tween data and simulation. However, it was found that the impact parameter signif-2953

icance cut dominates the data-to-simulation disagreement of the selection efficiencies,2954

especially in the endcaps of the detector. This can be seen in Figure 6.4, which shows2955

not only the electron Z and W candidate selection efficiencies measured in data and2956

simulation together with their ratios but also the equivalent figures for similar selec-2957

tions where only the |IP3D/σIP3D | cut was omitted.2958

The low simulation agreement of |IP3D/σIP3D | is likely due to primary vertex misidentifi-2959
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(b) Subleading Z lepton candidate
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(c) Leading W lepton candidate
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(d) Subleading W lepton candidate

Figure 6.3: |IP3D/σIP3D
| distributions of the leptons in the ZZ control region.

cation. If the primary vertex is assigned wrongly, all lepton impact parameters increase,2960

which reduces the selection efficiency. Because of the higher particle density in the end-2961

caps, primary vertex misidentification happens much more frequently in this region.2962

This explains why adding the impact parameter significance cut has a larger effect on2963

the selection efficiency agreement in the endcaps than in the barrel region.2964

The data-to-simulation agreement of the W and Z candidate selections – as shown in2965

Figure 6.4 for electrons – is used as a pT- and η-dependent scaling factor that corrects the2966

weight of simulated events. The uncertainty on the scaling factor measurement is used2967

as a systematic uncertainty in the analysis. For the previous WWW search [24], different2968

scale factors were applied for the individual selection steps, namely one set for the2969

common veto ID and one set for the Z or W candidate selection. For this WWZ analysis,2970

the electron scale factors were derived directly with unfiltered reconstructed electrons2971

in the denominator, avoiding the double-counting of correlated systematic uncertainties.2972

Here, this thesis work had a direct impact on the analyses of the other massive triboson2973

final states, as the scale factors for the dedicated two-lepton and three-lepton IDs in the2974

WWW analysis have been derived as well.2975
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(a) Z candidate ID
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(b) W candidate ID
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(c) Z candidate ID without |IP3D/σIP3D
| cut
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(d) W candidate ID without |IP3D/σIP3D
| cut

Figure 6.4: Top row: the selection efficiencies of the W and Z candidate electron IDs
measured in data and simultion. Bottom row: selection efficiencies for the same IDs but
with the |IP3D/σIP3D

| cut left out. This cut has the largest effect on the data-to-simulation
agreement, shown in the bottom panel of each plot. The remaining disagreements were
found to be mainly because of the isolation cut.

6.3.4 Jet selection and b-tagging2976

This analysis uses the standard jets reconstructed from particle-flow candidates clus-2977

tered with the anti-kT algorithm [88] with a cone size of ∆R < 0.4. The lower jet energy2978

threshold is 20 GeV, and only jets within the tracker acceptance of |η| < 2.4 are consid-2979

ered. Several identification criteria that are standard for CMS analyses are used to clean2980

jets from noise or mismeasured jets. For 2016 data and simulation, loose jet selection2981

criteria are taken. With the increased pileup in 2017 and 2018, the jet selections are2982

tightened as recommended for analysis. Both selections are summarized in Table 6.4.2983

The prompt leptons in the event signature are often reconstructed as jets as well, so if a2984

jet is matched to a lepton that passes the veto ID withing a cone of ∆R < 0.4, it is not2985

considered. On top of the selection, jet energy corrections are applied.2986
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6.4 Event preselection

Jet selection Loose (2016) Tight (2017, 2018)

Neutral hadronic energy fraction < 0.99 < 0.9

Neutral electromagnetic energy fraction < 0.99 < 0.9

Number of constituents > 1 > 1

Charged hadron fraction > 0.0 > 0.0

Charged multiplicity > 0 > 0

Charged electromagnetic energy fraction > 0.99 -

Table 6.4: Jet selection criteria used in the analysis.

A b tagger based on a deep neural network called DeepCSV selects the b jet candidates2987

in this analysis [124]. The DeepCSV tagger outputs probabilities for each jet to contain2988

a certain number of b or c hadrons. To obtain the b jet discriminant, the probabilities for2989

the jet to contain one or two b hadrons are summed, and the loose working point for2990

this discriminant is used for all three data-taking years.2991

Similar to the treatment of lepton selection efficiencies, the b-tagging efficiencies are2992

measured in data and simulation, and the ratio is applied as a scaling factor to the2993

simulated event weights, with the uncertainty in the ratio as a systematic uncertainty.2994

Different from electron and muon identification, there are two different sets of scale2995

factors and uncertainties: one for Heavy Flavor (HF) jets – in this case b jets –, and2996

one for Light Flavor (LF) jets. The HF and LF jet selection uncertainties translate to two2997

independent nuisance parameters, which is important to keep in mind for the discussion2998

of systematic uncertainties later in Section 6.9.2999

6.3.5 Missing transverse momentum3000

The missing transverse momentum pmiss
T is the negative sum of the transverse momen-3001

tum of all particle-flow candidates in the event, where the jets are subject to energy3002

corrections [92]. The pmiss
T variable is alternatively referred to as MET for missing ET.3003

In the ZZ control region (four leptons giving two Z boson candidates) a mismodeling3004

of pmiss
T was observed, as shown in Figure 6.5a. The ZZ process has no intrinsic missing3005

energy. Consequently, the MET distribution for such events is representative of the3006

detector resolution on missing transverse momentum, which might be inaccurate in3007

simulation. This mismodeling is corrected by smearing pmiss
T in simulation, where the3008

smearing is calibrated on a completely independent photon dataset. This procedure3009

has already been applied in other CMS analyses before [125]. After the smearing, the3010

missing transverse momentum agreement in the ZZ control region has improved (see3011

Figure 6.5b).3012

6.4 Event preselection3013

After asking for four leptons that pass the common veto ID, the events have to be pre-3014

selected to suppress reducible background before categorizing them to separate the ir-3015

reducible backgrounds. First, the events are required to pass the dilepton trigger by3016

applying an energy threshold to the leptons that are slightly above the trigger thresh-3017

olds. This trigger-emulating selection has already been explained in Section 6.2.1.3018

Next, two leptons have to be identified as the decay products of the Z boson. These two3019

leptons must be of same flavor, opposite charge, pass the Z candidate ID explained in3020
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Figure 6.5: The pmiss
T distributions in the ZZ control region before and after pmiss

T smearing
in simulated events.

Section 6.3.3 and pass the transverse momentum thresholds pℓ1
T > 25 GeV and pℓ2

T >3021

15 GeV for the leading and subleading lepton respectively. The invariant mass of the3022

Z candidates must be within 10 GeV around the Z boson mass, both for electron and3023

muon pair Z candidates. The two other W candidate leptons also must be of opposite3024

charge but can be of any flavor. These leptons also need to surpass the same energy3025

thresholds as the Z candidate leptons, namely pℓ3
T > 25 GeV and pℓ4

T > 15 GeV.3026

Some QCD processes with large cross-sections produce B hadrons or low-mass reso-3027

nances that decay to leptons, such as J/ψ and Υ mesons. To remove such events, the in-3028

variant mass of any opposite-charge lepton pair is required to be greater than 12 GeV.3029

The preselection criteria are summarized in Table 6.5. Four-lepton events discarded by3030

the preselection are not used anymore in the analysis, except for estimating the fake-3031

lepton background, which will be explained further down in Section 6.8.3. After the3032

preselection, the ZZ background still makes up the bulk of events, followed by the tt̄Z3033

background and then the WWZ signal in the same range as other minor backgrounds.3034

Features Selections

Number of leptons Select events with 4 leptons passing common veto-ID

Triggers Select events passing dilepton triggers

Z lepton
Find opposite charge lepton pairs, passing ZID, closest to mZ

Require Z leptons to have pT > 25, 15 GeV

W lepton
Require that leftover leptons are opposite charge and pass WID

Require W leptons to have pT > 25, 15 GeV

Low mass resonances Require any opposite charge pair invariant mass to be greater than
12 GeV

Z mass window Require invariant mass of the Z leptons to be within 10 GeV of Z bo-
son mass

Table 6.5: Summary of the event preselections in the WWZ analysis.
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6.5 Event categorization3035

After the preselection, the events are sorted into four different categories to separate true3036

four-lepton backgrounds. The purest category is the eµ region, where the two W candi-3037

date leptons are of a different flavor. This heavily reduces the ZZ background. Still, the3038

eµ region contains ZZ events in which one Z boson decays to two tau leptons and the3039

taus decay to an electron and a muon. Only events with zero b-tagged jets are accepted3040

in the eµ region to reject the tt̄Z background. Different-flavor events with b jets are as-3041

signed to another category, referred to as eµ with b jets, which is used as a control region3042

for the tt̄Z background, which intrinsically has two b jets in the final state.3043

The second event category in which some signal can be extracted is the region where the3044

two W candidates are of the same flavor, but their invariant mass is 10 GeV away from3045

the Z boson mass such that ZZ contributions are reduced. This phase-space is called3046

the ee/µµ region. The ZZ background is still dominant in this category, so it is less3047

sensitive to the WWZ signal than the eµ category. With the invariant-mass requirement3048

inverted, the ee/µµ region becomes the ee/µµ on-Z region, where the invariant mass3049

of the W lepton candidates is on the Z peak. This category is an almost entirely pure3050

control region for the ZZ background. Both the on-Z and off-Z ee/µµ regions ask for3051

zero b-tagged jets to suppress the tt̄Z background.3052

The event categorization as outlined in the text is also presented in Table 6.6.3053

Category Selection Description

eµ different-flavor W lepton can-
didates,
no b jet candidates

main signal category

ee/µµ same-flavor W lepton candi-
dates,
invariant mass 10 GeV away
from Z mass

secondary signal region,no b jet candidates

eµ with b jets different-flavor W lepton can-
didates,
≥ 1 b jet candidates

control region for tt̄Z background

ee/µµ on-Z same-flavor W lepton candi-
dates,
invariant mass 10 GeV within
Z mass,
no b jet candidates

control region for ZZ background

Table 6.6: Summary of the event categorization with the two signal regions and the two
control regions for the dominant backgrounds.

6.6 Event classification with Boosted Decision Trees3054

In the two signal categories, the WWZ events are separated from the backgrounds with3055

Boosted Decision Trees (BDTs). Later in Section 6.7, it will be discussed how the dis-3056

criminating power of the BDTs is used to extract the signal. This section discusses the3057

BDT input variables (or features), the training scheme, and the validation of the BDT3058

output by means of the control regions.3059
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Chapter 6 Analysis of triboson production in the standard model

Three BDTs were trained in total. Two BDTs target the eµ region, where one separates the3060

WWZ signal from the tt̄Z background, and the other separates WWZ from ZZ events.3061

A third BDT discriminates against the ZZ background in the ee/µµ region.3062

6.6.1 Input variables3063

When machine learning is used for event separation in collider experiments, one usually3064

prefers features that are well modeled in the simulation. Every added feature needs to3065

be carefully validated, so the set of features is often reduced as much as possible without3066

significant information loss, which results in more trustworthy BDT discriminants. For3067

this reason, the final BDTs have been trained with a limited set of features that proved3068

to be important in studies with more inclusive feature sets.3069

Since the tt̄Z and ZZ backgrounds are qualitatively not the same, different feature sets3070

have been used for their discrimination. Table 6.7 gives an overview on the final list of3071

features used for each background. In the following, the features specific to tt̄Z, and then3072

the ones specific to ZZ will be discussed before the common features are explained.3073

variables tt̄Z BDT ZZ BDT

mℓℓ ! !

pZ
T ! !

mT2 ! !

pℓ3
T ! !

pℓ4
T ! !

pT,4ℓ ! !

∑
4
i pTi ! !

Pζ !

Pvis
ζ !

pmiss
T !

mℓ3
T !

mℓ4
T !

m4ℓ !

min ∆R(j, ℓ3) !

min ∆R(j, ℓ4) !

leading jet pT !

Table 6.7: List of input variables for the BDT trainings in the WWZ analysis.

6.6.1.1 tt̄Z discrimination3074

The most discriminant variable for the tt̄Z background is the number of b tagged jets.3075

However, there are relatively large systematic uncertainties on the b-tagging efficiencies,3076

and the data-to-simulation agreement is not perfect even after b-tagging scale factors are3077

applied. Using the number of b jets in the BDT would demand a careful validation of3078

the BDT score distribution, and with the number of b jets used as a feature, there would3079

be no orthogonal variable left to create a control region for tt̄Z background estimates.3080

Instead of b jet specific information, general jet information is exploited to separate the3081

tt̄Z events from the signal. Since both the jets and the W candidate leptons originate3082
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6.6 Event classification with Boosted Decision Trees

from top decays, the distance ∆R between the W candidate leptons and the respective3083

closest jet is smaller for tt̄Z than for WWZ events (see Figures 6.20 and 6.21). In addition3084

to these two distance variables, the pT of the leading jet is used. This variable is set to3085

zero if no jet is present in the event, so it is clear to the BDT if there is a jet in the event3086

or not. The distribution of the leading jet pT is shown in Figure 6.22.3087

Other than these three jet-related variables, no other features dedicated to tt̄Z separation3088

are used that are not shared with the ZZ classification.3089

6.6.1.2 ZZ discrimination3090

The eµ category contains ZZ events where one Z boson decays to two τ leptons, resulting3091

in two leptons and large pmiss
T , which resembles the WWZ signature. In such events, the3092

angle between the neutrinos and the leptons from the tau decays is typically small.3093

It has been shown in other analyses that the vectorial sums of the lepton momenta3094

(and optionally also MET), projected on the bisector of the lepton directions, contains3095

information that can be combined with MET to obtain observables for separation of3096

such Z → ττ events [126]. This was the motivation to include the variables Pζ and Pvis
ζ3097

among the ZZ specific features:3098

Pζ = ( p⃗ miss
T + p⃗ ℓ1

T + p⃗ ℓ2
T ) · ζ̂ and Pvis

ζ = ( p⃗ ℓ1
T + p⃗ ℓ2

T ) · ζ̂. (6.2)

Here, ζ̂ is the normalized direction vector of the bisector of the two lepton directions.3099

Figure 6.6 depicts a geometrical representation of these variables. Their distributions3100

in the four categories are shown in Figures 6.14 and 6.15. Unlike in [126], no attempt3101

was made to combine these variables with pmiss
T to a performant discriminant. Instead,3102

pmiss
T is included as a feature as well, although the main reason for including pmiss

T is3103

that there is no missing energy in ZZ events if no tau decays are involved.3104

s

s

Figure 6.6: Projections of p⃗miss
T and leptons p⃗T on the ζ̂ direction [126].

Another variable that is explicitly used for ZZ separation is the invariant mass of the3105

four-lepton system m4ℓ. With three weak bosons in the final state instead of two, the3106

WWZ signal has a higher invariant mass in total. Even though some energy is carried3107

away by the neutrinos, the large angular separation between the vector bosons results3108

in a large m4ℓ. The m4ℓ distributions for all four categories is shown in Figure 6.19.3109
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Chapter 6 Analysis of triboson production in the standard model

It is especially powerful in the eµ region because for the ZZ background, most of the3110

second Z boson momentum is carried away by the neutrinos from the τ decays. The m4ℓ3111

variable is not as useful for the tt̄Z background because the leptons also come from the3112

decay of three vector bosons, albeit with intermediate top quark decays.3113

Two more features dedicated to ZZ are the transverse masses mℓ3
T and mℓ4

T . Beware that3114

the definition of transverse mass here is not m2
T = m2 + p2

x + p2
y = E2 − p2

z which is a3115

useful quantity that is invariant under Lorentz boosts along the z direction. In hadron3116

collider physics, the transverse mass is an observable that is substituted for the invariant3117

mass of a two-particle system when one particle cannot be measured in the longitudinal3118

direction, as is the case for missing transverse energy. It is defined as3119

M2
T = (ET,1 + ET,2)

2 − ( p⃗T,1 + p⃗T,2)
2, (6.3)

where ET is the transverse energy of each particle:3120

ET = m2 + ( p⃗T)
2. (6.4)

Since the actual masses of the daughter particles are tiny compared to their energies, the3121

definition of the transverse mass can be simplified to3122

M2
T = 2ET,1ET,2(1 − cos φ), (6.5)

with φ being the angle between the daughter particles in the transverse plane.3123

When there are multiple two-particle systems in the event where one of the daughter3124

particles in each system is invisible, it is not clear how the missing transverse momen-3125

tum is split up between the two invisible particles. In this analysis, this applies to the3126

two W boson decays with a neutrino produced in each decay. Still, one can make an3127

assumption to partition the missing transverse momentum to the neutrinos, for exam-3128

ple, the assumption that the two resulting transverse masses must be close to the value3129

expected from W decays. However, if one is only interested in the discrimination power3130

of such transverse mass variables and less in their interpretation, the total p⃗T
miss vec-3131

tor might be used for both decay systems without any attempt to partition it correctly.3132

This was done for the mℓ3
T and mℓ4

T variables in this analysis, which are the transverse3133

masses of p⃗T
miss plus the leading or subleading W candidate lepton, respectively. These3134

transverse mass variables can separate the signal from the ZZ background because the3135

two W candidate leptons come from a more massive intermediate state for the signal,3136

namely two W bosons instead of one Z boson.3137

Another transverse mass observable for tau decay discrimination is mT2. In its definition,3138

the missing energy vector is split up between the two decay systems [127]. The mT23139

variable is the maximum of the transverse masses of both decay systems for the neutrino3140

momentum partitioning for which the maximum of the transverse masses is minimal:3141

mT2 = min
p⃗T

ν(1)+ p⃗T
ν(2)= p⃗T

miss

[

max
(

m(1)
T ( p⃗T

ν(1), p⃗T
e), m(2)

T ( p⃗T
ν(2), p⃗T

µ)
)

]

(6.6)

The idea behind mT2 is that for correct transverse masses m(1,2)
T , even the larger of the3142

two is less than or equal to the parent mass. The minimization over all possible splittings3143

of p⃗T
miss to the transverse momenta of the neutrinos p⃗ν(1,2)

T ensures that each transverse3144

mass does not exceed the parent mass. The parents are W bosons for the signal and3145

τ leptons for the ZZ background. Consequently, the average mT2 is much lower for the3146

background than for the signal. This difference makes mT2 one of the most discriminat-3147

ing variables, as can be seen in the histograms in Figure 6.9.3148
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6.6 Event classification with Boosted Decision Trees

Most of the arguments related to invariant masses were oriented to the on-shell part3149

of the WWZ signal, which is considered as the more important component. However,3150

invariant masses are helpful for ZZ vs. ZH → WWZ separation as well, with the argu-3151

ment turned around. In this case, one of the two W bosons is highly off-shell, and the3152

invariant lepton masses are lower than for the ZZ background.3153

6.6.1.3 Common variables3154

The list of common features in Table 6.7 includes first and foremost mℓℓ, the invariant3155

mass of the W lepton candidates. This is a very powerful observable to separate the3156

on-shell triboson signal from the Higgs-mediated production, with the Higgs process at3157

low mass and on-shell WWZ at high values. As for the other mass-related features, the3158

backgrounds are somewhere in between, allowing the BDT algorithm to separate the3159

total WWZ signal from the backgrounds. Distributions of the mℓℓ variable are shown in3160

Figure 6.7.3161

The reconstructed transverse momentum of the first Z boson candidate pZ
T behaves dif-3162

ferently for every signal or background process because the Z boson recoils against3163

different systems. Hence, pZ
T is a natural choice to include among the common features.3164

Its distributions are shown in Figure 6.8. Further lepton energy variables are also in-3165

cluded, namely the transverse momenta of the W lepton candidates pℓ3
T and pℓ4

T (Figures3166

6.10 and 6.11), as well as the sum of all lepton transverse momenta (∑4
i pTi, Figure 6.13)3167

and the transverse momentum of the four-lepton system (pT,4ℓ, Figure 6.12).3168

The mT2 variable motivated by the ZZ background also showed some discrimination3169

power for the tt̄Z background. Hence it is listed as a common feature.3170

One might wonder why lepton impact parameters were not mentioned at all in this3171

discussion of BDT features. After all, they are particularly useful to discriminate prompt3172

leptons from tau-decay leptons, so in principle, they are valuable for ZZ separation in3173

the eµ region. However, we have already seen in Section 6.3.3 when discussing lepton3174

selection scale factors that the modeling of impact parameters in simulation is not very3175

accurate. Therefore, it was decided not to include impact parameters among the BDT3176

input variables. The lepton selections already use relatively tight impact parameter3177

cuts, so omitting them at this point does not have a significant impact on the analysis3178

performance.3179

6.6.2 BDT training3180

This section first explains some generalities about the BDT training in this analysis.3181

Then, we will detail the three distinct BDTs for ZZ and tt̄Z separation in the eµ category3182

and ZZ discrimination in the ee/µµ category.3183

The BDTs were trained with the simulated samples of all three years combined. As3184

detailed in Section 4.3, it might make sense from a physics point of view to weight the3185

events with the proper MC event weights, but this is not always the best choice to reach3186

maximum performance. The reason is that every reweighting comes with a reduction3187

of effective sample size, which enhances overtraining effects. The experience with this3188

analysis was motivating this conclusion. It was observed that if the events are correctly3189

weighted for the training, the performance on weighted MC events was worse than3190

when all events were weighted equally for the training. This can be explained by the3191

substantial reduction of effective sample size when the three years are combined.3192
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Figure 6.7: The mℓℓ variable in the eµ region (top left), the off-Z region (top right), the eµ
region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.

0 100 200 300

 [GeV]
Z-tag

T,ll
p

0

1

2

3

4

5

E
ve

n
ts

Preliminary CMS  (13 TeV)-1137 fb

Other WZ tWZ

Higgs Ztt ZZ

WWZ WZZ ZZZ

0 100 200 300

 [GeV]
Z-tag

T,ll
p

0

2

4

6

8

10

E
ve

n
ts

Preliminary CMS  (13 TeV)-1137 fb

Other tWZ WZ

Higgs Ztt ZZ

WWZ WZZ ZZZ

0 100 200 300

 [GeV]Z-tag

T,ll
p

0

2

4

6

8

10

12

14

16

E
ve

n
ts

Preliminary CMS  (13 TeV)-1137 fb

Data WZ Other
Higgs ZZ tWZ

Ztt WWZ WZZ
ZZZ

0 50 100 150 200 250 300 350
 [GeV]Z-tag

T,ll
p

0
0.5

1
1.5

2

D
a
ta

/M
C 0 100 200 300

 [GeV]Z-tag

T,ll
p

0

50

100

150

200

E
ve

n
ts

Preliminary CMS  (13 TeV)-1137 fb

Data Higgs tWZ
Other WZ Ztt
ZZ WWZ WZZ
ZZZ

0 50 100 150 200 250 300 350
 [GeV]Z-tag

T,ll
p

0
0.5

1
1.5

2

D
a
ta

/M
C

Figure 6.8: The pZ
T variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.
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Figure 6.9: The mT2 variable in the eµ region (top left), the off-Z region (top right), the eµ
region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.
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Figure 6.10: The pℓ3
T variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.
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Figure 6.11: The pℓ4
T variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.
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Figure 6.12: The pT,4ℓ variable in the eµ region (top left), the off-Z region (top right), the eµ
region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in both the tt̄Z and ZZ trainings.
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Figure 6.13: The ∑
4
i pTi variable in the eµ region (top left), the off-Z region (top right), the

eµ region with b jets (bottom left) and the on-Z region (bottom right). This variable is
used in both the tt̄Z and ZZ trainings.
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Figure 6.14: The Pζ variable in the eµ region (top left), the off-Z region (top right), the eµ
region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in only the ZZ trainings.
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Figure 6.15: The Pvis
ζ variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in only the ZZ trainings.
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Figure 6.16: The pmiss
T variable in the eµ region (top left), the off-Z region (top right), the

eµ region with b jets (bottom left) and the on-Z region (bottom right). This variable is
used in only the ZZ trainings.
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Figure 6.17: The mℓ3
T variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in only the ZZ trainings.
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Figure 6.18: The mℓ4
T variable in the eµ region (top left), the off-Z region (top right), the eµ

region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in only the ZZ trainings.
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Figure 6.19: The m4ℓ variable in the eµ region (top left), the off-Z region (top right), the eµ
region with b jets (bottom left) and the on-Z region (bottom right). This variable is used
in only the ZZ trainings.
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Figure 6.20: The min ∆R(j, ℓ3) variable in the eµ region (top left), the off-Z region (top
right), the eµ region with b jets (bottom left) and the on-Z region (bottom right). This
variable is used in only the tt̄Z training.
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Figure 6.21: The min ∆R(j, ℓ4) variable in the eµ region (top left), the off-Z region (top
right), the eµ region with b jets (bottom left) and the on-Z region (bottom right). This
variable is used in only the tt̄Z training.
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Figure 6.22: The leading jet pT variable in the eµ region (top left), the off-Z region (top
right), the eµ region with b jets (bottom left) and the on-Z region (bottom right). This
variable is used in only the tt̄Z training.
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Chapter 6 Analysis of triboson production in the standard model

For example, the 2016 on-shell WWZ signal sample has much less four-lepton events3193

than the samples for the two other years. There is no dedicated four-lepton filtered3194

sample with a large number of events for 2016. Consequently, the 2016 simulated signal3195

events weights are scaled up by a large factor, heavily reducing the effective sample size.3196

The differences between the years are not significant enough to justify this reduction.3197

Even though there were no event-by-event weights applied for the training, the signal3198

and background were balanced with per-class weights. This allows for the interpretation3199

of the BDT scores as probabilities under the assumption of equal prior probabilities,3200

which will be useful later on when discussing likelihood-free inference techniques in3201

Section 6.7. The number of MC events in each sample that was part of the training is3202

shown in Table 6.8. Two-thirds of each sample was used for the training and one-third3203

for the testing. The splitting in training and testing datasets was not done randomly but3204

based on the event index of the simulated event. This event index is, in this context,3205

a pseudorandom number that can be very easily reproduced. The testing uses events3206

with an index divisible by three. The analysis steps that use the BDTs scores – such3207

as histograms and yield tables –, never consider the training events. Accordingly, the3208

weights of the remaining events are scaled up by a factor of three.3209

For the signal class, it is important to consider that the samples are on-shell WWZ3210

and ZH → WWZ samples stitched together. The populations within each class were3211

weighted according to the theoretical cross-sections (as in Table 1.1) to not cause a bias3212

towards any signal population.3213

Very few events remain of the tt̄Z simulated sample in the eµ category. Therefore,3214

the training also uses tt̄Z events that fell into the category eµ with b jets. As no b-3215

tagging information is available to the BDT, the feature distributions are not significantly3216

different in this added phase space. It was initially considered to take the b-tagging score3217

from the DeepCSV algorithm directly as an input variable. However, the differential3218

DeepCSV score distributions do not agree well in data and simulation. Although it is3219

possible to recalibrate the b-tagging score3, it would still be challenging to monitor the3220

agreement in a separate control region convincingly. Hence the decision to keep the b jet3221

selection as a separate cut, preserving the eµ control region with b jets.3222

Sample
eµ region ee/µµ region

train test train test

WWZ 300,000 150,000 280,000 140,000

ZZ 18,000 7,000 810,000 405,000

tt̄Z
25,000

(inkl. b tag eµ)
≈1000 - -

Table 6.8: Number of MC events used for the BDT training and testing in the eµ and
ee/µµ categories. For the tt̄Z BDT in the eµ region, the difference between the training
and testing sample sizes is not the usual factor of two because, for the training, events
with b jets are included as well. The performance evaluation is done on the eµ events in
the signal region with no b jets only.

Even when tt̄Z events with b jets are included in the training, a quick glance at Ta-3223

ble 6.8 makes it clear that the training sample size for the background classes in the3224

more important eµ region is very limited. Just like for the electron MVA optimiza-3225

3The calibration of the differential b-tagging score was introduced in the search for the associated produc-
tion of the Higgs boson with a top-quark pair [128].
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tion, the XGBoost algorithm explained in Section 4.2 was used to train the decision tree3226

ensemble. This makes a systematic hyperparameter optimization very challenging be-3227

cause the dependence of classification performance on the hyperparameters is hard to3228

see when it is dominated by statistical fluctuations4. Therefore, only the maximum tree3229

depth, learning rate, and L2 regularization parameter λ were optimized with a coarse3230

grid search. While the much larger sample size in the ee/µµ region would, in principle,3231

allow for more rigorous hyperparameter optimization, doing so was not seen as a good3232

investment because the ee/µµ category plays a minor role in the analysis. The final3233

training hyperparameters are listed in Table 6.9. Figure 6.23 shows the training- and3234

testing-sample ROC curves for all three BDTs.3235

Hyperparameter
eµ region ee/µµ region

tt̄Z BDT ZZ BDT ZZ BDT

max_depth 3 3 5

learning_rate 0.1 0.1 0.1

n_estimators 400 400 400

reg_lambda 1.0 1.0 1.0

scale_pos_weight nneg/npos nneg/npos nneg/npos

Table 6.9: The hyperparameters for the three XGBoost models trained for the WWZ anal-
ysis. These parameters were found with a coarse grid search. For the regularization
parameter reg_lambda, the best found value was 1.0, the default value for XGBoost. An
explanation of the hyperparameters is given in Section 4.2.2.

Figure 6.24 shows the BDT score distributions for signal and background in training3236

and testing samples, confirming the relatively small overtraining also visible in the ROC3237

curves. One can see that both signal and background have two different populations,3238

which are due to the leading jet pT among the input variables that also encodes whether3239

there was a selected jet in the event or not. The more signal-like population is the one3240

without jets, especially for the eµ tt̄Z BDT. Finally, Figure 6.25 shows the BDT score3241

distributions with the correct MC event weights for all signal and background samples3242

used in the analysis, confirming the discrimination power of the BDT classifiers.3243

After the BDTs are trained, it is interesting to diagnose the importance of the models’3244

different features. These studies are useful for identifying the input variables that play3245

the most significant role in background discrimination, contain redundant information,3246

or have little discrimination power. The XGBoost library can compute some feature3247

importance indicators based on the tree-structure of the finished model. One frequently3248

used simple indicator is the feature weight, which corresponds to how often a given3249

feature was used for a split decision in the decision trees. This feature weight is shown3250

in Figure 6.26a for all thre BDTs.3251

However, feature importance indicators based solely on the final decision tree – like the3252

feature weight explained before – are always a compromise because it is challenging to3253

quantify how much exploiting the correlations between features benefits the model. For3254

example, a given feature might not have much discrimination power on its own, but3255

it might help to partition the phase space so that some other feature can be exploited3256

more efficiently. Hence, one of the best ways to study the impact that a feature has on3257

a model are n-minus-one studies, training as many models as features, but each of them3258

4The statistical fluctuations of classifier performance were measured as the uncertainty of the mean from
k-fold cross-validation (see Section 4.1.1 for an explanation of k-fold cross-validation).
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(a) (b)

(c)

Figure 6.23: ROC curve corresponding to the four-lepton BDT cuts for the tt̄Z BDT (a) and
ZZ BDT (b) in the eµ region, as well as for the ZZ BDT in the ee/µµ region (c).

with a different feature left out5. The decrease in a given test performance metric caused3259

by leaving a feature out is indicating the feature importance. The result of such a study3260

with the AUC as the performance metric is shown in Figure 6.26b.3261

One caveat for such n-minus-one performance metrics is that powerful features might3262

be ranked very low if they can be deduced from the remaining less powerful features.3263

This is nicely demonstrated by the pmiss
T and pT,4ℓ features used by the ZZ BDT in the3264

ee/µµ off-Z category. Besides the mℓℓ variable, one would expect pmiss
T to appear at the3265

top of the ranking, as the ZZ background has no intrinsic pmiss
T . However, pmiss

T takes the3266

last place in the n-minus-one study, presumably because the information can be easily3267

replaced by pT,4ℓ, which can be seen as a MET estimate under the assumption that the3268

four leptons are the only particles in the final state. Still, the pT,4ℓ variable also seems3269

to contain other important information because different from pmiss
T , it is ranked very3270

high by the n-minus-one study. On the other side, the feature importance weight ranks3271

both variables very high, confirming that missing energy is the primary discriminator3272

against the ZZ background.3273

For the two eµ BDTs, the n-minus-one study confirms what was expected. For the ZZ3274

background, the transverse masses and Pvis
ζ variables, sensitive to tau decays, play a3275

large role. For the tt̄Z background, the distances between the W candidate leptons and3276

their closest jets and the leading jet pT are of substantial importance.3277

5Another method that can be applied to the fitted estimator a posteriori is the permutation feature impor-
tance, where the values of a given feature are shuffled to decorrelate them from the target.
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(a) (b)

(c)

Figure 6.24: Output of the tt̄Z eµ BDT (a), ZZ eµ BDT (b) and ZZ ee/µµ (c) BDT for both
the training and testing samples. All events are weighted equally.
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Figure 6.25: Four-lepton BDT response for signal and backgrounds in testing samples.
Left: tt̄Z BDT; middle: ZZ eµ BDT; right: ZZ ee/µµ BDT.
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(a) Feature importance measured by the num-
ber of cuts on a given feature in the desicion
tree ensemble, also called the feature weight.

(b) Feature importance measured by the de-
crease of the area under the ROC curve (AUC)
if a given feature is left out in the training.

Figure 6.26: Feature importance ranking for the three BDTs of the four-lepton analysis:
The tt̄Z BDT in the eµ category (top), the ZZ BDT in the eµ category (middle), and the
ZZ BDT in the off-Z category (bottom). The left column (a) shows the feature importance
measured with the number of cuts on a given feature, while the right column (b) shows
how much the AUC would increase if a given feature is left out.
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6.7 Signal extraction with BDT classifiers

6.7 Signal extraction with BDT classifiers3278

6.7.1 Introduction3279

We now have multiple classifiers at our disposal that we can use to extract the signal3280

from the eµ category and the ee/µµ category. There are several signal extraction ap-3281

proaches that can be grouped in binned and unbinned likelihood fits. For binned fits, the3282

BDT score is histogrammed, resulting in a multi-bin counting experiment. This has the3283

advantage that the likelihood for a certain number of events in a given bin follows the3284

well-known Poisson distribution and opens up plenty of opportunities for statistically3285

sound background estimation. One can build the full likelihood function as the product3286

of the individual bins’ Poisson likelihoods. Alternatively, one can attempt a more so-3287

phisticated shape analysis, where the likelihood function instead contains penalty terms3288

that allows the differential distributions to be varied away from the shapes predicted via3289

histograms from the simulation. For both counting experiments and shape analyses, the3290

likelihood function has additional terms for the overall normalization.3291

In unbinned fits, an estimate for the probability density is directly obtained from sim-3292

ulation instead of predicting the outcome of a counting experiment in multiple bins.3293

For example, one could fit the predicted histograms with analytic functions, giving an3294

approximate closed form for the likelihood. However, handling the systematic uncer-3295

tainties becomes more difficult, not to mention the additional systematic uncertainties3296

in the extraction of such an analytic likelihood model. Therefore, unbinned fits are used3297

less frequently, usually in situations where one cannot extract histograms from the sim-3298

ulation. The typical example is a parametrized search, where simulated data is only3299

available for a few points in the parameter space. Here, it does make sense to fit the3300

histograms for the available parameter values and then interpolate the fit parameters to3301

obtain a probability density function for each point in the search parameter space.3302

Unbinned fitting methods recently got more attention from the HEP community because3303

of their connection to machine learning. As machine learning classifiers are trained to3304

output probabilities, wanting to use these predicted probabilities to build the likelihood3305

function directly is a natural line of thought. In the literature, such methods are often3306

mentioned as techniques of likelihood-free inference [129]. However, such methods would3307

bring the complications of machine learning classifiers – such as overtraining and chal-3308

lenges with the handling of systematic uncertainties – up to the final likelihood-fitting3309

step in the physics analysis. For that reason, likelihood-free inference directly with3310

classification scores is generally not practiced.3311

This section discusses how likelihood-free inference techniques can be used to estimate3312

the maximal signal significance obtainable with the BDTs. On the way, we will intro-3313

duce new methods to diagnose the calibration of classifier scores and recalibrate them3314

if necessary. As there is no standard way of treating systematic uncertainties in this3315

likelihood-free inference framework, the final signal extraction in the analysis relies on3316

a binned likelihood fit. At the end of this section, it will be explained how the binnings3317

for the fit were were in both the eµ and ee/µµ region before listing the expected event3318

yields in these bins.3319

6.7.2 Classifier calibration diagnostics3320

To use likelihood-free inference methods for the estimation of the maximum possible3321

significance, the BDT scores must be well-calibrated. This means the classifier score3322
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Chapter 6 Analysis of triboson production in the standard model

should actually be the log of the likelihood ratio, given the classifier score as the only3323

source of information. However, there are several reasons why this might not be the3324

case. First of all, overtraining effects bias the score towards more extreme likelihood3325

ratios. More specific to collider physics analysis, we might have a bias from nonuniform3326

event weights because the weights were not considered in the training process not to3327

lose statistical power. Finally, for the WWZ versus tt̄Z BDT in the eµ category, there3328

is no reason to expect an accurate calibration to begin with because the training also3329

considered simulated tt̄Z events with b jets. Applied to the eµ category, which required3330

zero b jets, the likelihood ratio might not be well represented.3331

To diagnose classifier calibration, one would optimally use the true likelihood ratio.3332

However, since the actual likelihood ratio is untractable, one has to resort to empirical3333

distributions. Getting empirical probability density functions is not trivial. One could,3334

for example, use histograms or a Kernel Density Estimate (KDE). A comparison of the3335

BDT scores in the eµ region with the empirical likelihood ratio obtained by dividing3336

histograms is shown in Figure 6.27. Histograms and KDEs require additional parame-3337

ters, such as binning parametrization or kernel widths. The statistical uncertainties of3338

histograms make it challenging to conclude on the quality of the calibration by eye, and3339

further statistical tests are necessary. Another problem with histograms is the averag-3340

ing within bins, which causes biases commonly known as binning effects. This is why3341

empirical checks preferably make use of the empirical cumulative distribution function3342

(CDF), which is simply a step function with a step at every observed value. The most3343

famous example of a test that uses the empirical CDF is the two-sample Kolmogorov-3344

Smirnov (KS) test. Another example is the ROC curve, which are the empirical CDFs of3345

the positive and negative class plotted against each other.3346

In the same spirit as the KS test or the ROC curve, we can diagnose the classifier cali-3347

bration based on the empirical CDF. Let x be the BDT score and f (x) and g(x) the true3348

probability densities as a function of the BDT score for the positive and negative class.3349

We would like to validate3350

x =
f (x)

f (x) + g(x)
. (6.7)

Naively replacing the probability density functions by the corresponding CDFs – which3351

we shall name F(x) and G(x) – is not meaningful. Instead, we should try to rewrite the3352

equation and then integrate both sides from 0 to x:3353

f (x) = x
(

f (x) + g(x)
)

. (6.8)

Indefinite and definite integrals of x f (x) can be rewritten in terms of F(x) using inte-3354

gration by parts:3355

∫

x f (x)dx = x
∫

f (x)dx −
∫ ∫

f (x)dx, (6.9)
3356

∫ x

0
x′ f (x′)dx′ = x

∫ x

0
f (x′)dx −

∫ x

0

∫ x

0
f (x′)dx′ = xF(x)−

∫ x

0
F(x′)dx′. (6.10)

With Equation 6.10, we can integrate both sides of Equation 6.8:3357

F(x) = xF(x)−
∫ x

0
F(x′)dx′ + xG(x)−

∫ x

0
G(x′)dx′,

F(x) = x
(

F(x) + G(x)
)

−
∫ x

0

(

F(x′) + G(x′)
)

dx′.
(6.11)
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6.7 Signal extraction with BDT classifiers

Finally, we can rewrite Equation 6.11 to obtain something reminiscent of Equation 6.7,3358

but only with the CDFs, which are easy to obtain empirically:3359

x =
F(x) +

∫ x
0

(

F(x′) + G(x′)
)

dx′

F(x) + G(x)
. (6.12)

Alternatively, one can use the survival functions F̃(x) = 1− F(x) and the corresponding3360

G̃ instead of the CDFs. This results in a slightly different relation:3361

x =
F̃(x)−

∫ 1
x

(

F̃(x′) + G̃(x′)
)

dx′

F̃(x) + G̃(x)
. (6.13)

If the BDT score is not well calibrated, the right-hand sides of Equations 6.12 and 6.133362

are not equivalent. For the calibration check, we can plot the right-hand side of any3363

of the two equations against the BDT score. In any case, the BDT is well calibrated if3364

the curve is a smooth diagonal. Equation 6.12 is generally smoother for x closer to 1,3365

while Equation 6.13 behaves better closer to x = 0. Therefore, for the empirical test, both3366

equations are stitched together to obtain a smooth curve for the full range of BDT scores.3367

These curves are shown in Figure 6.28 for the tt̄Z and ZZ BDTs in the eµ category. For3368

the empirical CDFs, the correct event weights were used.3369

Figure 6.28 confirms what could be already anticipated from the histogram ratios in3370

Figure 6.27. The tt̄Z BDT is not well calibrated because of the large overtraining due3371

to the relatively small tt̄Z sample size, and because tt̄Z events with b jets were used for3372

the training as well. The CDF-based check also reveals a slight miscalibration of the ZZ3373

BDT. It was checked that this is due to the BDT training with uniform weights instead3374

of using the proper event weights. If the calibration curve is produced with uniform3375

weights, it aligns perfectly with the diagonal.3376

The calibration check makes it clear that we cannot proceed with any likelihood-free3377

inference techniques before recalibrating the BDT scores. It was also observed that the3378

tt̄Z calibration does not improve by using tt̄Z events with no b jets only. The approx-3379

imately thousand remaining tt̄Z events are not sufficient to suppress overtraining, and3380

the calibration gets even worse.3381

6.7.3 Classifier recalibration3382

In the previous section, we have seen that it is not possible to estimate the maximum3383

possible signal significance in the eµ region with likelihood-free inference methods with-3384

out recalibrating the BDT scores. In the HEP-ML literature, classifier recalibration for3385

likelihood-free inference is currently studied actively [130], but there is no standard3386

procedure. Isotonic regression is an often-mentioned technique because it fits arbitrary3387

functions under the constraint that they are monotonically increasing, as is the case for3388

the signal probabilities. Recalibration is essentially a univariate regression problem, so3389

even simple neural networks were suggested for this purpose.3390

However, for this study, it was preferred not to use another machine learning method.3391

One would once again have to split the sample to have separate training data for the3392

recalibration, further reducing the number of precious simulated tt̄Z events. Instead,3393

we can start from the assumption that classifiers trained with logistic loss functions are3394

generally well-calibrated, and we can think of how this calibration might be distorted.3395

Overtraining was already mentioned as a significant effect. If a classifier is overtrained,3396
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Chapter 6 Analysis of triboson production in the standard model

(a) tt̄Z BDT (b) ZZ BDT

Figure 6.27: Histogram-based calibration curves for the two BTDs in the eµ region (tt̄Z
(a) and ZZ (b) BDT). The true positive rate is obtained by dividing the signal histogram
by the background histogram, with the uncertainty estimated with the normal approxi-
mation implemented in the TEfficiency class in ROOT, as this option supports weighted
histograms.

(a) tt̄Z BDT (b) ZZ BDT

Figure 6.28: Calibration curves obtained with the CDF-based test described in Section 6.7.2
for the two BTDs in the eµ region (tt̄Z (a) and ZZ (b) BDT).

the predicted log-odds are further away from zero because the classifier is too confident.3397

Furthermore, there might be a bias in the predicted log-odds because the classifier is3398

trained on a set of samples that qualitatively differs from the sample we want to apply3399

it to, which is the case for the tt̄Z BDT in particular. Hence, we can imagine that at first3400

order, the miscalibration has a linear effect on the predicted log-odds before the logistic3401

transformation that brings the BDT score in the probability interval from 0 to 1.3402

To counter the linear miscalibration of the log-odds, we can attempt to find a linear3403

transformation t(z) = A · (z − m) of the predicted log-odds z to get well-calibrated3404

probabilities xcalib. after the logistic transformation:3405

xcalib.(z) =
1

1 + exp
(

−
(

A · (z − m)
)

) . (6.14)
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6.7 Signal extraction with BDT classifiers

(a) tt̄Z BDT (b) ZZ BDT

Figure 6.29: Histogram-based calibration curves for the two BTDs in the eµ region (tt̄Z
(a) and ZZ (b) BDT) after recalibration. The true positive rate is obtained by dividing
the signal histogram by the background histogram, with the uncertainty estimated with
the normal approximation implemented in the TEfficiency class in ROOT, as this option
supports weighted histograms.

To find the coefficients A and m, we can use the empiric calibration diagnostic from3406

Section 6.7.2 and find the coefficients that minimize the residue between the calibration3407

curve and the diagonal. The obtained calibration functions for both BDTs are3408

ttt̄Z(z) = 0.5939 · (z − 1.0058) ,

tZZ(z) = 0.8890 · (z + 0.2238) .
(6.15)

As expected, the scaling factor for the log-odds turns out to be smaller than one because3409

of overtraining. Figure 6.30 shows the calibration curves after recalibration with the3410

linear transformation of the log-odds. The calibration curves align almost perfectly with3411

the diagonal. Figure 6.29 shows the traditional histogram-based calibration curves for3412

comparison.3413

With the calibrated BDT scores, we can proceed to use likelihood-free inference methods3414

to study the maximally obtainable signal significance. However, this calibration study3415

represents a satisfying result on its own. The finding that the recalibration problem for3416

logistic-loss based classifiers applied to collider physics event separation can be solved3417

with simple linear methods might help to promote the direct interpretation of classifier3418

scores as probabilities.3419

6.7.4 Ceiling study with mixture model and likelihood free inference3420

The previous sections discussed how the BDT scores are recalibrated to represent likeli-3421

hood ratios for binary sample classification. We will now use the recalibrated scores and3422

likelihood-free inference methods to compute an upper limit for the maximum possible3423

WWZ signal significance obtainable with these BDTs in the eµ category. Since we have3424

not trained BDTs for signals other than WWZ (on-shell and ZH) and backgrounds other3425

than tt̄Z and ZZ, the remaining signals and backgrounds will initially be neglected in3426

this study. The missing backgrounds are contributing more to the yields in the eµ cat-3427

egory than the missing signal, so the upper limit we obtain will be overly optimistic.3428
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(a) tt̄Z BDT (b) ZZ BDT

Figure 6.30: Calibration curves obtained with the CDF-based test described in Section 6.7.2
for the two BTDs in the eµ region (tt̄Z (a) and ZZ (b) BDT) after recalibration.

However, such a limit is still instrumental in assessing the efficiency of any traditional3429

signal extraction method that we consider.3430

If we had only one signal and one background, it would be straight-forward to proceed3431

to build the log-likelihood ratio surrogate:3432

l = n
(

log (b)− log (s + b)
)

− s +
n

∑
i=0

z(i)s,b , (6.16)

with s and b being the number of predicted signal and background events, n the num-3433

ber of observed events and z(i)s,b the calibrated BDT score of event i before the logistic3434

transformation. The terms outside the sum originate from the ratio of Poisson terms3435

corresponding to the total number of events. Note that Equation 6.16 contains a con-3436

stant term, s, that does not affect the minimum of the likelihood ratio. However, in3437

likelihood-free inference computations, it is wise to keep all terms such that the log-3438

likelihood ratio at the minimum should be zero. If it is not, one did not calibrate the3439

classifiers well or made a mistake in building the likelihood surrogate. Dropping con-3440

stant terms would prohibit this cross-check.3441

For multiple background components, we can use the formula for the likelihood ratios3442

in mixture models [130, 131]:3443

p
(

x|θ0
)

p
(

x|θ1
) =

∑c wc (θ0) pc
(

x|θ0
)

∑c′ wc′ (θ1) pc′
(

x|θ1
)

= ∑
c

[

∑
c′

wc′ (θ1)
wc (θ0)

pc′
(

x|θ1
)

pc
(

x|θ0
)

]−1 (6.17)

Equation 6.17 considers the most general case. The probabilities pc for a given compo-3444

nent might depend on the parameters θ0 and θ1 of the null hypothesis and the signal3445

hypothesis. For our application, this is not the case. Only the normalized component3446

weights wc depend on the hypothesis, as the weight of the signal component is zero in3447

the null-hypothesis. Therefore, Equation 6.17 simplifies and we can replace the binary3448

likelihood ratios with the BDT log-odds to obtain the correct log-likelihood ratio zθ0,θ1
:3449

exp
(

zθ0,θ1

)

= ∑
c

[

∑
c′

wc′ (θ1)
wc (θ0)

exp
(

zc,c′(x)
)

]−1

. (6.18)
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6.7 Signal extraction with BDT classifiers

By using Equation 6.18 to replace the binary log-odds zs,b in Equation 6.16, we obtain3450

the correct formula for the likelihood surrogate.3451

We have no classifier to approximate the binary log-odds ztt̄Z,ZZ for the background3452

components. Separation of the two background components should not be necessary3453

since their relative weights are the same for the signal- and null-hypothesis. Naively,3454

one could imagine setting ztt̄Z,ZZ to zero, corresponding to no discrimination between3455

the background components. However, this results in inconsistent likelihood functions3456

whose minimum is not at the right place. This inaccuracy was thought to be due to3457

inconsistency in the matrix of binary log-odds. If zWWZ,tt̄Z and zWWZ,ZZ are different,3458

it is not consistent to assume zero separation power between the backgrounds. It is3459

consistent to set ztt̄Z,ZZ = zWWZ,ZZ − zWWZ,tt̄Z, even though it is by no means an optimal3460

observable to separate the backgrounds. The final consistent matrix of binary log-odds3461

is then3462

Z =

⎛

⎜

⎜

⎝

0 zWWZ,tt̄Z zWWZ,ZZ

−zWWZ,tt̄Z 0 zWWZ,ZZ − zWWZ,tt̄Z

−zWWZ,ZZ zWWZ,tt̄Z − zWWZ,ZZ 0

⎞

⎟

⎟

⎠

. (6.19)

This matrix completion procedure for the backgrounds would work for an arbitrary3463

number of background components. As far as the author is aware, the problem of3464

consistent mixture-model likelihood ratio surrogates is not discussed in the literature so3465

far. Note that these inconsistencies might also arise if we would have trained a classifier3466

for the background component separation, albeit on a much smaller scale.3467

The likelihood-ratio surrogate was used for a scan over the signal strength. Equation 6.183468

and Equation 6.16 have to be evaluated for multiple signal hypotheses, all with a dif-3469

ferent weight for the signal component. The result of the scan is shown in Figure 6.31,3470

which also includes a signal strength scan where only the normalization term is con-3471

sidered, giving an idea of the signal significance in the eµ region without any further3472

separation.3473

Figure 6.31: Signal strength scan with simulated events in the eµ region with the WWZ
signal and the two major backgrounds tt̄Z and ZZ. For the orange curve, a likelihood
surrogate function was built in a likelihood-free inference framework, using a mixture
model to combine the binary BDT scores into an event-by-event likelihood ratio. The
likelihood ratio that corresponds to only the total number of eµ events is shown in blue.

Figure 6.31 leads to several interesting conclusions, even if it only considers the WWZ3474

signal and the two major backgrounds. The expected signal strength is µWWZ = 1.006+0.356
−0.303,3475

where the accurate representation of the central value at the permille level confirms3476

that the binary classifiers are well-calibrated. Without the calibration described in Sec-3477
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Chapter 6 Analysis of triboson production in the standard model

tion 6.7.2, the central value would have been 1.036. Reading the value at µWWZ = 0, the3478

expected significance is 5.04 σ. If we consider the remaining backgrounds only in the3479

normalization term, assuming that we have no separation power at all for these events,3480

the significance gets reduced to 4.90 σ.3481

Even if this likelihood-free inference cannot be carried further in the analysis because3482

of the challenges related to systematic uncertainties and the unmodeled signals and3483

backgrounds, it provides a very insightful ceiling to the maximum signal that could be3484

extracted with the BDTs in the eµ category.3485

Understanding what the limiting factors on a full analysis are is extremely important to3486

plan in which areas it should be improved. This section showed that classifier calibration3487

and likelihood-free inference techniques are very useful for ceiling studies at the signal3488

extraction level. Such ceiling studies might also be valuable for sensitivity studies of3489

future experiments.3490

Note that the mixture model, as in Equation 6.18, can also be used to combine several3491

calibrated binary classifiers into an optimally combined score, even if no likelihood-free3492

inference is intended. The combined score can then used in more traditional signal3493

extraction methods. For this application, the weights wc for Equation 6.18 should be3494

adapted: the signal hypothesis should be the signal only, and the null hypothesis the3495

backgrounds only, resulting in a clean separation between signal and background in-3496

stead of likelihood ratio approximation.3497

6.7.5 Outlook on likelihood-free inference methods3498

We might also imagine how systematic variations could be incorporated in such a3499

likelihood-free inference. Usually, systematic variations are small, and the classifiers3500

trained for the nominal values are also performant for the variations. They would still3501

have to be recalibrated. The previous recalibration study, especially the recalibration of3502

the ZZ BDT, demonstrated how classifiers could be recalibrated to represent the cor-3503

rect likelihood ratio if the correct event weights are applied, as opposed to no event3504

weights applied during the training process. Therefore, the same method is expected3505

to work well for recalibration after systematic variations. Since the recalibration is not3506

computationally expensive, this would also be feasible for a large number of system-3507

atic uncertainties. The final likelihood surrogate with systematic variations would then3508

be the envelope of the likelihood surrogates corresponding to each variation, which is3509

equivalent to the usual profiling of systematic uncertainties.3510

The other challenge of such an inference method is the treatment of the remaining minor3511

backgrounds, which need to be considered to obtain a realistic likelihood surrogate. One3512

might train additional, simpler binary classifiers to separate them from the signal, but3513

it should also be possible to write down a consistent mixture model that considers no3514

discrimination between the signal and the other backgrounds. To conclude, there is a3515

clear research path to extend, test, and validate such likelihood-free inference, which3516

might be followed in future work.3517

6.7.6 Signal extraction with multidimensional histograms3518

The previous section showed that no matter what signal extraction method based on3519

the BDTs in the eµ region will be used, the WWZ signal significance can not exceed 4.903520

standard deviations. For the final analysis that has to consider systematic variations,3521

the likelihood-free inference method was not used because it is unconventional. Still,3522

126



6.7 Signal extraction with BDT classifiers

it was considered to use the mixture model to combine the two binary classifiers to an3523

optimal discriminant that is subject to a binned likelihood fit. However, the expected3524

significance obtainable from such a combined score with a fixed number of bins was3525

only marginally larger than the significance reached with a 2D histogram of the two3526

BDT scores. Therefore, the more traditional and easier approach of histogramming the3527

individual BDT scores and then performing a binned likelihood fit was followed.3528

In the case of two BDTs, such as in the eµ region, a common approach is to cut on the3529

more discriminating BDT and then perform a Poisson likelihood fit – or shape analysis –3530

based on histograms of the remaining BDT score. However, the eµ category is already3531

relatively pure, and it is preferable to use the full category for signal extraction. There-3532

fore, a 2D histogram approach was employed. A series of 2D boundaries have been3533

defined to maximize sensitivity. The binning was automatically chosen by creating a3534

simple decision tree that stops splitting when any of the following conditions based on3535

the bins after a candidate split is met:3536

• relative uncertainty 1/
√

s for signal raises above 2 %3537

• relative uncertainty 1/
√

b for background raises above 8 %3538

• the s/b in the bins differs by less than 50 %3539

• less than one expected event in a bin3540

The distribution of simulated events in the 2D BDT score plane is indicated in Figure 6.323541

together with the bin boundaries found by the decision tree algorithm.3542

Figure 6.32: Distribution of the scores of the tt̄Z and ZZ BDTs in the eµ category for
simulated WWZ, ZZ and tt̄Z events. The boundaries of the five bins used for the signal
extraction are indicated as black lines.

Signal extraction in the less sensitive ee/µµ was not discussed so far, as it is less chal-3543

lenging given only one dominant background and one corresponding BDT discriminant.3544

In this one-dimensional case, it is possible to make a brute-force scan for the split that3545

results in the best combined approximate median significance (AMS) [132] of the two3546

resulting bins:3547

AMS2 =

√

√

√

√2

(

(s + b) ln

(

1 +
s

b

)

− s

)

. (6.20)

For the binning optimization in the ee/µµ category, the splits for the binning were found3548

with a greedy iterative algorithm. The cut at which the combined significance peaks3549

will be a first bin boundary. In the next step, the significance scan is repeated with the3550

previous split retained for the evaluation of the combined significance. This is repeated3551
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Chapter 6 Analysis of triboson production in the standard model

until the improvement of the combined significance becomes negligible in the picture of3552

the full analysis. The result of the scan is shown in Figure 6.33. Based on this scan, it3553

was decided only to split the ee/µµ category at the ZZ BDT score of 3.0 and not do any3554

further split based on the significance scan. Instead, the first bin was decided to have3555

a lower bound at 0.0, with the events below not used for the signal extraction. In this3556

way, it was possible to use these ZZ dominated events to constrain the normalization of3557

the ZZ background, as described in Section 6.8.2.3558

Figure 6.33: Scanning the ee/µµ category BDT score for the cut with maximum signifi-
cance after the split.

The final binning for the signal extraction in the WWZ analysis is given in Table 6.10.3559

The expected event yields for all signals and backgrounds in all bins are listed in Ta-3560

ble 6.11 and Table 6.12. Finally, Table 6.13 shows the significance estimates based ex-3561

clusively on simulated events in the individual bins for the signal extraction and their3562

combination. It is particularly interesting to compare the combined 4.33 σ expected in3563

the eµ region with the upper bound of 4.90 σ that was found with the ceiling study3564

in the previous section. The difference corresponds to a reduction of sensitivity by the3565

information loss in the histogram-based signal extraction method by about 10 %. In3566

conclusion, it would be possible to increase the precision of future WWZ analyses by3567

using a more sophisticated signal extraction method, but not by as much as needed to3568

make this a priority.3569

ZZ BDT range tt̄Z BDT range

eµ BDT bin 1 (-∞, -0.908 ) (-∞ , ∞ )

eµ BDT bin 2 (-0.908 , ∞ ) (-∞ , 0.015 )

eµ BDT bin 3 (-0.908 , 0.733 ) (0.015 , ∞ )

eµ BDT bin 4 (0.733 , ∞ ) (0.015 , 3.523 )

eµ BDT bin 5 (0.733 , ∞ ) (3.523 , ∞ )

ee/µµ BDT bin A (0 , 3 ) -

ee/µµ BDT bin B (3 , ∞ ) -

Table 6.10: Summary of BDT binning boundaries in the WWZ analysis.
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Category

Summary

Nbkg
Nsignal

NWWZ NWZZ NZZZ

eµ total 27.55 ± 0.78 14.63 ± 0.53 0.80 ± 0.20 0.0577 ± 0.0085

Bin 1 16.32 ± 0.47 1.576 ± 0.092 0.164 ± 0.076 0.0151 ± 0.0053

Bin 2 2.46 ± 0.32 1.70 ± 0.12 0.112 ± 0.087 0.0042 ± 0.0024

Bin 3 4.72 ± 0.36 2.19 ± 0.23 0.093 ± 0.032 0.0164 ± 0.0038

Bin 4 3.53 ± 0.38 5.76 ± 0.40 0.40 ± 0.16 0.015 ± 0.0034

Bin 5 0.51 ± 0.12 3.40 ± 0.22 0.028 ± 0.020 0.0069 ± 0.0035

ee/µµ total 86.98 ± 0.77 12.00 ± 0.56 0.28 ± 0.16 0.58 ± 0.28

Bin A 80.67 ± 0.72 6.53 ± 0.37 0.21 ± 0.15 0.35 ± 0.24

Bin B 6.30 ± 0.27 5.46 ± 0.41 0.077 ± 0.040 0.23 ± 0.15

Table 6.11: Expected number of signal events in the eµ category, estimated by MC for full

Run 2 data set corresponding to 137 fb−1.

Category

Composition of Nbkg

NZZ Ntt̄Z NtWZ NWZ NHiggs NOther

eµ total 17.57 ± 0.21 4.21 ± 0.28 1.59 ± 0.09 1.59 ± 0.35 1.56 ± 0.46 1.03 ± 0.38

Bin 1 14.51 ± 0.19 0.222 ± 0.059 0.080 ± 0.020 0.46 ± 0.14 1.02 ± 0.40 0.025 ± 0.011

Bin 2 1.607 ± 0.061 0.13 ± 0.05 0.073 ± 0.019 0.19 ± 0.12 0.09 ± 0.16 0.37 ± 0.29

Bin 3 0.608 ± 0.039 2.49 ± 0.23 0.63 ± 0.057 0.51 ± 0.18 0.29 ± 0.14 0.20 ± 0.15

Bin 4 0.593 ± 0.036 1.30 ± 0.14 0.754 ± 0.062 0.31 ± 0.21 0.14 ± 0.10 0.43 ± 0.25

Bin 5 0.25 ± 0.024 0.076 ± 0.031 0.057 ± 0.016 0.11 ± 0.11 0.0057 ± 0.0029 0.0094 ± 0.0046

ee/µµ total 77.84 ± 0.40 3.45 ± 0.15 1.202 ± 0.077 1.188 ± 0.23 2.73 ± 0.43 0.57 ± 0.41

Bin A 75.06 ± 0.40 1.377 ± 0.092 0.5141 ± 0.051 1.00 ± 0.21 2.25 ± 0.39 0.475 ± 0.41

Bin B 2.786 ± 0.075 2.07 ± 0.12 0.688 ± 0.058 0.19 ± 0.11 0.48 ± 0.19 0.093 ± 0.075

Table 6.12: Expected number of background events in the eµ category, estimated by MC

for full Run 2 data set corresponding to 137 fb−1.

6.8 Data-driven background estimation3570

In the previous section, a signal extraction scheme was optimized based on the WWZ3571

signal and the two major backgrounds, ZZ and tt̄Z. The cross-section of the ZZ back-3572

ground is roughly three orders of magnitude above the signal, while the tt̄Z cross-section3573

is approximately 50 times larger. The tt̄Z background is strongly reduced in the eµ cate-3574

gory, which asks for no b jets, and it can be monitored in a relatively pure control region3575

that is equivalent to the eµ category but with one or more b jets. The eµ category almost3576

rejects all of the ZZ backgrounds, but a sizable number of events remains – predomi-3577

nantly events with different-flavor leptonic tau decays. The ZZ background is almost3578

eliminated by design in the eµ region, although a sizable number of events still contam-3579

inates said region, mostly different-flavor leptonic tau decays. Furthermore, ZZ is the3580

dominant background in the ee/µµ signal region, even though the second same-flavor3581

lepton pair is required to be off the Z peak. If the second lepton pair is on the Z peak,3582

we can get an almost entirely pure ZZ control region.3583

After a short introduction to data-driven background estimation techniques, this section3584

explains how the two control regions – eµ with b jets and ee/µµ on-Z – are used for3585

estimation of the tt̄Z and ZZ backgrounds respectively. This will be followed by a small3586

discussion on the minor backgrounds, namely tWZ, WZ, Higgs processes, and other3587
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Category Nsignal Nbkg AMS2 Nsignal/Nbkg

eµ total 15.48 ± 0.57 27.59 ± 0.78 2.72 σ 0.56

Bin 1 1.76 ± 0.12 16.32 ± 0.47 0.43 σ 0.11

Bin 2 1.82 ± 0.15 2.46 ± 0.32 1.05 σ 0.74

Bin 3 2.30 ± 0.23 4.72 ± 0.36 0.99 σ 0.49

Bin 4 6.18 ± 0.43 3.53 ± 0.37 2.70 σ 1.75

Bin 5 3.43 ± 0.22 0.51 ± 0.12 3.04 σ 6.70

Combined - - 4.33 σ -

ee/µµ total 12.86 ± 0.64 86.98 ± 0.77 1.35 σ 0.15

Bin A 7.09 ± 0.47 80.67 ± 0.72 0.78 σ 0.09

Bin B 5.78 ± 0.44 6.30 ± 0.27 2.04 σ 0.92

Combined - - 2.18 σ -

eµ and ee/µµ Combined - - 4.85 σ -

Table 6.13: Sensitivity estimate from yields predicted purely by simulated events for BDT

analysis with full Run 2 data set corresponding to 137 fb−1.

rare standard model processes.3588

6.8.1 Principles of data-driven background estimation3589

If possible, one should avoid trusting the simulated events blindly. One should check3590

in control regions that are not overlapping with the signal region if the data agrees well3591

with the simulation, and if possible, use the control regions to estimate the backgrounds3592

in the signal region.3593

Take, for example, the situation where the differential distribution of some observable3594

in the signal region – for example, a BDT score – is used for the measurement. There are3595

several levels of simulation-dependence for data-driven background estimation meth-3596

ods. The first level is to use the data in the control region to obtain a normalization scale3597

factor for the background:3598

Best
SR,i = BSR,i ×

NCR

BCR
= BSR,i × NSFB. (6.21)

Here, BSR and BCR stand for the total MC predictions in the signal and control regions,3599

NCR is the observed number of events in the control region, and index i denotes the bin3600

index of the differential distribution. In this scheme, one still relies on the simulation to3601

accurately depict the differential distribution of the observable and yield ratios between3602

the control and signal regions. Going a step further, one can perform the extrapolation3603

for each bin of the observable, which would correspond to adding an index i to each3604

variable in Equation 6.21 that does not have one yet. Now, one only needs the simulation3605

to represent the differences in the differential distribution between the signal and control3606

region accurately.3607

The final level of simulation-independence is to use additional control regions – obtained3608

by inverting another selection criterion – to get the ratios of the differential distributions3609

directly from data. Usually, it is not possible to find an additional cut to invert that3610

is entirely uncorrelated. Therefore, the simulation must still be relied on to associate a3611

certain closure uncertainty. Since this method involves one signal region and three control3612

regions, it is often called the ABCD method.3613
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In this analysis, the differential distributions of the BDT scores are well modeled in the3614

control regions, so we rely on Monte Carlo to also model the distributions accurately3615

in the signal region. Depending on the sample size of observed events in the control3616

regions, the analysis uses bin-by-bin extrapolations or overall normalization scale factors3617

for the estimation of the dominant backgrounds. In practice, one evaluates Equation 6.213618

or its bin-by-bin equivalent as3619

Best
SR,i = BSR,i ×

NCR,i

BCR,i
= NCR,i ×

BSR,i

BCR,i
= NCR,i × TFCR→SR,i (6.22)

because the effect of systematic variations often cancels out in the transfer factor TFCR→SR,i.3620

If the statistical uncertainties in the control region are not too large, one might even get a3621

systematic uncertainty on the background that is smaller than the one obtained from the3622

simulation in the signal region (including systematic variations). Note that in order to3623

obtain the correct transfer factors, the other backgrounds and signals in both the signal3624

and control regions must be subtracted beforehand.3625

6.8.2 Estimate of ZZ and tt̄Z backgrounds from control regions3626

The ZZ background can be validated with an extensive sample in the ee/µµ on-Z region.3627

If one applies the two BDTs that are used for the signal extraction in the eµ region to3628

this control sample, including the 2D splitting to the five bins for the signal extraction3629

explained in Section 6.7.6, one obtains the histogram in Figure 6.34. With this histogram3630

and the corresponding histogram in the eµ signal region, the transfer factors to estimate3631

the ZZ yield in the eµ region were obtained for all three data-taking years. The estimated3632

ZZ yields with uncertainties from both the transfer factor and the statistical uncertainty3633

in the control region for the three data-taking years combined are shown in Table 6.14.3634

The uncertainties in the transfer factor stem mainly from the MC statistics in the eµ3635

region, followed by pileup reweighting and lepton selection efficiency variations.3636
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Figure 6.34: Events from the ee/µµ on-Z control region in the different eµ BDT bins.

For the ZZ background in the ee/µµ off-Z signal region, a bin-by-bin extrapolation is3637

not possible because, for high values of the corresponding ZZ BDT score, there are very3638

few events in the on-Z control region (see Figure 6.35b). Therefore, the extrapolation is3639

done from the events in the off-Z region with negative BDT scores, which is not part3640

of the signal region. This extrapolation relies on good modeling of the BDT score in3641

the off-Z region. The good agreement in the on-Z region (Figure 6.35b) and the negative3642
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Signal bin
Estimated
ZZ yield

Syst. unc.
[%]

Stat. unc.
[%]

normalization
scale factor

Simulation
ZZ yield

eµ SR BDT 0 15.92 ±2.2 ±5.1 1.10 ± 0.06 14.5098

eµ SR BDT 1 1.56 ±5.2 ±4.0 0.97 ± 0.04 1.607

eµ SR BDT 2 0.62 ±7.6 ±7.0 1.02 ± 0.07 0.6077

eµ SR BDT 3 0.56 ±6.3 ±6.1 0.95 ± 0.06 0.5929

eµ SR BDT 4 0.23 ±10.0 ±6.9 0.94 ± 0.07 0.25

ee/µµ SR BDT A 78.32 ±3.0 ±4.3 1.04 ± 0.05
75.0584

ee/µµ SR BDT B 2.91 ±10.6 2.7864

Table 6.14: The estimated ZZ yields in the seven signal extraction bins (defined in Ta-
ble 6.10). The eµ yields are extrapolated bin-by-bin from the on-Z control region, and the
ee/µµ yields are extrapolated from off-Z events with a negative BDT score. The systematic
uncertainty stems from systematic variations of the transfer factor computation, while the
statistical uncertainty comes from the finite number of events in the control region.
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(a) Off-Z region for BDT score < 0.0.
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(b) On-Z region.

Figure 6.35: The ZZ BDT score distributions for ee/µµ events.

part in the off-Z region (Figure 6.35a) raises confidence that the BDT score is indeed well3643

modeled. The estimated yields and uncertainties in the ee/µµ signal region are shown3644

in Table 6.14. This time, the dominant systematic uncertainty is the pileup reweighting,3645

while MC sample statistical uncertainties play a much more minor role.3646

The tt̄Z background cannot be extrapolated in a bin-by-bin manner because there are3647

much fewer events in the corresponding control region, the eµ category with b jets.3648

However, the differential shapes of the BDT distributions shown in Figure 6.36 are well3649

modeled in the control region, and it is considered acceptable to estimate the tt̄Z back-3650

ground based on the shapes from simulation and an overall normalization scale factor3651

measured in the control region. These estimated tt̄Z yields are listed in Table 6.15. The3652

systematic uncertainties on the transfer factors are dominated by MC systematic uncer-3653

tainties for the eµ bins and by b-tagging efficiency in the case of the ee/µµ bins.3654

6.8.3 Treatment of other backgrounds3655

The remaining backgrounds are much rarer and therefore more challenging to estimate3656

from control regions. However, it is essential to make checks related to the WZ back-3657
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(a) eµ tt̄Z BDT score
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(b) eµ ZZ BDT score
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(c) ee/µµ ZZ BDT score

Figure 6.36: BDT distributions in the eµ with b jets control region.

Signal bin
Estimated
tt̄Z yield

Syst. unc.
[%]

Stat. unc.
[%]

normalization
scale factor

Simulation
tt̄Z yield

eµ SR BDT 0 0.25 ±29.2 ±12.2 1.12 ± 0.17 0.222

eµ SR BDT 1 0.14 ±36.6 ±12.2 1.12 ± 0.17 0.1291

eµ SR BDT 2 2.79 ±13.0 ±12.2 1.12 ± 0.17 2.4912

eµ SR BDT 3 1.45 ±13.1 ±12.2 1.12 ± 0.17 1.2951

eµ SR BDT 4 0.09 ±44.6 ±12.2 1.12 ± 0.17 0.0764

ee/µµ SR BDT A 1.54 ±11.0 ±12.2 1.12 ± 0.17 1.3771

ee/µµ SR BDT B 2.32 ±10.8 ±12.2 1.12 ± 0.17 2.0728

Table 6.15: The estimated tt̄Z background yields in the seven bins used for the signal
extraction (defined in Table 6.10). All yields are extrapolated from the eµ region with
b jets, relying on the simulation to represent the transfer factors accurately. The systematic
uncertainty stems from systematic variations of the transfer factor computation, while the
statistical uncertainty comes from the finite number of events in the control region.

ground because it involves one additional fake reconstructed lepton. These fake rates3658

are not necessarily represented correctly in the simulation. Lepton fake rate checks are3659

particularly important for the W lepton candidates, as there is no invariant mass cut3660

that drastically reduces the number of fake leptons. The number of fake leptons fail-3661

ing the W lepton identification is validated with a sideband of leptons that do not pass3662

the nominal W lepton ID but passes the common veto ID (see Section 6.3.2) minus the3663

isolation cut. This selection is also called the fakeable ID. The relative isolation variable3664

of this sample of leptons is shown in Figure 6.37 separately for electrons and muons.3665

As expected, WZ events make up most of the events in the simulation, while the other3666

backgrounds with two true electrons (DY and tt̄) become relevant too. Even if these3667

distributions are not well populated, the data generally agrees with the simulation. The3668

number of fake leptons failing the W lepton ID but passing the fakeable ID appears to3669

be modeled correctly, so the number of fake leptons that pass the W lepton ID likely well3670

modeled as well. To obtain an uncertainty for the WZ normalization, we might argue3671

that the WZ background ultimately cannot be validated more accurately than the statis-3672

tical uncertainty of the data in the lepton selection sideband, which is ±
√

73 = ±8.54.3673

There are 30.5 WZ events predicted by the simulation in this region, so 8.54/30.5 = 28%3674

is taken as an additional normalization uncertainty for the WZ background.3675

The tWZ background process has a lower cross-section than tt̄Z and only has one b jet.3676

One can try to isolate this background in an eµ control region with exactly one b-tagged3677

jet, but because of b-tagging inefficiencies, the tt̄Z background is still dominant after3678
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(a) The Irel,R=0.3,EA distribution of one of
the W candidate electrons that failed the
nominal ID but passed the fakeable ID.
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(b) The Irel,R=0.4,∆β distribution of one of the
W candidate muons that failed the nominal
ID but passed the fakeable ID.

Figure 6.37: Relative isolation variables for electrons (a) and muons (b) that pass the fak-
able ID but fail the W lepton candidate ID.

this selection. The njet distribution for eµ events with one b jet is shown in Figure 6.38a,3679

and it contains information to separate between the tWZ and tt̄Z backgrounds. If one3680

fits this njet distribution in data with the predictions from the simulation with floating3681

normalization parameters for the tt̄Z and tWZ components, one obtains a normalization3682

of 1.58 ± 0.63 for tt̄Z and of 1.47 ± 2.13 for tWZ. The uncertainty of the tWZ normal-3683

ization factor is very large because of the high tt̄Z fraction. Nevertheless, the deviation3684

from unity of 47 % is taken as an additional normalization uncertainty for the tWZ3685

background.3686

There are several Higgs-related backgrounds, mostly from Higgs to ττ decays, where3687

the Higgs is produced together with a leptonically-decaying Z boson. This process is3688

very challenging to isolate in a control region. Some more background originates from3689

Higgs bosons decaying into four leptons via two Z bosons, which is easier to select3690

because the second Z boson is off-shell. Figure 6.38b compared the measured with3691

the predicted number of events on the Higgs invariant mass peak after a cut on the3692

invariant mass of the second Z boson candidate. The simulation of H → 4ℓ events3693

describes the data well, and it is assumed that this also holds for the other Higgs-related3694

backgrounds.3695

The remaining rare standard model backgrounds that have little impact on the analysis3696

are estimated via simulation, including experimental and theoretical systematic uncer-3697

tainties. The considered processes are tt̄, DY plus jets, tt̄W, WW, tZ plus jets and tt̄tt̄.3698

6.9 Systematic uncertainties3699

The pre-fit signal is estimated exclusively from the simulation. For the signal bins in the3700

eµ and ee/µµ categories, the average effect of the theoretical and experimental system-3701

atic uncertainties associated with the signal simulation is given in Table 6.16. For the3702

backgrounds, the systematic uncertainties are shown separately for the eµ and ee/µµ3703

regions in Table 6.17 and Table 6.18 respectively. Compared with the systematic uncer-3704

tainties on the signal estimate, the ZZ and tt̄Z backgrounds have no uncertainties from3705
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(a) The Nj distribution in eµ events with
one b jet.
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(b) The m4ℓ distribution in ee/µµ category
with mℓℓ < 45 GeV and 120 < m4ℓ <

130 GeV.

Figure 6.38: Example distributions to study the minor backgrounds.

the b jet and lepton selections. The selection-related uncertainties mostly cancel out in3706

the data-driven estimation. The remaining effects are considered in the uncertainties on3707

the transfer factors, which incorporate both the systematic uncertainties for simulation3708

and the statistical uncertainty on the control regions measurement.3709

In the following, the systematic uncertainties will be explained in more detail. They are3710

grouped in theory uncertainties that are elaborated on in Section 6.9.1, and experimental3711

uncertainties that are covered in Section 6.9.2.3712

6.9.1 Theory uncertainties3713

The three theory systematic uncertainties considered in the analysis relate to the renor-3714

malization and factorization scales (Q2), the parton distribution function (PDF), and3715

the strong coupling constant value αQCD. The renormalization and factorization scales3716

are varied simultaneously up or down by a factor two away from their nominal value.3717

The more NLO effects are considered in the simulation, the less the impact of the Q2
3718

variations on the simulation. Since the triboson processes are simulated at NLO, low3719

scale variation uncertainties are expected. Indeed, the scale uncertainty affects mostly3720

the Higgs related backgrounds, while for the WWZ signal, the uncertainty is below one3721

percent.3722

The evaluation of PDF and αQCD uncertainties follows the PDF4LHC prescription [133,3723

134]. The NNPDF distributions were used for all simulated samples [98]. For the complete3724

triboson analysis, the αQCD variations are fully correlated among all processes and final3725

states. However, the PDF and Q2 uncertainties are taken to be entirely uncorrelated for3726

different processes, while they are still correlated for different final states from the same3727

process. This is not relevant for the WWZ analysis, as it investigates the four-lepton final3728

state only, but must be considered in combinations with the results from the WWW two-3729

lepton (same sign) and three-lepton analyses. Excluding the rare backgrounds in the eµ3730

region, the effect of the PDF and αQCD uncertainties is below the percent level.3731
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Systematic uncertainties
Uncertainty in each SR (%)

eµ SR ee/µµ SR

b tagging scale factor (HF) 0.2 0.1

b tagging scale factor (LF) 0.8 0.8

JES 0.6 0.8

Pileup reweighting - 2.7

αQCD 0.2 0.3

PDF 0.1 0.2

Q2 0.6 0.0

MET smearing - -

Luminosity 2.5 2.5

Trigger efficiency 3.2 3.2

Electron selection 3.3 3.0

Muon selection 3.2 3.3

Simulation statistics 3.7 5.0

Table 6.16: Summary of the typical systematic uncertaintes on signal events in the signal
regions. The dash (-) indicates a systematic uncertainty that is either not applicable or is
smaller than 0.1%.

6.9.2 Experimental uncertainties3732

Multiple experimental uncertainties need to be taken into account in the WWZ anal-3733

ysis. As for all CMS measurements, there is an overall uncertainty on the integrated3734

luminosity of around 2.5 % (see Section 2.2.4 for more information on the luminosity3735

measurement). The distribution of the number of pileup collisions in each data-taking3736

year is also not known precisely. Usually, the MC simulations are produced with the3737

expected pileup distribution and then reweighted according to the pileup distribution3738

in the collision data that passes the quality selections, inferred from the cross-section of3739

minimum bias events. The weights are varied according to the uncertainty on the min-3740

imum bias cross-section, propagating the pileup uncertainty to an uncertainty on the3741

event yields predicted by the simulation. Another systematic uncertainty stems from3742

the limited sample size of the simulation. This uncertainty is usually significant for rare3743

backgrounds, where only a few events remain after the analysis selection.3744

Concerning the object selections, there are first and foremost the uncertainties on elec-3745

tron and muon selection efficiencies, as measured differentially in pT and η with the3746

tag-and-probe method. The uncertainty in the trigger selection efficiency was estimated3747

by checking how many DY+jets events identified in a jet-triggered primary dataset pass3748

the double-lepton triggers and comparing this rate with the rate in simulated DY+jets3749

events. However, this is a very conservative estimate, as the trigger threshold effects3750

play a lesser role in four-lepton events.3751

Some more experimental uncertainties come from the jet selection. As anticipated in3752

Section 6.3.4, the uncertainty of the b-tagging selection must be considered separately3753

for heavy-flavor and light-flavor jets. Depending on the physics process, one of the two3754

uncertainties is more important. For the WWZ signal that has no b bets in the final state,3755

the light-flavor selection uncertainty predominates. The opposite is the case for the tWZ3756

background. For Higgs-related backgrounds, it depends on the signal region. In the3757

eµ region, the Higgs background mostly consists of tt̄H events with H → WW decays,3758

so the heavy-flavor uncertainty is more relevant. In the ee/µµ region, there are more3759
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6.9 Systematic uncertainties

Systematic uncertainties
Typical size of the uncertainty (%)

tt̄Z ZZ tWZ Higgs WZ Other

b-tag CR data statistics 12.2 - - - - -

ZZ CR data statistics - 2.4 - - - -

b tagging scale factor (HF) - - 4.9 1.5 - 0.5

b tagging scale factor (LF) - - 0.8 0.7 - 0.2

JES - - 2.5 0.7 - 0.3

Pileup reweighting - - 1.6 4.5 - 1.1

αQCD - - - 0.2 - 1.7

PDF - - 0.2 0.9 - 0.9

Q2 - - - 14.5 - 1.9

Luminosity 2.5 2.5 2.5 2.5 2.5 2.5

Uncertainty on TFb-tag CR→eµ 29.2 - - - - -

Uncertainty on TFZZ CR→eµ - 2.2 - - - -

Uncertainty on WZ validation - - - - 30.0 -

Trigger efficiency 3.2 3.2 3.2 3.2 3.2 3.2

Electron selection - - 3.2 2.9 - 2.8

Muon selection - - 3.2 3.9 - 3.3

Simulation statistics - - 5.7 29.6 22.1 36.3

Table 6.17: Summary of the typical systematic uncertaintes on background estimations
in the eµ signal region. The dash (-) indicates a systematic uncertainty that is either not
applicable or is smaller than 0.1%.

Systematic uncertainties
Typical size of the uncertainty (%)

tt̄Z ZZ tWZ Higgs WZ Other

b-tag CR data statistics 12.2 - - - - -

ZZ CR data statistics - 2.4 - - - -

b tagging scale factor (HF) - - 4.2 0.9 - 0.4

b tagging scale factor (LF) - - 0.8 1.1 - 1.8

JES - - 2.4 1.3 - 0.6

Pileup reweighting - - 1.5 3.6 - 40.8

αQCD - - 0.5 - 0.4

PDF - - 0.3 0.3 - 0.1

Q2 - - 0.0 0.1 - 8.3

Luminosity 2.5 2.5 2.5 2.5 2.5 2.5

Uncertainty on TFb-tag CR→eµ 11.0 - - - - -

Uncertainty on TFZZ CR→eµ - 3.0 - - - -

Uncertainty on WZ validation - - - - 30.0 -

Trigger efficiency 3.2 3.2 3.2 3.2 3.2 3.2

Electron selection - - 3.0 4.6 - 3.7

Muon selection - - 3.4 3.3 - 0.8

Simulation statistics - - 6.4 15.7 19.4 72.9

Table 6.18: Summary of the typical systematic uncertaintes on background estimations in
the ee/µµ signal region. The dash (-) indicates a systematic uncertainty that is either not
applicable or is smaller than 0.1%.
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H → 4ℓ events with no heavy flavor jets. More jet-related uncertainties come from the3760

jet energy scale (JES) and jet energy resolution (JER) uncertainties, which are merged to3761

a jet energy correction uncertainty for Tables 6.16, 6.17, and 6.18. As the number of b-3762

tagged jets above 20 GeV is required to be zero in both the eµ and ee/µµ signal regions,3763

variations of the jet energy can cause some b jets to migrate over the energy threshold,3764

changing the number of accepted events. Furthermore, the leading jet pT is used in the3765

tt̄Z BDT in the eµ region, but this has only a slight effect on the predicted yields. The3766

tt̄Z background is extrapolated from control regions, and the signal has mostly no jets3767

in the final state.3768

Finally, the uncertainties related to the background estimation, were already discussed3769

in Section 6.8. These uncertainties cover the transfer factors, statistical uncertainties in3770

the control regions, and additional uncertainties for backgrounds that are challenging to3771

control. All uncertainties are fully correlated among the three data-taking years, except3772

for luminosity and JER uncertainties, which are uncorrelated. Except for the statistical3773

uncertainties from the simulation and the uncertainties from the background extrapola-3774

tions, all uncertainties are fully correlated among the different final states measured in3775

the full VVV analysis.3776

6.10 Combination and statistical interpretation3777

So far, this chapter mainly focused on the four-lepton analysis within the full triboson3778

analysis. The four-lepton analysis primarily targets the WWZ process, but there is some3779

mixing between the final states by lepton number and the triboson processes. For ex-3780

ample, the four-lepton analysis can also select WZZ or ZZZ, even if the event selection3781

actively suppresses this because it looks like ZZ background plus jets or missing energy.3782

On the other side, the three-lepton analysis also picks up some WWZ signal. Therefore,3783

it is essential to perform a combined likelihood fit – including all final-state oriented3784

studies – if one wants to measure signal strengths for WWZ and the other triboson3785

processes.3786

The signal strength is defined as the ratio between observed and expected event yield.3787

Signal strength values and uncertainties are extracted by a likelihood fit of the pre-3788

dicted yields to the observed ones. However, the signal strengths are not the only free3789

parameters of the model, even though they are the parameters of interest. Other free3790

parameters correspond to parameters that are only known approximately because of3791

systematic uncertainties. These so-called nuisance parameters get constrained by auxil-3792

iary measurements. Including the likelihood functions for the auxiliary measurements3793

is usually not feasible. Instead, one adds constraint terms based on the central values3794

and uncertainties of the auxiliary measurements. This statistical procedure is standard3795

for LHC analyses [135].3796

The signal strength fits in this analysis were performed with the collaboration-internal3797

tools based on the RooFit [136] and RooStat [137] components of the ROOT library [109].3798

The results were cross-checked with fitting routines directly implemented with the MI-3799

NUIT library for numerical optimization [138] (included in ROOT) and using its Python3800

wrapper iminuit [139]. Software packages for likelihood fit must be able to service3801

the increasingly complicated fits performed by the LHC experiments. For this reason,3802

RooFit development recently became more active again [140]. There are also R&D ef-3803

forts towards solutions that use modern optimization libraries such as TensorFlow [141]3804

internally. A notable example is the zfit package [142].3805
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6.10 Combination and statistical interpretation

In the following, we will first discuss the likelihood fit with statistical uncertainties only.3806

Afterwards, the constraint terms corresponding to the systematic uncertainties will be3807

motivated before showcasing the fit results for different signal strength definitions.3808

6.10.1 Statistical uncertainties only3809

A likelihood fit finds the model parameter values that maximize the likelihood L to3810

observe the data given the parameterized model. For the statistically independent bins3811

in a counting experiment, the likelihood is a product of Poisson probabilities:3812

L =
M

∏
j=1

p
(

Nj; Pj

)

, p(Nj; Pj) =
PN

j e−Pj

Nj!
, (6.23)

where M is the number of bins, Nj is the observed number of events in bin j, and Pj is3813

the predicted number of events in bin j. The fit minimizes the negative log-likelihood3814

l:3815

l = − lnL = − ln
M

∏
j=1

⎛

⎜

⎝

P
Nj

j e−Pj

Nj!

⎞

⎟

⎠
=

M

∑
j=1

ln Nj! −
M

∑
j=1

Nj ln Pj +
M

∑
j=1

Pj. (6.24)

The term ∑j ln Nj! does not depend on any model parameter. Hence it can be ignored3816

in the fit, and it is sufficient to minimize3817

l =
M

∑
j=1

(

Pj − Nj ln Pj

)

. (6.25)

If the Pj were independent and free parameters, then minimization of l leads to the3818

result Pj = Nj with variance σ2
Pj
≈ 1/Nj.3819

The get the uncertainty of parameter estimators in a likelihood fit in general, one can use3820

the Cramér–Rao bound, which is a lower bound on the variance of unbiased estimators.3821

It relates the second derivative of the log-likelihood – the Fisher information I(θ) – to3822

the estimator variance:3823

V(θ̂) ≥

(

1 + ∂
∂θ b(θ̂)

)2

I(θ)
, where I(θ) = E

⎡

⎣

(

∂l(x; θ)
∂θ

)2
⎤

⎦ . (6.26)

Here, θ are the model parameters, θ̂ the maximum likelihood, x the observations, b(θ̂)3824

the bias of the estimator, and E denotes the expectation value.3825

The maximum likelihood estimator is unbiased and reaches the Cramér–Rao bound in3826

the high sample limit. If one expands the negative log-likelihood around the minimum,3827

the first derivative term vanishes by definition, while third derivative and higher-order3828

terms are usually negligible. Hence, the log-likelihood is usually of parabolic shape3829

around the minimum. Then, according to Equation 6.26, the estimates’ uncertainty cor-3830

responds to the crossing-point of the log-likelihood with the minimum value plus 0.5.3831

In some cases, usually in the small sample limit, the log-likelihood is not parabolic.3832

However, one could always imagine a transformation of the parameter θ that makes the3833

log-likelihood parabolic in the transformed parameter. Equivalently, one can leave the3834

parameters as they are and find the potentially asymmetric σθ with a parameter scan.3835

This likelihood scan is a common practice in collider experiments. Confidence intervals3836
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Chapter 6 Analysis of triboson production in the standard model

other than the 68 % interval can be found by finding the crossing-point of the likelihood3837

function with other levels. More details about the statistical methods generally used in3838

particle physics can be found in [143, 144].3839

In a typical collider physics analysis, one assumes that the predicted number of events is3840

nearly correct. A signal strength parameter µ is introduced to allow for (small) modifica-3841

tions to the predicted number of signal events. If the prediction is based on a theoretical3842

signal cross-section σth., the measured cross-section is σmeas. = µσth..3843

The predicted number of events is the sum of the numbers of signal and background3844

events: Pj = Sj + Bj. Since the purpose of the fit is to bring the prediction into line with3845

observation, one can incorporate a signal strength into the prediction: Pj = µSj + Bj. In3846

this simple case, the signal strength µ is the one free parameter in the fit.3847

For the search for heavy triboson production in general, the signal in channel j is a sum3848

over all four production processes:3849

Sj = SWWW
j + SWWZ

j + SWZZ
j + SZZZ

j =
4

∑
s=1

S(s)
j , (6.27)

where the index s refers to the signal sources. In one version of the fit, independent3850

signal strengths are associated with each of the four heavy triboson final states:3851

Sj →
4

∑
s=1

µsS
(s)
j . (6.28)

The signal strengths µs do not depend on the channel j but only on the triboson pro-3852

cess s. The negative log-likelihood with four independent signal strengths is3853

l[4] =
M

∑
j=1

⎧

⎨

⎩

( 4

∑
s=1

µsS
(s)
j

)

+ Bj − Nj ln

[

( 4

∑
s=1

µsS
(s)
j

)

+ Bj

]

⎫

⎬

⎭

. (6.29)

In another version of the fit, we are interested in the overall strength of the signal from3854

all four sources, in which case there is only one, global signal strength:3855

Sj →
4

∑
s=1

µS(s)
j = µSj, (6.30)

which is equivalent to imposing the constraint µ1 = µ2 = µ3 = µ4. The one-parameter3856

negative log-likelihood is3857

l[1] =
M

∑
j=1

⎧

⎨

⎩

µ
( 4

∑
s=1

S(s)
j

)

+ Bj − Nj ln

[

µ
( 4

∑
s=1

S(s)
j

)

+ Bj

]

⎫

⎬

⎭

(6.31)

=
M

∑
j=1

⎧

⎨

⎩

µ Sj + Bj − Nj ln

[

µ Sj + Bj

]

⎫

⎬

⎭

. (6.32)

6.10.2 Systematic uncertainties in the likelihood function3858

For the complete likelihood fit, more parameters than the signal strength must be con-3859

sidered, even if they are not the parameters of interest. The systematic uncertainties give3860

rise to such nuisance parameters, which are constrained by auxiliary measurements such3861

140

charlot
Highlight

charlot
Sticky Note
Already mentionned



6.10 Combination and statistical interpretation

as the measurement of lepton selection efficiencies and integrated luminosity. Even if3862

these auxiliary measurements are themselves likelihood fits in the frequentist picture,3863

it is not practical to combine all detailed likelihood functions of the auxiliary mea-3864

surements with the final likelihood function that includes the signal strength. Instead,3865

one takes the nominal result of the auxiliary measurements and their uncertainties and3866

interpolates (or extrapolates) them to get Bayesian prior distributions for all nuisance3867

parameters, which are multiplied with the likelihood function Poisson likelihood func-3868

tion from the previous section. For this interpolation of the prior, an assumption on the3869

kind of probability distribution must be made.3870

For most analyses – including the triboson analysis –, all nuisance parameter constraints3871

can be modeled with one of two distributions: the log-normal distribution or the gamma3872

disribution [145]. Most systematic uncertainties are associated with multiplicative fac-3873

tors that can not be negative. Hence, a Gaussian prior would not be adequate, as it3874

always has a nonvanishing probability for negative values. A better choice is the log-3875

normal distribution, which is only supported for positive values:3876

p(θ) =
1√

2πσ2

1

θ
exp

(

− (lnθ − µ)2

2σ2

)

. (6.33)

The parameters µ and σ2 do not correspond to the mean and variance of the log-normal3877

distribution of θ, but rather to the Gaussian distribution of ln(θ). For the log-normal3878

distribution, the mode, mean and variance are:3879

mean: exp
(

µ + σ2

2

)

, (6.34)

mode: exp
(

µ − σ2
)

, (6.35)

variance: µ2
(

eσ2 − 1
)

. (6.36)

It is not always clear how the nominal value µθ and uncertainty σθ of the nuisance3880

parameter should be mapped to the parameters of the log-normal distribution. The3881

convention followed in this analysis is to map the nominal value to the mode, and the3882

squared uncertainty to the variance, resulting in a system of equations that can be solved3883

numerically.3884

The gamma distribution is used for background estimation nuisance parameters. This3885

can be understood when looking at the case of the extrapolation from a control region3886

(CR) to a signal region (SR) with a transfer factor 1/τ. We want to know the posterior3887

distribution of the expected value µSR in the signal region, given the number of events3888

in the control region nCR. A Poisson distribution connects the observed value in the3889

control region to the expected value:3890

p(nCR|µCR) =
µCR

nCR e−µCR

nCR!
. (6.37)

With the transfer relation, one can get a probability expression that involves µSR:3891

p(nCR|µSR) =
τµSR

nCR e−τµSR

nCR!
. (6.38)

Finally, one uses Bayes theorem to get the posterior distribution p(µSR|nCR):3892

p(µSR|nCR) =
p(nCR|µSR)p(µSR)

p(nCR)
= C · p(nCR|µSR) = C · τµSR

nCR e−τµSR

nCR!
. (6.39)
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Chapter 6 Analysis of triboson production in the standard model

The important step in the last equation is the second one. Since we assume to have no3893

prior information on any of the variables, the ratio p(µSR)/p(nCR) is simply a constant3894

ratio C of flat priors. With this normalization factor, the posterior p(µSR|nCR) fits the3895

definition of a gamma distribution.3896

6.10.3 Likelihood scans and nuisance parameter impact3897

Figure 6.39 shows the WWZ likelihood scans for different values of µWWZ. These scans3898

consider all final states of the full triboson analysis, but for the WWZ the sensitivity is3899

dominated by the four-lepton analysis presented in this chapter. Likelihood values are3900

shown for two different signal definitions. In one version, the VH → VVV process is3901

included, which is the signal that the analysis targets primarily. In the other version,3902

only on-shell VVV production is taken as the signal. When comparing the expected3903

and observed likelihoods that are both indicated in the figure, it becomes clear that the3904

observed on-shell WWZ signal is weaker than expected. However, the observation is3905

still within the 1 σ confidence interval of the prediction, so this is likely a statistical3906

underfluctuation.3907
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Figure 6.39: −2∆ ln L as a function of the signal strength for the WWZ process in gen-
eral (a) and only for on-shell WWZ production without the ZH process (b).

It is also interesting to compare the inclusive fit’s statistical uncertainty with the expecta-3908

tion from the likelihood-free inference ceiling study. For the full analysis, the statistical3909

uncertainty on the signal strength is +0.324
−0.289, while the ceiling study indicated a minimal3910

uncertainty of +0.356
−0.303 for the eµ region alone. It can be concluded that the benefit of3911

including the ee/µµ region is greater than using only the eµ region and improving the3912

signal extraction method.3913

To validate the statistical model and assess the effect of the nuisance parameters on the3914

WWZ signal strength uncertainty, the pulls and impacts of the nuisance parameters are3915

shown in Figure 6.40 for the inclusive WWZ fit, and in Figure 6.41 for the on-shell WWZ3916

signal only. When comparing fit parameter values, one has to make the distinction be-3917

tween pre-fit and post-fit values. The figures only show the 30 nuisance parameters with3918

the largest impact. The signal strengths’ pre-fit values are unconstrained, while the nui-3919

sance parameters are constrained by auxiliary measurements. Comparing the pre-fit3920

and post-fit nuisance parameter constraints, it is possible to understand how much the3921

measurement could tighten the constraints on the nuisance parameter or pull the nom-3922
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Figure 6.40: Impact plots of the dominant nuisance parameters for the total WWZ signal
for the BDT analysis.

inal value away from its pre-fit value. The pulls are shown on the left side of Figures3923

6.40 and 6.41, with the errorbars showing the post-fit uncertainty relative to the pre-fit3924

uncertainty. The measurement is consistent with the auxiliary nuisance measurements3925

if the pulls are small, which is the case for this analysis. Furthermore, the nuisance pa-3926

rameter constraints are not tightened by the measurement, which is generally expected.3927

The four-lepton analysis was not designed to measure any of the nuisance parameters,3928

although this can happen accidentally. However, if the measurement would constrain3929

parameters that clearly can not be measured better than in their respective auxiliary3930

measurement – such as the integrated luminosity – this would hint towards an incon-3931

sistent statistical model.3932

The right side of Figures 6.40 and 6.41 show the nuisance parameter impact on the sig-3933

nal strength measurement. The ±1 σ impacts are evaluated by varying the nuisance3934

parameter by its ±1 σ post-fit uncertainties. The dominant systematic uncertainty is the3935

trigger efficiency uncertainty. As argued in Section 6.9.2, the auxiliary measurement that3936

constrains the trigger efficiency is not optimized for the four-lepton final state, so there3937

is room for improving the full systematic uncertainty of the measurement by revisiting3938

the trigger efficiency measurement. Just after the trigger uncertainty, the lepton selection3939

uncertainties and uncertainty from the tt̄Z background extrapolation follow in place 2, 3,3940

and 4. Since the lepton selection efficiencies were studied very carefully – following the3941

complete auxiliary measurement procedure recommended within the CMS collabora-3942

tion –, it is more challenging to reduce these uncertainties in future measurements. The3943
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Figure 6.41: Impact plots of the dominant nuisance parameters for the WWZ signal with-
out the Higgs process for the BDT analysis.

tt̄Z background estimate uncertainty is strongly affected by the statistical uncertainty in3944

the eµ control region with b jets, so it can be assumed that this uncertainty will reduce3945

for future measurements based on larger datasets. Note that for the inclusive WWZ3946

signal, the lepton selection uncertainties come before the tt̄Z extrapolation uncertainty,3947

while for on-shell production only, this ordering is inverted. On places 6 and 7 are the3948

pileup and luminosity uncertainties, with other systematic uncertainties of similar im-3949

pact being the statistical uncertainties from the limited simulation sample size. Other3950

uncertainties, such as jet related ones, are ranked further down at the level of 1 – 2 %.3951

6.11 Combined triboson measurement results3952

After discussing the four-lepton BDT analysis in detail, this section summarizes the3953

final results of the combined triboson analysis that also included the WWW, WZZ, and3954

ZZZ processes. As only the four-lepton analysis dominates the sensitivity to the WWZ3955

process by a large margin, the WWZ part of the combined results represents the outcome3956

of the analysis presented in this chapter. Figure 6.42 shows the event yields in all bins3957

of the complete published triboson analysis [146], including the seven four-lepton bins3958

that were optimized in this thesis. The figure also shows the yields expected from post-3959

fit predictions and the approximate median significance of each bin. The approximate3960

significance confirms that the eµ region in the four-lepton final state is the most sensitive3961

channel to study the production of three massive gauge bosons.3962
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Figure 6.42: Overview of event yields in all bins of the final CMS massive triboson anal-
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Table 6.19 lists the observed and expected statistical significances of the individual pro-3963

cesses’ signal strengths, as well as the significance of the on-parameter signal where all3964

triboson processes were scaled with one single signal strength. These significances are3965

listed for both the inclusive triboson signal and the on-shell VVV process only. Sev-3966

eral milestones were reached with this measurement. It is the first measurement with3967

a correlated triboson signal above 5 standard deviations significance, meaning that the3968

production of three massive gauge boson has now been observed. Furthermore, the3969

inclusive production of the WWW and WWZ final states are both measured with a sig-3970

nificance above 3 σ, so there is evidence for these processes. If the Higgs associated3971

production is not considered as part of the signal, none of the measurements reaches3972

the 3 σ threshold, so more data or a more sensitive analysis is needed to measure the3973

production of three on-shell vector bosons in the standard model in detail.3974

Since no ZZZ candidate events were observed in the six-lepton final state, the observed3975

significance for ZZZ is zero. However, it is possible to put an upper limit on the signal3976

strenth of this process, which is listed in Table 6.20. If the measured signal strenths are3977

multiplied with the predicted cross section listed in Table 1.1, the following measured3978

cross section measurements for inclusive triboson production are obtained:3979

σVVV = 1009.0+208.3
−195.4(stat)+145.8

−121.0(syst) = 1009.0+255.0
−230.2(tot) fb

σWWW = 587.8+164.0
−153.8(stat)+162.5

−129.9(syst) = 587.8+231.3
−201.2(tot) fb

σWWZ = 303.4+114.7
−102.3(stat)+48.1

−35.8(syst) = 303.4+124.3
−108.7(tot) fb

σWZZ = 204.8+162.9
−113.2(stat)+67.1

−16.9(syst) = 204.8+176.1
−114.5(tot) fb

σZZZ < 198.5 fb
(6.40)
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Process VH as signal VH as background

WWW 3.33 (3.09) 1.63 (1.87)

WWZ 3.35 (4.09) 1.31 (2.15)

WZZ 1.71 (0.69) 1.71 (0.76)

ZZZ 0.00 (0.89) 0.00 (0.90)

combined 5.67 (5.88) 2.90 (3.48)

Table 6.19: Observed (expected) significance (σ) for different analysis options and different
signal processes.

Process VH as signal VH as background

WZZ 6.10 (6.06, 3.83, 2.52) 5.78 (5.95, 3.69, 2.39)

ZZZ 5.35 (11.06, 6.16, 3.49) 5.69 (11.60, 6.31, 3.53)

Table 6.20: Observed (−1σ, median, +1σ expected) 95% CL upper limit on WZZ and ZZZ
signal strength for different analysis options and different signal processes.

A summary of the fitted signal strengths is given in Figure 6.43, which also includes3980

the upper limit for the ZZZ process. Once again, the results are given for both the3981

inclusive VVV final states and the on-shell VVV signal only. The signal-strength figures3982

also include the results of an alternative cut-based analysis that covers the same final3983

states for a cross-check. This cut-based analysis has not been discussed so far, as it was3984

not part of this thesis work. The cut-based analysis uses the same event preselections3985

and categorizations in the four-lepton channel, but unlike the BDT, it only uses two3986

discriminating variables in the eµ and ee/µµ categories respectively to get the bins for3987

the signal extraction.3988

That the sensitivity of the BDT analysis is not dramatically higher than the sensitivity of3989

the cut-based analysis teaches important lessons. To boost the sensitivity with machine-3990

learning methods, it might be necessary to provide more information to the classifiers –3991

such as object identification and isolation variables – for a more optimized event selec-3992

tion. This prospect has been investigated in the scope of this thesis, but such approaches3993

are very challenging to defend because it is not clear how lepton selection uncertainties3994

can be treated.3995

To conclude this presentation of the triboson analysis, two event displays are shown in3996

Figure 6.44. Figure 6.44a shows a WWZ → 4ℓ candidate event. Even though the five-3997

lepton final state was not discussed in detail, Figure 6.44b shows one of the WZZ → 5ℓ3998

event candidates because the five leptons in this event are all electrons. As this thesis has3999

contributed to the treatment of electrons in CMS on many fronts, such as reconstruction,4000

identification, and selection efficiency measurements, this event display is adequate to4001

showcase the benefits of these contributions.4002
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Figure 6.43: Summary plot of the fitted signal strengths for different signal process, in-
cluding VH as signal (a) [146], and not including VH as signal (b). Blue dots and lines
correspond to BDT-based result, black circles and lines correspond to cut-based result.
The stated values come from the BDT-based analysis and include the total uncertainty
and the statistical component of the uncertainty.
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CMS experiment at the LHC, CERN 
Data recorded: 2016-Jul-23 08:13:27.898048 GMT 

Run 277168, Event No. 3219714497 LS 1799WWZ → 4 lepton event

Muon (µ+) 1 
W boson 1
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(a) Event display of WWZ event candidate in the four lepton final state. Two
opposite-charged muons compose the Z boson candidate. The additional eµ
pair associated with the two W bosons has an invariant mass of 128 GeV. The
pink arrow represents the missing transverse momentum pmiss

T associated
with the neutrinos. Only half of the muon detector is illustrated.

Electron 
PT = 59 GeV

Positron 
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Positron 
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Jet 
QCD radiation 
PT = 334 GeV

WZZ → 5 lepton event CMS experiment at the LHC, CERN 
Data recorded: 2016-Oct-09 21:24:05.010240 GMT 

Run 282735, Event No. 989682042 LS 491

(b) Event display of WZZ event candidate in the five electron final state. The
electrons and positron candidates are represented by the green tracks and
towers that represent the energy deposits in the ECAL. The missing trans-
verse momentum pmiss

T from the neutrino is represented by the pink arrow.
The transverse mass mT of the W boson electron and the pmiss

T is 65 GeV.

Figure 6.44: Event displays of WWZ (a) and WZZ (b) event candidates.
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Chapter 74003

Conclusion4004

The proton-proton collision data taken during the LHC Run 2 at
√

s = 13 TeV allows4005

for the exploration of the electroweak scale at the high-energy frontier, testing the limits4006

of the standard model of particle physics in the electroweak and scalar sector. This4007

thesis focused on the measurement of the production of three massive gauge bosons4008

in the four-lepton final state, which covers mostly the WWZ process. This rare process4009

sensitive to anomalous quartic gauge couplings has not been observed to far, and this4010

work raises the first evidence for the inclusive production of the WWZ final state at the4011

CMS experiment. The WWZ cross-section measurement is now part of the results of the4012

large physics program of the CMS collaboration, as shown in Figure 7.1.4013
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Figure 7.1: Summary of the CMS cross section measurements of standard model pro-
cesses [147].

Combining results from all VVV final states, the production of three massive vector4014

bosons has now been observed at the 5 σ level for the first time. This sensitivity mile-4015

stone opens up possibilities for new standard model precision measurements, such as4016

constraints on anomalous quartic gauge couplings in the framework of effective field4017

theory. As no beyond-the-standard model effects have directly been observed by the4018

LHC so far, new physics might possibly appear at energy scales beyond the LHC en-4019

ergy. Therefore, the future focus of triboson measurements will be on the high-mass4020

regime, where backgrounds are reduced, and it is possible to use more inclusive selec-4021
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tions compared to the selections used in this thesis’s analysis. Semi-hadronic final states4022

should also be considered, in particular, those signatures with unresolved jets from the4023

decay of a boosted vector boson.4024

Concerning the fully leptonic WWZ → 4ℓ channel as measured in this thesis, LHC4025

measurements will still be statistically limited for many years to come. Here, the main4026

path towards a more sensitive analysis would be at the level of the event selection, in4027

particular the lepton selections. For the analysis presented in this thesis, the selections4028

were chosen such that the fake-lepton induced background is suppressed. The lepton4029

selection algorithms used in CMS are already highly optimized, which this thesis also4030

contributed to by reoptimizing the multivariate identification of electrons for 2017 data-4031

taking conditions. Hence, developing a reliable lepton fake rate estimation method for4032

the four-lepton analysis would be an important next step, allowing for looser lepton4033

selections without relying on the fake rate being well modeled in the simulation. The4034

optimization of the multivariate electron identification presented in this thesis cumu-4035

lated in the algorithm used for the analysis of the whole Run 2 dataset within the CMS4036

collaboration.4037
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Acronyms List4038

ALICE A Large Ion Collider Experiment.4039

AMS approximate median significance.4040

APD avalanche photodiode.4041

ASIC application-specific integrated circuit.4042

ATLAS A Toroidal LHC ApparatuS.4043

AUC Area Under Curve.4044

AWAKE Advanced WAKEfield Experiment.4045

BDT Boosted Decision Tree.4046

BEH Brout-Englert-Higgs.4047

BSM Physics beyond the Standard Model.4048

CASTOR Centauro and Strange Object Research Calorimeter.4049

CB crystal ball.4050

CERN European Organization for Nuclear Research (French: Organisation européenne4051

pour la recherche nucléaire).4052

CHS Charged Hadron Subtraction.4053

CMS Compact Muon Solenoid.4054

CMSSW CMS Software.4055

CPU Central Processing Unit.4056

CSC Cathode Strip Chamber.4057

DAQ Data Aquisition.4058

DQM Data Quality Monitoring.4059

DT Drift Tube.4060

DY Drell-Yan.4061

ECAL Electromagnetic Calorimeter.4062

EDM Event Data Model.4063

ELENA Extra Low ENergy Antiproton.4064

FORTRAN FORmula TRANslator.4065

GED Global Event Description.4066

GP Gaussian Process.4067

GPU Graphics Processing Unit.4068

GSF Gaussian Sum Filter.4069
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Acronyms List

HCAL Hadronic Calorimeter.4070

HEP High Energy Physics.4071

HF Heavy Flavor.4072

HL-LHC High Luminosity LHC.4073

HLT High Level Trigger.4074

HPD Hybrid Photodiode.4075

ICFA International Committee for Future Accelerators.4076

ID identification.4077

JER Jet Energy Resolution.4078

JES Jet Energy Scale.4079

KDE Kernel Density Estimate.4080

KF Kalman Filter.4081

KS Kolmogorov-Smirnov.4082

L1 Level-1.4083

LEP Large Electron-Positron Collider.4084

LF Light Flavor.4085

LHC Large Hadron Collider.4086

LINAC Linear Accelerator.4087

LUT look-up table.4088

MC Monte Carlo.4089

MET missing transverse energy.4090

ML Machine Learning.4091

MSE mean squared error.4092

MSGC Micro-Strip Gas Chamber.4093

MVA Multivariate Analysis.4094

NNLS non-negative least squares.4095

NpC neutral-proportional-to-charge.4096

OOT out-of-time.4097

PDF Parton Density Function.4098

PF particle-flow.4099

PS Proton Synchrotron.4100

PSB Proton Synchrotron Booster.4101

PUPPI pileup per particle identification.4102

QCD Quantum Chromodynamics.4103

QED Quantum Electrodynamics.4104

RF radiofrequency.4105
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Acronyms List

ROC receiver operating characteristic.4106

RPC Resistive Plate Chamber.4107

SiPM Silicon Photomultiplier.4108

SPS Super Proton Synchrotron.4109

TEC Tracker Endcaps.4110

TIB Tracker Inner Barrel.4111

TID Tracker Inner Disks.4112

TMVA Toolkit for Multivariate Data Analysis with ROOT.4113

TOB Tracker Outer Barrel.4114

VBF Vector Boson Fusion.4115

VBS Vector Boson Scattering.4116

VPT vacuum phototriodes.4117

ZDC Zero-Degree Calorimeter.4118
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Titre : Mesure de la production de trois bosons massifs et identification des électrons avec le détecteur CMS auprès du LHC

Mots clés : production de tribosons, identification des électrons, éxperience CMS, LHC, modèle standard, apprentissage profond

Résumé : Cette thèse présente la mesure de la production de
trois bosons de jauge massifs dans des collisions entre protons à
13 TeV avec l’expérience CMS auprès du Grand collisionneur de
hadrons (LHC) du CERN. Le travail de cette thèse se concentre
sur la production de deux bosons W et d’un boson Z (WWZ), où
les trois bosons se désintègrent en électrons ou en muons. Ce
processus a un bruit de fond réductible relativement faible car
le boson Z est entièrement reconstruit, et une section efficace
plus élevée que les processus avec plusieurs bosons Z. L’analyse
couvre 137 fb−1de données enregistrées pendant la deuxième
phase d’exploitation du LHC (2015 – 2018).
La production de trois bosons de jauge massifs est un
phénomène qui n’a pas encore été observé, mais elle est prédit
par le modèle standard de la physique des particules. Ces me-
sures sont donc un test du modèle standard et un défis de sen-
sibilité. Ce processus est sensible aux couplages de jauge tri-
linéaired et quartiques, qui pourraient être modifiés par la phy-
sique au-delà du Modèle Standard. En outre, la production de
tribosons est un bruit de fond de plus en plus important pour les
recherches directes de nouvelles physiques et les mesures de
précision du modèle standard.
Les couplages de jauge trilinéaires sont également accessibles
dans le processus diboson, mais le sondage des couplages quar-
tiques nécessite la mesure de la diffusion de bosons massifs
(VBS) ou de la production de tribosons. Le processus VBS isole
bien les auto-couplages des bosons massifs, mais la produc-
tion de triboson est dominée par des diagrammes sans aucun
auto-couplage. Cependant, cela joue un rôle mineur dans les re-
cherches de nouvelles physiques aux échelles d’énergie au-delà

de l’échelle électrofaible, où la production de tribosons a l’avan-
tage de sonder un état final plus massif.
L’analyse présentée dans cette thèse établit la production WWZ
avec une signification statistique de 3.35 écarts-types, qui est
réduit à 1.31 écarts-types si les bosons sont non-virtuels. Com-
binée avec d’autres analyses couvrant les autres états finals de
tribosons, cette mesure a contribué à une observation d’une si-
gnification statistique de 5.67 écarts-types de la production de
trois bosons de jauge massifs (2.90 écarts-types pour les bosons
non-virtuels). Les résultats sont en accord avec les prédictions
du modèle standard. De même, cette thèse présente des études
sur la sensibilité du processus WWZ aux couplages de jauge
quartiques anormaux dans le cadre d’une théorie effective des
champs.
Comme la production de triboson est un processus rare,
sa détection requiert une bonne efficacité d’identification des
électrons et des muons. Parmi ces deux types de leptons, les
électrons sont les plus difficiles à mesurer. Par conséquent, ce
travail de thèse inclut une amélioration rigoureuse de la sélection
d’électrons multivariée basée sur l’algorithme Boosted Decision
Tree (BDT), utilisé dans le cadre de la collaboration CMS depuis
la première période d’exploitation du LHC. Cette optimisation per-
met ainsi de conserver une identification des électrons très per-
formante dans la deuxième période malgré le fait que le nombre
d’interactions proton-proton par croisement de faisceaux de parti-
cules a considérablement augmenté. L’algorithme d’identification
d’électrons multivariée développé dans cette thèse est désormais
devenu l’algorithme standard dans les analyses de CMS pour
toutes les données de la deuxième phase du LHC.

Title : Measurement of triboson production in the multilepton final state and electron studies with the CMS experiment at the LHC

Keywords : triboson production, electron identification, CMS experiment, LHC, standard model, deep learning

Abstract : This thesis reports on the measurement of the produc-
tion of three massive gauge bosons in proton-proton collisions at
13 TeV with the CMS experiment at the CERN Large Hadron Col-
lider (LHC). The thesis work focuses on the production of two
W bosons and one Z boson (WWZ), decaying to either electrons
or muons. This process has relatively little reducible background
because of the fully reconstructed Z boson, and a higher produc-
tion cross-section than processes with more Z bosons. The mea-
surement considers 137 fb−1of collision data recorded during the
the second LHC run (2015 – 2018).
The production of three massive gauge bosons is a so-far unob-
served phenomenon predicted by the standard model of particle
physics. The process is sensitive to the trilinear and quartic gauge
couplings, which might be modified by physics beyond the stan-
dard model. Additionally, triboson production is an increasingly
important background to both direct searches for new physics and
standard model precision measurements.
While trilinear gauge couplings are also accessible via diboson
production, probing quartic couplings requires the measurement
of Vector Boson Scattering (VBS) or triboson production. The
VBS process better isolates the vector boson self-couplings, whe-
reas triboson production is mainly affected by diagrams without
any vector boson self-interaction. However, this plays a minor role
in searches for new physics at energy scales beyond the elec-
troweak scale, where triboson production has the advantage of

probing a more massive final state.
The analysis presented in this thesis establishes evidence for the
WWZ final state with a significance of 3.35 standard deviations
(1.31 standard deviations if the vector bosons are required to
be on-shell). Combined with other analyses covering the remai-
ning massive triboson final states, this measurement contributed
to observing the production of three massive gauge bosons with
a significance of 5.67 standard deviations (2.90 standard devia-
tions for on-shell vector bosons). All results are in agreement with
the standard model predictions. Beyond that, this thesis presents
studies of the WWZ processes sensitivity to anomalous quartic
gauge couplings in an effective field theory framework.
Triboson production is a rare process that requires high electron
and muon identification efficiencies. Among these two types of
leptons, electrons are more challenging to measure. Therefore,
this thesis includes a rigorous update and optimization of the mul-
tivariate electron selection based on the Boosted Decision Tree
(BDT) algorithm, applied within the CMS collaboration since the
beginning of LHC data-taking. As a result, the identification of
electrons remains very performant, even at a significant increase
in the number of proton-proton interactions per bunch crossing.
The multivariate electron identification algorithm produced for this
thesis is now the default for CMS analyses with data from the se-
cond LHC run.
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