Hadrons in the NJL model

Benjamin Sintes

Subatech

September 9, 2013

The Nambu-Jona-Lasinio model

э

The Nambu-Jona-Lasinio model Mesons Baryons

The Polyakov NJL model Summary

Quantum Chromo Dynamics

Confinement

• Quarks are confined in hadronic matter, baryons or mesons, and are never observed separately.

The Nambu-Jona-Lasinio model Mesons

Baryons The Polyakov NJL model Summary

Quantum Chromo Dynamics

Perturbative QCD

Can be used for high energy physics.

Lattice QCD

Is used to solve numerically the QCD Lagrangian on a lattice of points in space and time.

Low energy models

Such as bag model or NJL model

The Nambu-Jona-Lasinio model

Mesons Baryons The Polyakov NJL model Summary

Phase diagramm of QCD

- Nature of the phase transition
- Realization of chiral symmetry

The Nambu and Jona-Lasinio model

- Originaly a theory of nucleons similar to the BCS theory of superconductivity.
- We only use quarks as degrees of freedom because we assume gluon degrees of freedom are frozen in the low energy limit.
- Constructed to have the same symmetries as QCD.

QCD symmetries

•
$$L_{QCD} = \bar{\psi}(i\gamma_{\mu}D^{\mu} - m_{o})\psi - \frac{1}{4}F^{a}_{\mu\nu}F^{\mu\nu}_{a}$$

 $D^{\mu} = \partial_{\mu} - ieA_{\mu}$

• A symmetry in the Lagrangian implies a conserved current.

Symmetry	Name	Current	
$U_{v}(1)$	Baryonic	$ar{\psi}\gamma_{\mu}\psi$	
$U_A(1)$	Axial	$\bar{\psi}\gamma_{\mu}\gamma_{5}\psi$	
$SU_V(3)$	Vector	$ar{\psi}\gamma_\mu\lambda_a\psi$	
$SU_A(3)$	Chiral	$ar{\psi}\gamma_{\mu}\gamma_{5}\lambda_{a}\psi$	

• We assume
$$m_u^0 = m_d^0$$

Lagrangian NJL

- Lagrangian : $L_{NJL} = \bar{\psi}(i\partial m_o)\psi + G\sum_{a}[(\bar{\psi}\lambda^{a}\psi)^{2} + (\bar{\psi}\gamma_{5}\lambda^{a}\psi)^{2}] K[\det\bar{\psi}(1+\gamma_{5})\psi + \det\bar{\psi}(1-\gamma_{5})\psi]$
- Static approximation : Interaction between two quark currents by the exchange of a pointlike gluon.

- Non-renormalizable theory, we need to apply a cut-off.
- Theory does not include confinement

Gap equation

- The Hartree approximation reduces the mutual two body interaction to an interaction with a mean field.
- $(\bar{\psi}\lambda_a\psi)^2 \rightarrow 2\bar{\psi}\lambda_a\psi. < \bar{\psi}\lambda_a\psi >$
- The linearization of the interaction in the mean field approximation is like closing the quark loop.

- This defines a dynamical fermion mass : $m_i = mo - 2G < q_i \bar{q}_i > -2K < q_j \bar{q}_j > < q_k \bar{q}_k >$
- Breaking of the chiral symmetry

The Nambu-Jona-Lasinio model Mesons

The Polyakov NJL model Summary

• Quark condensates are the order parameter of the transition

Bethe Salpether

• In the Random Phase Approximation :

- $T(q^2) = G + G\Pi(q^2)G + G\Pi(q^2)G\Pi(q^2)G + ... = \frac{G}{1 G\Pi(q^2)}$
- $T(q^2) = K_1 . \frac{i . g_{\pi q \bar{q}}}{q^2 m^2} . K_2$
- The mass of the pion mode is determined by the pole.

Pion

э

< ∃ >

-2

Kaon

A D > A D >

э

< ∃ >

-2

Parameters

Parameters (MeV)	Costa[1]	P1
Mou	5.5	4.75
Mos	140.7	147
Λ	602.3	708
$G.\Lambda^2$	1.835	1.922
$K.\Lambda^5$	12.36	10

[1] : Pseudoscalar Mesons in Hot, Dense Matter, P.Costa, M.C.Ruivo, C.A.de Sousa arXiv0304025v3

< 一型

з

Baryons

Baryons

• Quark-Diquark exchange

Baryons as Relativistic Bound States of Quark and Diquark, M.Oettel ArXiv 12067v1

< 一型

< ∃ >

Proton

< A

э

æ

Results

Masses (MeV)	Costa	P1	Experimental
u	367,6	424,2	
S	549,5	626,5	
Pion	135,0	135,9	135
Kaon	497,7	548,5	498
Diquark [ud]	525,6	599,1	623[2]
Diquark [us]	700,9	794,8	-
Proton	926,1	947,5	938
Λ	1106,1	1196,1	1116
Ξ	1246,8	1220,2	1315
Σ	1232,2	1320,1	1189

[2] Diquark masses from lattice QCD, M.Hess, F.Karsch, E.Laermanm, I. Wetzorke Phys.Rev.D58:111502

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

PNJL

- The Polyakov loop serves as an order parameter for the confinement in a pure gauge theory
- Parameters are from pure-gauge lattice data and some thermodynamic quantities
- The expectation value of the Polyakov loop is related to the change of free energy
- We add a potential to our lagrangian

PNJL Lagrangian

•
$$L_{NJL} = \bar{\psi}(i\partial - m_o)\psi + G\sum_a [(\bar{\psi}\lambda^a\psi)^2 + (\bar{\psi}\gamma_5\lambda^a\psi)^2] - K[det\bar{\psi}(1+\gamma_5)\psi + det\bar{\psi}(1-\gamma_5)\psi] - U(\phi,\bar{\phi},T)$$

Quarks

æ

Quarks

Benjamin Sintes Hadrons in the NJL model

< A

э

< ∃ >

-2

Quarks

Benjamin Sintes Hadrons in the NJL model

< A

э

æ

Hadrons

Benjamin Sintes Hadrons in the NJL model

< A

э

æ

- NJL model is usefull to understand the role of the chiral symmetry
- We can reproduce mesons, diquarks and baryons masses to study the transition phase
- Outlook
 - Cross sections need to be added
 - All implemented in a transport theory