A Large Ion Collider Experiment

ALICE: UN ÉTAT DES LIEUX

QGP France 2013

SOMMAIRE

- Données acquises durant RUN1
- Activités durant LS1
- Prévisions pour RUN2
- Une sélection de résultats de physique

ALICE

SOMMAIRE

- Données acquises durant RUN1 = 2010-2013
- Activités durant LS1 = 2013-2014
- Prévisions pour RUN2 = 2015-2017
- Une sélection de résultats de physique

RUN1

- 2010: pp @ 0.9 7 TeV
 Pb-Pb @ 2. 76 TeV (MB); L_{int} = 3 μb⁻¹
- 2011: pp @ 2.76 7 TeV (MB & rare)
 PbPb @ 2.76 TeV (MB & rare); L_{int} = 80 μb⁻¹
- 2012: pp @ 8 TeV (rare)

p-Pb @ 5.02 TeV (MB & rare); L_{int} = 30 nb⁻¹

ALICE

RUN1 7 PO DONNÉES BRUTES

- + 5 modules TRD
- + 8 modules Dcal
- + 1 module PHOS

ALICE

A Large Ion Collider Experiment

LS1 DCAL

- + 5 modules TRD: quarkonia (e⁺e⁻) à rapidité centrale & trigger
- + 8 modules Dcal: di-jet, γ-jet, électrons & trigger
- + 1 module PHOS: π^0 , photons directs thermiques & trigger

LS1 AMÉLIORATION

- TPC, TRD: lecture 500 Hz
- EMCal & PHOS: lecture 50 kHz

LS1 RÉPARATION

RUN2 HYPOTHÈSES

6.5 – 7 Z/A TeV

- Pb-Pb @ $L_{max} = 10^{27} \text{ cm}^{-2}\text{s}^{-1}$ (8 kHz)
- pp (rare) @ $L_{max} = 5 \times 10^{30} \text{ cm}^{-2} \text{s}^{-1}$ (500 kHz)
- pp (MB) @ $L_{max} = 1-2 \times 10^{29} \text{ cm}^{-2} \text{s}^{-1}$ (10-20 kHz)
- p-Pb (rare) @ $L_{max} = 10^{29} \text{ cm}^{-2}\text{s}^{-1}$ (200 kHz)
- p-Pb (MB) @ $L_{max} = 0.5 1 \times 10^{28} \text{ cm}^{-2}\text{s}^{-1}$ (10-20 kHz)

RUN2 OBJECTIFS

- 2015: pp @ 13-14 TeV (MB & rare); même NN L que PbPb
 Pb-Pb @ 5.1-5.5 TeV (MB & rare); L_{int} = 0.5 nb⁻¹
- 2016: pp @ 13-14 TeV (MB & rare)
 PbPb @ 5.1-5.5 TeV (MB & rare); L_{int} = 0.5 nb⁻¹
- 2017: pp @ 8 TeV (MB & rare); même NN L que PbPb
 p-Pb @ ? TeV (MB & rare); L_{int} × 10

LS2 & RUN3 VOIR PAOLO

- LS2: Upgrade ITS&TPC, MUON, MFT, DAQ&HLT, GRID
- > 2018: pp @ 14 TeV (MB & rare)

Pb-Pb @ 5.5 TeV (MB & rare); L_{int} = 10 nb⁻¹

p-Pb or AA or pp @ ? TeV (MB & rare); L_{int} × 10

A Large Ion Collider Experiment

UN PEU DE PHYSIQUE

ALICE[©] | QGP France | 09/09/2013 | Y. Schutz

A Large Ion Collider Experiment

Pb-Pb... grâce à IDP !

ALICE[©] | QGP France | 09/09/2013 | Y. Schutz

QUARKS LÉGERS

hydrodynamique: la réponse à toutes les questions !

• V₂

QUARKS LÉGERS

hydrodynamique: la réponse à toutes les questions !

- V₂
- hérité des quarks ?

ALICE

QUARKS LÉGERS

hydrodynamique: la réponse à toutes les questions !

- V₂
- hérité des quarks ?
- v₃, v₄,... fluctuations géométriques ?

ALICE

QUARKS LÉGERS

hydrodynamique: la réponse à toutes les questions !

- V₂
- hérité des quarks ?
- v₃, v₄,... fluctuations géométriques ?
- R_{AA} : flow transverse, mais encore ?

QUARKS LOURDS

Est-ce-que les Q participent à la dynamique du QGP ?

• Q « freinés » par QGP, hiérarchie de masse ?

 $\mathsf{uds} \leftrightarrow \mathsf{c}$

QUARKS LOURDS

Est-ce-que les Q participent à la dynamique du QGP ?

• Q « entrainés » par expansion collective du QGP

 $uds \leftrightarrow c$

QUARKS LÉGERS & LOURDS

Quel(s) mécanisme(s) de hadronizarion

• V₂

QUARKS LÉGERS & LOURDS

Quel(s) mécanisme(s) de hadronizarion

- V₂
- Baryon/Méson

QUARKS LÉGERS & LOURDS

Quel(s) mécanisme(s) de hadronisation

- V₂
- Baryon/Méson
- ... et J/ψ

COALESCENCE de quarks

HADRONS

Quel état final ?

• Spectres: T_{fo} , β_T

HADRONS

Quel état final ?

- Spectres: T_{fo} , β_T
- population statistique: T_{ch} , μ_B

interactions dans l'état final ?

 $QGP \rightarrow etat final ?$

A Large Ion Collider Experiment

une mini gouttelette de QGP ? la fin d'une interprétation hydrodynamique ?

ALICE[©] | QGP France | 09/09/2013 | Y. Schutz

ANISOTROPIE AZIMUTALE COMME DU FLOW...

- v2
- v3!

ANISOTROPIE AZIMUTALE ... DU FLOW HYDRODYNAMIQUE

- selon la masse à bas p_T
- différentiation baryon/méson à grand p_T

BARYON/MESON FLOW + COALESCENCE ?

 Λ/K_S^0 2.5

2

ALICE

Pb-Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}, |y| < 0.75$

0-5 % centrality

- 20-40 % centrality

EPOS 4 0-5 %

2.17v3 = 20-40 %

SPECTRES PRESQUE COMME HYDRODYNAMIQUE

• Glauber + hydrodynamique visqueuse + hadronisation statistique

... ET ENCORE

0.2

5

10

15

20

p_(GeV/c)

25

p^{ch}_{T,jet} (GeV/c)

A Large Ion Collider Experiment

TROUBLANT !?

ALICE[©] | QGP France | 09/09/2013 | Y. Schutz