

Laure Massacrier,

Laboratoire SUBATECH Nantes, Soon at LAL/IPN Orsay

On the work of B. Trzeciak, R. Mikkelsen, Z. Yang and AFTER simulation group

Rencontres QGP France 2014, 15-18 Septembre 2014 Etretat, France

OUTLINE

 \Box Simulations of a proton beam (7 TeV) on a proton target (\sqrt{s} = 115 GeV)

- Charged particle multiplicity (minimum bias)

Quarkonium yields in pH, pA ($\sqrt{s_{NN}}$ = 115 GeV), PbA ($\sqrt{s_{NN}}$ = 72 GeV)

 \Box Simulations of a proton beam (7 TeV) on a proton target (\sqrt{s} = 115 GeV)

- Fast simulations for quarkonia using LHCb reconstruction parameters (minimum bias)

□ Simulations of a proton beam (7 TeV) on a Pb target ($\sqrt{s_{NN}}$ = 115 GeV)

- Full simulations using LHCb detector reconstruction (minimum bias)

TALKS ON SIMULATION DURING AFTER WORKSHOPS

3-13 february 2013 (Trento) :

https://indico.in2p3.fr/conferenceTimeTable.py?confld=7326#20130204

- Tools for Simulations, S. Porteboeuf-Houssais
- Aliroot for AFTER, I. Hrivnacova
- Summary of WG on simulations, A. Rakotozafindrabe
- 12-17 januray 2014 (Les Houches)

https://indico.in2p3.fr/conferenceTimeTable.py?confld=8591#20140112

- AFTER@LHC in a few figures, C. Hadjidakis
- Overview of MC tools, L. Massacrier
- First simulations with a LHCb-like forward detector for AFTER, Z. Yang
- Summary of WG on simulations, C. Hadjidakis

NUMBER OF CHARGED PARTICLES IN MB pp @ \sqrt{S} = 115 GEV

AFTER workshop les Houches, January 2014 AFTER simulation group

EPOS 1.6.5 Number of generated events: 1000

 $dN_{ch}/d\eta \mid_{\eta=0} \sim 3$

PYTHIA 8.170 Number of generated events: 10⁶

 $dN_{ch}/d\eta \mid_{\eta=0} \sim 3.5$

Rapidity shift: $\Delta y = \tan^{-1}\beta \approx 4.8$ $y_{CM} = 0 \rightarrow y_{lab} \approx 4.8$

QUARKONIUM YIELDS

In pH and pA (115 GeV/c)

Target	∫£ (fb-¹.yr-¹)	N(J/Ψ) yr ⁻¹ = A <i>L</i> ℬσ _Ψ	N(Υ) yr ⁻¹ =A <i>L</i> ℬσ _Υ
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10 ⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³
Target	∫£ (fb-¹.yr-¹)	N(J/Ψ) yr-1 = A£ℬσ _Ψ	N(Υ) yr-1 =A£ℬσ _Υ
Target 1cm Be	∫£ (fb ^{.1} .yr ^{.1}) 0.62		
		$= \mathbf{A} \mathcal{L} \mathcal{B} \sigma_{\Psi}$	=ALBor
1cm Be	0.62	= Α£βσ _Ψ 1.1 10 ⁸	=Α <i>L</i> ℬσ _γ 2.2 10 ⁵
1cm Be 1cm Cu	0.62 0.42	= Α <i>L</i> Bσ _Ψ 1.1 10 ⁸ 5.3 10 ⁸	=A <i>L</i> Bσ _γ 2.2 10 ⁵ 1.1 10 ⁶
1cm Be 1cm Cu 1cm W	0.62 0.42 0.31	 = ALBσ_y 1.1 10⁸ 5.3 10⁸ 1.1 10⁹ 	=A£βσ _γ 2.2 10 ⁵ 1.1 10 ⁶ 2.3 10 ⁶

3.8 10⁻⁶

RHIC dAu 62GeV

In PbA (72 GeV/c)

Target	∫£ (nb-¹.yr-¹)	N(J/Ψ) yr ⁻¹ = AB <i>L</i> ℬσ _Ψ	N(Υ) yr ⁻¹ =AB <i>L</i> ℬσ _Υ
1 m Liq. H ₂	800	3.4 10 ⁶	6.9 10 ³
1cm Be	25	9.1 10 ⁵	1.9 10 ³
1cm Cu	17	4.3 10 ⁶	0.9 10 ³
1cm W	13	9.7 10 ⁶	1.9 10 ⁴
1cm Pb	7	5.7 10 ⁶	1.1 10 ⁴
LHC PbPb 5.5 TeV	0.5	7.3 10 ⁶	3.6 10 ⁴
RHIC AuAu 200GeV	2.8	4.4 10 ⁶	1.1 10 ⁴
RHIC AuAu 62GeV	0.13	4.0 10 ⁴	61

pp : 1000 times more statistics than at RHIC (\sqrt{s} = 200 GeV) and comparable statistics to LHCb with a 1m H₂ target pA: 100 times more statistics than at RHIC (dAu \sqrt{s} = 200 GeV) with a 1cm Pb target

1.2 10⁴

18

Detailed study of quarkonium production and CNM effects

PbA: similar statistic as at RHIC (Au-Au $\sqrt{s_{NN}} = 200 \text{ GeV}$) and 2 order of magnitude larger than at RHIC (Au-Au $\sqrt{s_{NN}} = 62 \text{ GeV}$) with a 1cm thick Pb target

Detailed study of quarkonium states

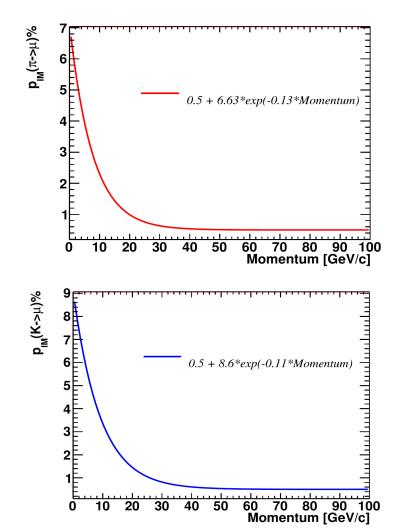
FAST SIMULATIONS FOR QUARKONIA (pp \sqrt{s} = 115 GeV) **USING LHCB RECONSTRUCTION PARAMETERS**

□ Simulations with Pythia 8.185

□ LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies...)

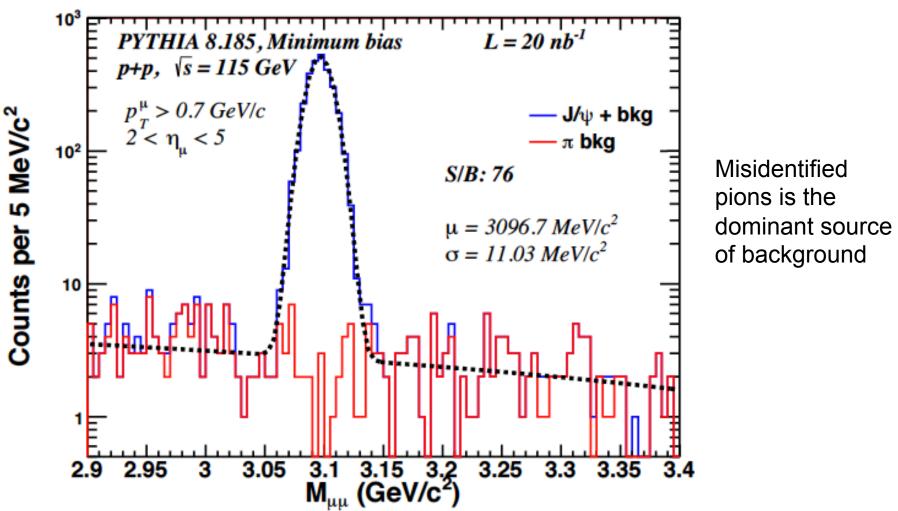
Requirements

Momentum resolution : $\Delta p/p = 0.5\%$ Muon identification efficiency: 98%


Cuts at the single muon level

 $2 < \eta_{\mu} < 5$ $p_{T}^{\mu} > 0.7 \text{ GeV/c}$

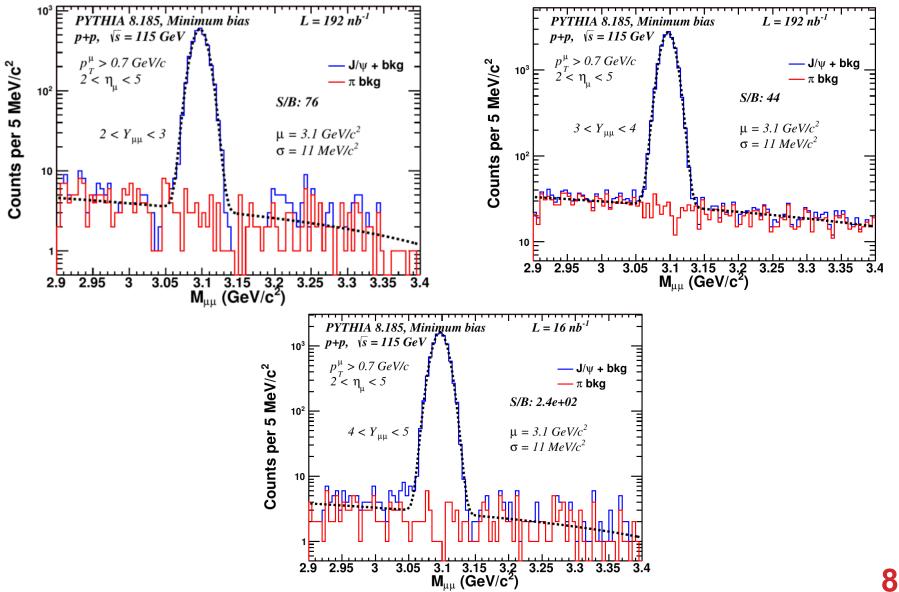
Muon misidentification


If π and K decay before the calorimeters (12m), they are rejected by the tracking Otherwise a misidentification probability is applied

Performance of the muon identification at LHCb, F. Achilli et al, arXiv:1306.0249

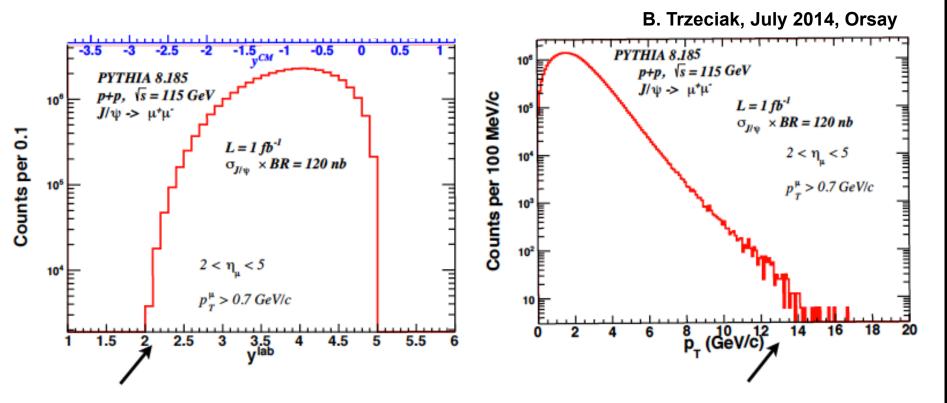
$J/\Psi \rightarrow \mu^+\mu^-$ IN MB pp @ 115 GEV

□ For 1m of H target and few tens of seconds of data taking



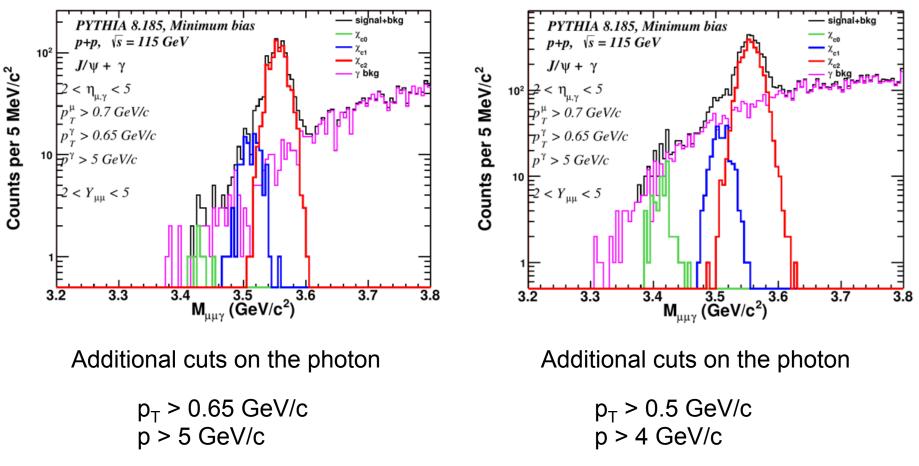
B. Trzeciak, July 2014, Orsay

$J/\Psi \rightarrow \mu^+\mu^-$ IN MB pp @ 115 GEV (BINS IN RAPIDITY)


□ For 1m of H target and few minutes of data taking

$J/\Psi \rightarrow \mu^+\mu^-$ IN MB pp @ 115 GEV (Y_{LAB} AND P_T REACH)

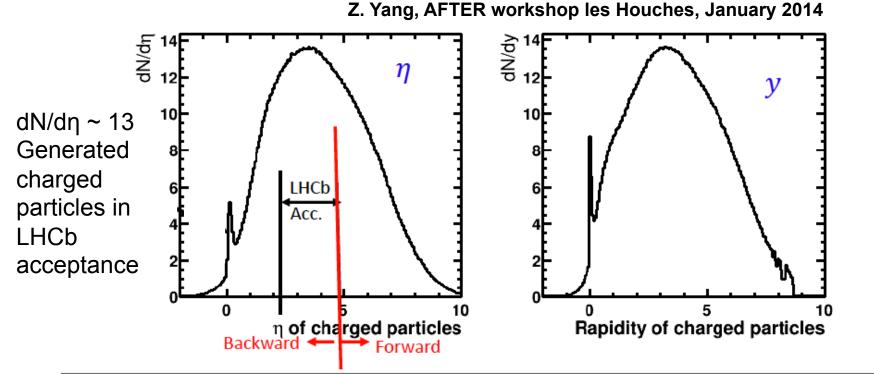
□ For 1m of H target and 2 weeks of data taking

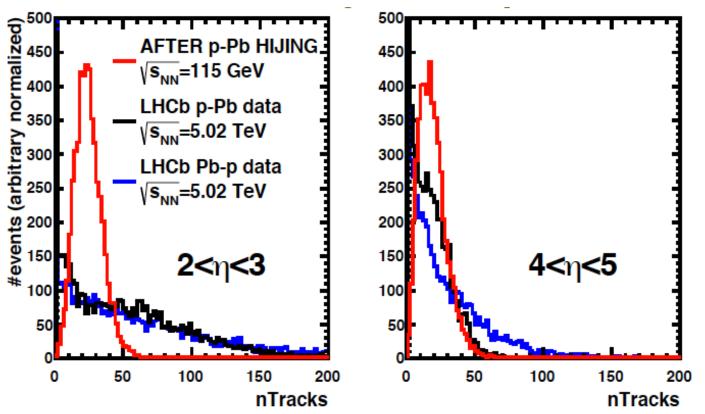

Large statistics allow one:

- To reach large p_T
- Study low y_{lab} with a statistical precision of ~3% (2 < y_{lab} < 5 \rightarrow -2.8 < y_{CMS} < 0.2)

$\chi_c \rightarrow \mu^+ \mu^- \gamma$ IN MB pp @ 115 GEV

 \Box Preliminary studies of the χ_c also started


□ 100% gamma identification efficiency assumed at present


B. Trzeciak, July 2014, Orsay

Simulations of a proton beam (7 TeV) on a Pb target ($\sqrt{s_{NN}}$ = 115 GeV)

- Full LHCb simulation and standard reconstruction
- □ Study the resolution at vertex, the occupancy in the pixels...
- Compare multiplicities in AFTER with LHCb pA run
- □ Simulations with HIJING version 1.383bs.2
- □ 10 000 events generated, no pile-up

Simulations of a proton beam (7 TeV) on a Pb target ($\sqrt{s_{NN}}$ = 115 GeV)

Z. Yang, AFTER workshop les Houches, January 2014

□ Track multiplicity in AFTER (pPb @ 115 GeV) is lower than the one measured by LHCb (pPb/Pbp @ 5.02 TeV)

□ LHCb detector can cope with the multiplicity of pPb at $\sqrt{s_{NN}}$ = 115 GeV in 2 < η <5

SUMMARY

Several simulations already performed in pH, pA (115 GeV) mainly focus on quarkonia at present:

- Fast simulations with LHCb like parameters (y_{lab} , p_T reach for J/ ψ in 2 weeks of data taking)

- Simulations for χ_c ongoing

□ Promising results obtained in simulations with LHCb setup:

- Allows to study the track multiplicity, occupancy rates in a VELO like detector...
- LHCb detector can cope with the multiplicities in AFTER (pA 115 GeV)

Simulations of the target in Geant4, development of a simulation framework for AFTER also ongoing