

Higgs boson mass and on-shell width measurements

F. Errico¹ ¹University of Florida

12/11/2019

on behalf of the HZZ mass & on-shell width group

AN-19-248

2

1

Available on the CMS information server

CMS AN-19-248

2020/12/10 Archive Hash: bdb4e67-D Archive Date: 2020/12/10

Higgs boson mass and on-shell width measurements in the four-lepton final state using full Run 2 data

HZZ mass and on-shell width measurements team CMS collaboration

Abstract

The Higgs boson mass and on-shell width are measured in the H \rightarrow ZZ^{*} \rightarrow 4 ℓ ($\ell = e, \mu$) decay channel using data collected by the CMS detector at the LHC at a centerof-mass energy $\sqrt{s} = 13$ TeV during Run 2, corresponding to an integrated luminosity of 137 fb⁻¹.

This box is only	visible in draft mode. Please make sure the values below make sense.
	··· · · · · · · · · · · · · · · · · ·
PDFAuthor:	Higgs boson mass and on-shell width working group
PDFTitle:	Higgs boson mass measurement in the four-lepton final state using full Rur
	2 data
PDFSubject:	CMS
PDFKeywords:	CMS, physics, Higgs boson, mass, width, four-lepton
Please also verif	y that the abstract does not use any user defined symbols

Conte	ents
1	Introduction
2	Datasets
3	Objects
	3.1 Electrons
	3.2 Muons
	3.3 Photons
	3.4 Jets and MET
4	Event Selection
5	Signal modelling
	5.1 Signal normalization
	5.2 Signal parametrization
6	Expected $m_{\rm H}$ uncertainties using a 1D pdf
	6.1 Building the 1D pdf
	6.2 Expected $m_{\rm H}$ measurement uncertainties (MC)
7	Expected $m_{\rm H}$ uncertainties using a 2D pdf
	7.1 Event-by-event mass uncertainty: $D_{m_{ev}}$
	7.2 Result using 2D model \dots
8	Expected $m_{\rm H}$ uncertainties using a 2D pdf with $p_{\rm T}$ improvements.
	8.1 New muon reconstruction improvements
	8.2 Refitting muon and electron pT with a Z1-mass constraint
	8.3 Expected mH measurement uncertainties (MC) and relative improvements 2
9	Matrix Element-based Kinematic Discriminant (D_{kle}^{kin})
	9.1 D_{ii}^{kin} with new muon reconstruction
10	Background Estimation
10	10.1 Jrreducible background
	10.2 Reducible background
11	Vields and distributions
	11.1 Yields
	11.2 Distributions
12	Expected $m_{\rm tr}$ uncertainties using a 3D pdf
	12.1 3D model: $f(m, D, D^{kin})$
	12.1 OD model: $\mathcal{Q}(m_{4\ell}, \mathcal{D}_{bkg})$
12	Sustamatic uncortainties
15	13.1 Uncertainty on lenton momentum scale and resolution
	13.2 Lopton officioncy
	12.2 Theory gross section
	13.5 Theory cross section
	13.4 Luminosity
14	13.5 Data-ariven samples
14	Figgs mass measurement results
	14.1 Final Kesults 14.2 Development evolution
	14.2 Dominant systematics

43		14.3 Comparison with older CMS and ATLAS results	5,							32
44		14.4 Validation using 4 <i>l</i> decays	• •							33
45	15	Higgs on-shell width measurement results	• •							33
46		15.1 Dominant systematics	•							33
47		15.2 Comparison with older CMS and ATLAS results	3,							33
48	16	Conclusions	• •							33
49	А	Ad hoc d_0 studies	• •							36
50		A.1 The sign of qd_0	• •							36
51		A.2 Correlation between $p_{\rm T}$ bias and qd_0	• •							38
52	В	Impact of a vertex constraint					•		•	42

Sample used

MC samples used are the same as HIG-19-001 [List in backup]. In sync with other groups.

Signal considered: ggF, VBF, VH (WH and Z), ttH

Background considered: qqZZ, ggZZ, Z+X

Data (SingleMuon and SingleElectron) used **only** in the window below 120 GeV.

UFFIcipiects and selection

The analysis follows the same object definition as in HIG-19-001 for each year.

Event selection follows the same step as in HIG-19-001:

- trigger selection
- vertex selection
- selection of the four leptons
- selection of the ZZ candidate.

In case that more than one ZZ candidate is found to fullfil the selection, the one with the highest value of D_{kin} is chosen.

UFFICESTIC Signal normalisation

The normalisation of the Higgs boson signal is obtained, from simulation, looking at the expected signal yields in the range [105, 140] GeV, using 120, 124, 125, 126 and 130 GeV samples. Fit line is a 2nd order polynomial

UF Signal parametrisation

The signal lineshape is obtained from the fit of the Higgs boson mass distribution, in the range [105, 140] GeV:

using a DSCB function for mass measurement [+ Landau for VH]

Fit parameters are derived as a function of mass, using a second order polynomial:

Obtained from the fit of the 125 GeV sample

Obtained from the simultaneous fit of all the samples

UFFISignal parametrisation

The signal lineshape is obtained from the fit of the Higgs boson mass distribution, in the range [105, 140] GeV:

• using a DSCB function for mass measurement [+ Landau for VH]

UFFISignal parametrisation

The signal lineshape is obtained from the fit of the Higgs boson mass distribution, in the range [105, 140] GeV:

- using a DSCB function for mass measurement [+ Landau for VH]
- using a convolution of a BW and a DSCB for on-shell width measurement, using only 125 GeV ggF sample.

EBE correction

Mass uncertainty is one of the three variables used to build the three-dimensional maximum likelihood used to extract the Higgs boson mass [the other two are the mass itself and the kinematic discriminant D^{kin}bkg].

Lepton uncertainty on momentum measurement is predicted on a per-lepton basis and then propagated to the four-lepton case to predict the **mass error** on an event-by-event (EBE) basis.

Lepton error enters into the mass calculation as:

$$m_{0} = F(p_{T1}, \phi_{1}, \eta_{1}; p_{T2}, \phi_{2}, \eta_{2}; p_{T3}, \phi_{3}, \eta_{3}; p_{T4}, \phi_{4}, \eta_{4})$$

$$\delta m_{i} = F(...; p_{Ti} + \delta p_{Ti}, \phi_{i}, \eta_{i}; ...) - m_{0}$$

$$\delta m = \sqrt{\delta m_{1}^{2} + \delta m_{2}^{2} + \delta m_{3}^{2} + \delta m_{4}^{2}}$$

FIGRIDA EBE correction

Lepton uncertainty is evaluated in different steps:

- 1. Fit* the invariant mass distribution of the di-lepton system
- 2. substitute σ of the Crystall-Ball with $\lambda \propto \delta m$ keeping all the other parameters fixed. Here λ is a floated parameter to be fitted and represents correction of pT error.
- 3. re-fit the distribution in order to take the λ correction
- 4. check the procedure comparing dilepton mass resolution before and after lepton correction

*Function used to fit the distribution:

- Breit-Wigner (mass and Γ are fixed to PDG value) convoluted with a Crystal Ball for the signal
- Exponential function for the **background**

UF FLORE BE: Z CLOSURE test

Z boson mass uncertainty **before** and **after** the event-by-event correction. As we can see, with λ corrections applied, we predict per-event mass uncertainties correctly (better than within +/-10%).

[the dashed lines stands for the 20% uncertainty assigned to the resolution in 2016]

UF FLORING BE: H closure test

(c) 2e2µ

H boson mass uncertainty **before** and **after** the event-by-event correction. As we can see, the λ correction improves the uncertainty since the measured one is in agreement with the predicted ones.

UF FLORD-Shell Z constraint

A kinematic fit is performed using a mass constraint on the intermediate on-shell Z resonance in order to improve mass resolution

 $\mathcal{L}(p_T^1, p_T^2 | p_T^{reco1}, \sigma p_T^1, p_T^{reco2}, \sigma p_T^2) = Gauss(p_T^{reco1} | p_T^1, \sigma p_T^1) \cdot Gauss(p_T^{reco2} | p_T^2, \sigma p_T^2) \cdot \mathcal{L}(m_{12} | m_Z, m_H)$

UF Background estimation CMS

The irreducible background shape is estimated for simulation using a Bernstein function of the 3rd order.

The reducible background (Z+X) is currently obtained for 2017 and 2018 scaling according to the luminosity the shape of 2016 obtained in HIG-16-041.

UFFICE Id and distributions

channel	4μ	4e	2e2µ+2µ2e	inclusive
qqZZ	-	-	-	223.79
ggZZ	-	-	-	22.50
Z+X	-	-	-	136.84
Sum of background	-	-	-	383.13
Signal ($m_H = 125$ GeV)	-	-	-	243.38
Total expected	-	-	-	626.51
Observed	-	-	-	-

Inclusive MC Mass Baseline

[105, 140] GeV

Inclusive MC Mass Err Baseline

UFERFORD Scale uncertainty

- 1. Fit Z boson mass in both data and MC (in several pT eta ranges)
- 2. In each pT-eta bin, evaluate (meanDATA meanMC) / meanPDG
- 3. Propagate these values to leptons and evaluate again the Higgs boson mass in three configurations:
 - A. using nominal pT
 - B. using $pT^*(1 + offset) \longrightarrow UP$
 - C. using $pT^*(1 offset) \longrightarrow DOWN$
- 4. Take the max between (mean_ H_{nom} mean_ H_{up}) / mean_ H_{nom} and (mean_ H_{nom} mean_ H_{down}) / mean_ H_{nom}

UFERFORD Scale uncertainty

Flepton scale uncertainty

In the electron case, scale and smearing provided by the eGammaPOG have been also taken into account.

4e final state	Lepton scale	Scale corr (POG)	Smearing corr (POG)	ТОТ
2016	0.08%	0.04%	<< 0.01%	0.09%
2017	0.10%	0.07%	<< 0.01%	0.12%
2018	0.09%	0.03%	<< 0.01%	0.09%
HIG-16-041	0.30%	Not taker	n into account	0.30%

UF FLORIDA Systematic used

Dominant systematic uncertainties:

- lepton energy scale:
 - ✤ 0.02% (old 0.04%) for muon
 - 0.1-0.15% (old 0.3%) for electron [2016-2017/8]
- lepton energy resolution ->20%

Other systematic uncertainties used are [same for all three years]:

- lepton ID and reco efficiency -> 2.5 2.9% depending on the final state
- theory cross section
- luminosity -> 2.6%
- data-driven background —> vary from 36% (4mu) and 43% (4e)

Figgs boson mass result EXPECTED [in GeV]

	Expected uncertainty	4μ	4e	2e2µ	2µ2e	inclusive	(Stat only)
	- 3D model + refit	-	-	-	-	-0.128/+0.127	-0.12/+0.12
[3D model	-	-	-	-	-0.136/+0.135	-0.129/+0.130
	2D model	-	-	-	-	-0.142/+0.141	-0.135/+0.136
	1D model	-	-	-	-	-0.161/+0.159	-0.155/+0.155

Expected uncertainty	HIG-16-041	New
3D model + refit	-0.257/+0.255	-0.128/+0.127
3D model	-0.279/+0.278	-0.136/+0.135
2D model	-0.289/+0.287	-0.142/+0.141
1D model	-0.324/+0.321	-0.161/+0.159

→ 1D model = pdf(m)

- **2D** model = pdf(m, σ_m)
- **3D model = pdf(m, \sigma_m, D_{kin})**
- 3D model + refit = pdf(m, σ_m , D_{kin}) + on-shell Z constrain

Conclusion

Higgs boson mass and on-shell width measurements have been presented. Many steps of the analysis have been already done; others are "work in progress".

Looking at expected results:

- mass measurement —> from 0.258 GeV to 0.128 GeV
- on-shell width measurement —> obtained results but more checks are needed

Started to have a look at **UL samples** (DY and data in m < 120 GeV):

- Rochester muon correction ready —> presented during muon POG (06/12)
- HZZ electron BDT —> which is the status?

Parallel works (not implemented in the AN) are still ongoing to further improve the analysis:

- new muon reconstruction -> expect O(10%) improvement on m_H resolution
- lepton energy scale and resolution studies —> resolution from 20% to 10%
- 2D model with σ_M categorisations

Backup

UF FLORI Signal sample used

2016

/GluGluHToZZTo4L_M125_13TeV_powheg2_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6v1/MINIAODSIM

/VBF_HToZZTo4L_M125_13TeV_powheg2_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6v1/MINIAODSIM

/WplusH_HToZZTo4L_M125_13TeV_powheg2-minIo-HWJ_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6v1/MINIAODSIM

/WminusH_HToZZTo4L_M125_13TeV_powheg2-minlo-HWJ_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6v1/MINIAODSIM

/ZH_HToZZ_4LFilter_M125_13TeV_powheg2-minlo-HZJ_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6v1/MINIAODSIM

/ttH_HToZZ_4LFilter_M125_13TeV_powheg2_JHUGenV709_pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6v1/MINIAODSIM

/bbH_HToZZTo4L_M125_13TeV_JHUgenV702_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v2/MINIAODSIM 2017

/GluGluHToZZTo4L_M125_13TeV_powheg2_JHUGenV7011_pythia8/ RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/ MINIAODSIM

/VBF_HToZZTo4L_M125_13TeV_powheg2_JHUGenV7011_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext2-v2/MINIAODSIM

/WplusH_HToZZTo4L_M125_13TeV_powheg2-minlo-HWJ_JHUGenV7011_pythia8/ RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM

/WminusH_HToZZTo4L_M125_13TeV_powheg2-minlo-HWJ_JHUGenV7011_pythia8/ RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM

/ZH_HToZZ_4LFilter_M125_13TeV_powheg2-minlo-HZJ_JHUGenV7011_pythia8/ RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM

/ttH_HToZZ_4LFilter_M125_13TeV_powheg2_JHUGenV7011_pythia8/ RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v2/MINIAODSIM

/bbH_HToZZTo4L_M125_13TeV_JHUGenV7011_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14-v1/MINIAODSIM

2018

/GluGluHToZZTo4L_M125_13TeV_powheg2_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM
/VBF_HToZZTo4L_M125_13TeV_powheg2_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM
/WplusH_HToZZTo4L_M125_13TeV_powheg2-minlo-HWJ_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM
/WminusH_HToZZTo4L_M125_13TeV_powheg2-minlo-HWJ_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM
/ZH_HToZZ_4LFilter_M125_13TeV_powheg2-minlo-HZJ_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM
/ttH_HToZZ_4LFilter_M125_13TeV_powheg2_JHUGenV7011_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v2/MINIAODSIM
/bbH_HToZZTo4L_M125_13TeV_JHUGenV7011_pythia8/ BunllAutump18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

UF FLORIDA Bkg sample used

2016

/ZZTo4L_13TeV_powheg_pythia8_ext1/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo4e_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo4mu_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo4tau_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TrancheIV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo2e2mu_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo2e2tau_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/GluGluToContinToZZTo2mu2tau_13TeV_MCFM701_pythia8/RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6-v1/MINIAODSIM

/DYJetsToLL_M-50_TuneCUETP8M1_13TeV-amcatnloFXFX-pythia8/ RunIISummer16MiniAODv2-PUMoriond17_80X_mcRun2_asymptotic_2016_TranchelV_v6_ext2-v1/MINIAODSIM 2017

/ZZTo4L_13TeV_powheg_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM

/GluGluToContinToZZTo4e_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/GluGluToContinToZZTo4mu_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/GluGluToContinToZZTo4tau_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/GluGluToContinToZZTo2e2mu_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/GluGluToContinToZZTo2e2tau_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/GluGluToContinToZZTo2mu2tau_13TeV_MCFM701_pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v2/MINIAODSIM

/DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/RunIIFall17MiniAODv2-PU2017_12Apr2018_94X_mc2017_realistic_v14_ext1-v1/MINIAODSIM

2018

/ZZTo4L_TuneCP5_13TeV_powheg_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext1-v2/MINIAODSIM

/ZZTo4L_TuneCP5_13TeV_powheg_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext2-v2/MINIAODSIM

/GluGluToContinToZZTo4e_13TeV_MCFM701_pythia8/ RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

/GluGluToContinToZZTo4mu_13TeV_MCFM701_pythia8/ RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

/GluGluToContinToZZTo4tau_13TeV_MCFM701_pythia8/ RunllAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v1/MINIAODSIM

/GluGluToContinToZZTo2e2mu_13TeV_MCFM701_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v3/MINIAODSIM

/GluGluToContinToZZTo2e2tau_13TeV_MCFM701_pythia8/ RunlIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v3/MINIAODSIM

/GluGluToContinToZZTo2mu2tau_13TeV_MCFM701_pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15-v4/MINIAODSIM

/DYJetsToLL_M-50_TuneCP5_13TeV-amcatnloFXFX-pythia8/ RunIIAutumn18MiniAOD-102X_upgrade2018_realistic_v15_ext2-v1/MINIAODSIM

Higgs boson on-shell width result EXPECTED [in GeV]

Obtained very first results: more studies are on-going to double check them

UFISITY of 2016 impact plot

CMS/

